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Abstract
In this paper, we study the existence of periodic solutions of Rayleigh equations with
singularities x′′ + f (t, x′) + g(x) = p(t). By using the limit properties of the time map, we
prove that the given equation has at least one 2π periodic solution.
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1 Introduction
In this paper, we are concerned with the existence of periodic solutions of singular Rayleigh
equations

x′′ + f
(
t, x′) + g(x) = p(t), (.)

where g : (, +∞) → R is continuous and has a singularity at the origin, f : R → R is
continuous and π periodic with respect to the first variable t, p : R → R is continuous
and π periodic.

Equation (.) can be used to model the oscillations of a clarinet reed []. The dynamic
behaviors of (.) have been widely investigated due to their applications in many fields
such as physics, mechanics, and the engineering technique fields (see [–] and the ref-
erences therein). Recently, the periodic problem of equations with singularities has been
studied widely because of their background in applied sciences (see [–] and the refer-
ences therein).

When f ≡ , (.) is a conservation system

x′′ + g(x) = p(t). (.)

Assume that g satisfies

(h) lim
x→+

g(x) = –∞,

and

n


< lim inf

x→+∞
g(x)

x
≤ lim sup

x→+∞
g(x)

x
<

(n + )


;
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moreover, the primitive function G of g satisfies

(h) lim
x→+

G(x) = +∞,

where G(x) =
∫ x

 g(u) du. It was proved in [] that (.) has at least one π periodic solu-
tion.

It is well known that time maps play an important role in studying the existence and
multiplicity of periodic solutions of (.) [, ]. Assume that g satisfies

(h) lim
x→+∞ g(x) = +∞.

Condition (h) implies that there exists a constant d >  such that

g(x) > sup
{∣∣f (t, )

∣∣ +
∣∣p(t)

∣∣ : t ∈ [, π ]
}

, for x ≥ d. (.)

Let us consider the autonomous system

x′′ + g(x) = ,

or its equivalent system

x′ = y, y′ = –g(x). (.)

The first integral of (.) is the curve

�c :



y + G(x) = G(c),

where c is an arbitrary constant. From conditions (hi) (i = , , ) we know that, for c > 
sufficiently large, �c is a closed curve. Let (x(t), y(t)) be any solution of (.) whose orbit
is �c. Clearly, this solution is periodic. Let T(c) denote the least positive period of this
solution. It is not hard to calculate

T(c) =
√


∫ c

d(c)

dx√
G(c) – G(x)

,

where  < d(c) < c, G(d(c)) = G(c), limc→+∞ d(c) = . From [] we know that, if conditions
(hi) (i = , , ) hold, then

lim
c→+∞

∫ 

d(c)

dx√
G(c) – G(x)

= .

Now, let us set

τ (c) =
√


∫ c



dx√
G(c) – G(x)

. (.)

In this paper, we deal with the existence of periodic solutions of (.) by using the asymp-
totic properties of the time map τ . Assume that the limit
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(h) lim|x|→+∞
f (t, x)

x
= 

holds uniformly for t ∈ [, π ]. We obtain the following result.

Theorem . Assume that conditions (hi) (i = , , , ) hold. Then (.) possesses at least
one π periodic solution provided that the inequality

lim sup
c→+∞

τ (c) > π

holds.

Using Theorem ., we can obtain the following corollary.

Corollary . Assume that conditions (hi) (i = , , , ) hold. Then (.) possesses at least
one π periodic solution provided that the inequality

lim inf
x→+∞

G(x)
x <




holds.

Throughout this paper, we always use the notations:

‖x‖∞ = max
{∣∣x(t)

∣∣ : t ∈ [, π ]
}

, ‖x‖ =
∫ π



∣∣x(t)
∣∣dt,

‖x‖ =
(∫ π


x(t) dt

) 


for any continuous π periodic function x(t). For a function I(c, ·), the notation I = o()
means that, for c → +∞, I →  holds uniformly with respect to the other variables.

2 A continuation lemma
It is well known that the continuation theorem plays a key role in studying the existence
of periodic solutions of ordinary differential equations. Now we shall introduce a contin-
uation lemma for (.). To this end, we consider the equivalent system of (.),

x′ = y, y′ = –
(
g(x) + f (t, y) – p(t)

)
. (.)

Now, we embed system (.) into a family of equations with one parameter λ ∈ [, ],

x′ = λy, y′ = –λ
(
g(x) + f (t,λy) – p(t)

)
. (.)

Lemma . Assume that conditions (hi) (i = , , , ) hold. Suppose that there exists a
constant ζ ≥ d (d is given in (.)) such that, if (x(t), y(t)) is a π -periodic solution of system
(.) for some λ ∈ (, ), then

max
{

x(t) : t ∈ [, π ]
} �= ζ , t ∈ [, π ].

Then system (.) has at least one π -periodic solution.
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We shall use a classical consequence of Mawhin’s continuation theorem [], Theo-
rem . to prove Lemma .. For the reader’s convenience, we restate it here.

Lemma . Let � = �(t, z;λ) : [, π ] × Rm × [, ] → Rm be a continuous function and
let � ⊂ Rm be a (non-empty) open bounded set (with boundary ∂� and closure �̄). Assume
the following conditions:

() for any π -periodic solution z(t) of z′ = λ�(t, z;λ) with λ ∈ (, ), such that z(t) ∈ �̄,
for all t ∈ [, π ], it follows that z(t) ∈ �, for all t ∈ [, π ];

() �(z) �= , for each z ∈ ∂� and dB(�,�, ) �= , where

�(z) =


π

∫ π


�(t, z; ) dt, for z ∈ Rm.

Then the equation z′ = �(t, z; ) has at least one π -periodic solution and z(t) ∈ �̄, for all
t ∈ [, π ].

Proof of Lemma . We shall use Lemma . to prove this continuation lemma. Set

f̄ =


π

∫ π


f (t, ) dt, p̄ =


π

∫ π


p(t) dt.

Then there exists t̃ ∈ [, π ] such that

f̄ – p̄ =


π

∫ π



(
f (t, ) – p(t)

)
dt = f (t̃, ) – p(t̃).

From condition (h) we know that there exists a constant  < d < d such that

g(x) < – sup
{∣∣f (t, )

∣
∣ +

∣
∣p(t)

∣
∣ : t ∈ R

}
,  < x ≤ d.

Therefore, we have

g(x) < –
(∣∣f (t̃, )

∣∣ +
∣∣p(t̃)

∣∣) ≤ –
∣∣f (t̃, ) – p(t̃)

∣∣ = –|f̄ – p̄|,  < x ≤ d.

Meanwhile, we have

g(x) >
∣
∣f (t̃, )

∣
∣ +

∣
∣p(t̃)

∣
∣ ≥ ∣

∣f (t̃, ) – p(t̃)
∣
∣ = |f̄ – p̄|, x ≥ d.

We claim that there exist constants  < ε < d and c >  such that, if (x(t), y(t)) is a π

periodic solution of (.) with x(t) ≤ ζ , t ∈ [, π ], then

ε < x(t) < ζ , –c ≤ y(t) ≤ c, t ∈ [, π ].

Integrating the second equality of (.) on [, π ] and applying the first equality of (.),
we get

∫ π


g
(
x(t)

)
dt = –

∫ π


f
(
t, x′(t)

)
dt +

∫ π


p(t) dt.
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Then we obtain

–
∫

I

g
(
x(t)

)
dt =

∫

I

g
(
x(t)

)
dt +

∫ π


f
(
t, x′(t)

)
dt –

∫ π


p(t) dt,

where I = {t ∈ [, π ] :  < x(t) < d}, I = {t ∈ [, π ] : d ≤ x(t) ≤ ζ }. Hence, we have

∫ π



∣∣g
(
x(t)

)∣∣dt = –
∫

I

g
(
x(t)

)
dt +

∫

I

∣∣g
(
x(t)

)∣∣dt

≤
∫

I

∣∣g
(
x(t)

)∣∣dt +
∫ π



∣∣f
(
t, x′(t)

)∣∣dt +
∫ π



∣∣p(t)
∣∣dt

≤M +
∫ π



∣∣f
(
t, x′(t)

)∣∣dt + ‖p‖, (.)

where M = π · max{|g(x)| : d ≤ x ≤ ζ }.
Let us take a fixed constant δ satisfying  < ( + π√

 )δ < . From (h) we see that there
exists Rδ >  such that, for any |s| ≥ Rδ and t ∈ [, π ],

∣∣f (t, s)
∣∣ ≤ δ|s|.

Set

M = max
{∣∣f (t, s)

∣∣ : t ∈ [, π ], |s| ≤ Rδ

}
.

Then we see that, for any (t, s) ∈ R,

∣
∣f (t, s)

∣
∣ ≤ δ|s| + M. (.)

From (.) and (.) we get

∫ π



∣∣g
(
x(t)

)∣∣dt ≤ M + δ

∫ π



∣∣x′(t)
∣∣dt + πM + ‖p‖.

Set M = M + πM + ‖p‖. Then we obtain

∫ π



∣∣g
(
x(t)

)∣∣dt ≤ δ
√

π
∥∥x′∥∥

 + M. (.)

From (.) we know that x(t) satisfies the equation as follows:

x′′(t) + λ(f
(
t, x′(t)

)
+ g

(
x(t)

)
– p(t)

)
= . (.)

Multiplying (.) by x(t) – x̄ with x̄ = 
π

∫ π

 x(s) ds, and integrating the equality on [, π ],
we get from (.) and (.)

∫ π



∣∣x′(t)
∣∣ dt = λ

∫ π


f
(
t, x′(t)

)(
x(t) – x̄

)
dt + λ

∫ π


g
(
x(t)

)(
x(t) – x̄

)
dt

– λ
∫ π


p(t)

(
x(t) – x̄

)
dt
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≤
∫ π



∣∣f
(
t, x′(t)

)(
x(t) – x̄

)∣∣dt +
∫ π



∣∣g
(
x(t)

)(
x(t) – x̄

)∣∣dt

+
∫ π



∣∣p(t)
(
x(t) – x̄

)∣∣dt

≤ δ

∫ π



∣
∣x′(t)

∣
∣
∣
∣x(t) – x̄

∣
∣dt + M

∫ π



∣
∣x(t) – x̄

∣
∣dt

+ ‖x – x̄‖∞
∫ π



(∣∣g
(
x(t)

)∣∣ +
∣∣p(t)

∣∣)dt

≤ (
δ
∥∥x′∥∥

 + M
√

π
)‖x – x̄‖ +

(
δ
√

π
∥∥x′∥∥

 + M + ‖p‖
)‖x – x̄‖∞.

Using the Wirtinger inequality and the Sobolev inequality, we have

‖x – x̄‖ ≤ ∥
∥x′∥∥

, ‖x – x̄‖∞ ≤
√

π


∥
∥x′∥∥

.

Then we get

∫ π



∣∣x′(t)
∣∣ dt ≤ δ

(
 +

π√


)∥∥x′∥∥
 +

(
M

√
π +

√
π


(
M + ‖p‖

)
)∥∥x′∥∥

,

which means that

∥
∥x′∥∥

 ≤ γ
∥
∥x′∥∥

 + c,

where γ = δ( + π√
 ), c = M

√
π +

√
π
 (M + ‖p‖). Since  < γ < , we have

∥∥x′∥∥
 ≤ c

 – γ
:= c. (.)

Integrating the first equation of (.) on [, π ] and noticing λ ∈ (, ], we get

∫ π


y(t) dt = ,

which implies that there exists t ∈ [, π ] such that y(t) = . Then we get from (.),
(.), and (.)

∣∣y(t)
∣∣ ≤ ∣∣y(t)

∣∣ +
∫ π



∣∣y′(t)
∣∣dt ≤

∫ π



∣∣g
(
x(t)

)∣∣dt +
∫ π



∣∣f
(
t, x′(t)

)∣∣dt +
∫ π



∣∣p(t)
∣∣dt

≤ 
√

πδc + M + πM + ‖p‖ := c.

Therefore,

‖y‖∞ ≤ c. (.)

Let x(t∗) (t∗ ∈ [, π ]) be the minimum of x(t). Then we have x′(t∗) =  and x′′(t∗) ≥ .
Since x(t∗) satisfies

x′′(t∗) + λ(f (t∗, ) + g
(
x(t∗)

)
– p(t∗)

)
= ,
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we have

f (t∗, ) + g
(
x(t∗)

) ≤ p(t∗).

Hence,

g
(
x(t∗)

) ≤ –f (t∗, ) + p(t∗) ≤ ∣∣f (t∗, )
∣∣ +

∣∣p(t∗)
∣∣ ≤ sup

{∣∣f (t, )
∣∣ +

∣∣p(t)
∣∣ : t ∈ R

}
,

which implies

x(t∗) < d. (.)

Let x(t∗) (t∗ ∈ [, π ]) be the maximum of x(t). Then we have x′(t∗) =  and x′′(t∗) ≤ .
Similarly, we can obtain

x
(
t∗) > d. (.)

From (.) and (.) we see that there exists t̄ ∈ [, π ] such that

d ≤ x(t̄) ≤ d. (.)

In what follows, we shall prove that there exists  < ε < d such that, for any π periodic
solution (x(t), y(t)) of (.) with x(t) ≤ ζ , t ∈ [, π ],

ε < x(t) < ζ , t ∈ [, π ].

The right inequality x(t) < ζ (t ∈ [, π ]) follows directly from the condition max{x(t) :
t ∈ [, π ]} �= ζ and x(t) ≤ ζ , t ∈ [, π ]. Next, we prove the left inequality. Otherwise,
there exist a sequence {λn} with λn ∈ (, ] and a sequence of π periodic solutions of
(.) {(xn(t), yn(t))} (with λ = λn in (.)), satisfying xn(t) ≤ ζ , t ∈ [, π ], and

min
t∈[,π ]

xn(t) → , n → ∞.

Without loss of generality, we assume that, for every n,

min
t∈[,π ]

xn(t) < d. (.)

Set εn = xn(tn) = mint∈[,π ] xn(t), tn ∈ [, π ]. From (.) and (.) we see that there exists
αn ∈ (tn, tn + π ) such that

x(αn) = d, εn < xn(t) < d, t ∈ (tn,αn).

Since (xn(t), yn(t)) satisfies the equation

y′
n(t) = –λn

(
g
(
xn(t)

)
+ f

(
t,λnyn(t)

)
– p(t)

)
,
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we have

yn(t)y′
n(t) = –λnyn(t)

(
g
(
xn(t)

)
+ f

(
t,λnyn(t)

)
– p(t)

)
.

Recalling x′
n(t) = λnyn(t), we get

yn(t)y′
n(t) = –

(
g
(
xn(t)

)
+ f

(
t, x′

n(t)
)

– p(t)
)
x′

n(t). (.)

Integrating both sides of (.) over the interval [tn,αn] and using the fact x′
n(tn) =

λnyn(tn) = , we obtain




y
n(αn) = –

∫ d

εn

g(s) ds –
∫ αn

tn

f
(
t, x′

n(t)
)
x′

n(t) dt +
∫ αn

tn

p(t)x′
n(t) dt.

Therefore, we get

–
∫ d

εn

g(s) ds =
∣
∣∣
∣

∫ d

εn

g(s) ds
∣
∣∣
∣ ≤ 


y

n(αn) +
∫ π



∣∣f
(
t, x′

n(t)
)
x′

n(t)
∣∣dt

+
∫ π



∣∣p(t)x′
n(t)

∣∣dt. (.)

From (h) we have

lim
n→∞

∫ d

εn

g(s) ds = –∞. (.)

Next, we shall estimate the right hand side of (.). First, it follows from (.) that we have

y
n(αn) ≤ c.

Meanwhile, according to (.) and (.), we get

∫ π



∣∣f
(
t, x′

n(t)
)
x′

n(t)
∣∣dt ≤ δ

∫ π


x′

n (t) dt + M

∫ π



∣∣x′
n(t)

∣∣dt

≤ δ
∥∥x′

n
∥∥

 +
√

πM
∥∥x′

n
∥∥



≤ δc
 +

√
πMc.

Obviously, we have

∫ π



∣
∣p(t)x′

n(t)
∣
∣dt ≤ √

π‖p‖∞
∥
∥x′

n
∥
∥

 ≤ √
π‖p‖∞c.

Hence, the right hand side of (.) is bounded. This conclusion contradicts (.).
To use Lemma ., we define an open bounded set � = {(x, y) : ε < x < ζ , –c– < y < c+},

and a map S : (, +∞) × R → R, S(x, y) = (y, –g(x) – f̄ + p̄). Then, for any π-periodic
solution (x(t), y(t)) of system (.), such that (x(t), y(t)) ∈ �̄, for all t ∈ [, π ], we have
(x(t), y(t)) ∈ �, for all t ∈ [, π ]. Therefore, the first condition of Lemma . is satisfied.
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Obviously, S does not vanish outside the rectangle �. Furthermore, the Brouwer degree
of S, dB(S,�, ), is defined and dB(S,�, ) = dB(g, (ε, ζ ), p̄ – f̄ ) =  because g is continuous
and g(ε) < p̄ – f̄ , g(ζ ) > p̄ – f̄ . According to Lemma ., system (.) has at least one π

periodic solution. �

Lemma . [] Assume that g : R → R is continuous and lim|x|→+∞ sgn(x)g(x) = +∞.
Then, for any constant ν ∈ R,

lim
c→±∞

τg(ν, c)
τg(c)

= ,

where

τg(c) = 
∣∣∣
∣

∫ c



dx
√

(G̃(c) – G̃(x))

∣∣∣
∣, τg(ν, c) = 

∣∣∣
∣

∫ c



dx
√

(G̃(c) – G̃(x) + ν(c – x))

∣∣∣
∣

with G̃(x) =
∫ x

 g(s) ds.

Remark . When g : [, +∞) → R is continuous and satisfies limx→+∞ g(x) = +∞, we can
also define τg(c) and τg(ν, c) for c >  large enough. In this case, we know from Lemma .
that, for any constant ν ,

lim
c→+∞

τg(ν, c)
τg(c)

= .

When g : (, +∞) → R is continuous and limx→+∞ g(x) = +∞, we can get a similar esti-
mate. Under this condition, it is noted that g may have a singularity at the origin, x = ,
namely, limx→+ g(x) = –∞. For any constant ν ∈ R and sufficiently large c ≥ , let us set

τ+
g (ν, c) = 

∫ c



dx√
(G(c) – G(x) + ν(c – x))

,

where G(x) =
∫ x

 g(s) ds. Then we have

lim
c→+∞

τ+
g (ν, c)
τ (c)

= , (.)

where τ is defined by (.).

In fact, let us consider a function g : [, +∞) → R, g(x) = g(x + ), x ≥ . Obviously, g

is continuous on the interval [, +∞) and satisfies limx→+∞ g(x) = +∞. Then we have, for
x ≥ ,

G̃(x) =
∫ x


g(s) ds =

∫ x+


g(s) ds = G(x + ).

According to Lemma ., we get

lim
c→+∞

τg (ν, c)
τg (c)

= .
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When c >  is large enough, we have

τg (ν, c) = 
∫ c



dx
√

(G̃(c) – G̃(x) + ν(c – x))

= 
∫ c



dx√
(G(c + ) – G(x + ) + ν(c – x))

= 
∫ c+



dx√
(G(c + ) – G(x) + ν(c +  – x))

= τ+
g (ν, c + ).

Similarly, we have

τg (c) = τ (c + ).

Consequently, we get

lim
c→+∞

τ+
g (ν, c + )
τ (c + )

= .

Therefore, the conclusion (.) holds.

3 Proof of Theorem 1.1
In this section, we shall use the continuation Lemma . given in Section  to prove The-
orem ..

Proof of Theorem . Let us set

τ = lim sup
c→+∞

τ (c) > π .

Then there exist  < ε < 
 (τ – π ) and a sequence {cn} with limn→∞ cn = +∞ such that,

for every n,

τ (cn) > τ – ε > π + ε.

We shall prove that the condition of Lemma . is satisfied for ζ = cn with n sufficiently
large.

Let (x(t), y(t)) be any π periodic solution of (.) for some λ ∈ (, ] and suppose that,
for n large enough,

x
(
t∗) = max

t∈[,π ]
x(t) = cn > d,

where d is given in (.). Assume that x(t∗) (t∗ ∈ [, π ]) is a local minimum of x(t). From
the proof of Lemma .

x(t∗) < d.
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Then there exists an interval [α,β] ⊂ [, π ] containing t∗, with α = α(x,λ), β = β(x,λ)
such that

x(α) = x(β) = d; x(t) > d, t ∈ (α,β)

and

y
(
t∗) = ; y(t) > , t ∈ [

α, t∗), y(t) < , t ∈ (
t∗,β

]
.

From (.) we have

y(t)y′(t) + λ
(
f
(
t,λy(t)

)
+ g

(
x(t)

)
– p(t)

)
y(t) = . (.)

Integrating both sides of (.) on the interval [t, t∗] with α ≤ t ≤ t∗, we have

y(t) = 
(
G

(
x
(
t∗)) – G

(
x(t)

))
+ λ

∫ t∗

t
f
(
τ ,λy(τ )

)
y(τ ) dτ – λ

∫ t∗

t
p(τ )y(τ ) dτ . (.)

From (h) we know that, for any sufficiently small ε > , there is a constant Mε >  such
that, for any (t, y) ∈ R,

∣∣f (t, y)
∣∣ ≤ ε|y| + Mε . (.)

Since y(t) > , t ∈ [α, t∗], it follows from (.) and (.) that, for t ∈ [α, t∗],

y(t) ≤
(
G

(
x
(
t∗)) – G

(
x(t)

))
+ 

∫ t∗

t

∣
∣f

(
τ ,λy(τ )

)∣∣
∣
∣λy(τ )

∣
∣dτ + 

∫ t∗

t

∣
∣p(τ )

∣
∣
∣
∣λy(τ )

∣
∣dτ

≤ 
(
G

(
x
(
t∗)) – G

(
x(t)

))
+ ε

∫ t∗

t
y(τ ) dτ + 

∫ t∗

t

(∣∣p(τ )
∣∣ + Mε

)∣∣λy(τ )
∣∣dτ

≤ 
(
G

(
x
(
t∗)) – G

(
x(t)

))
+ ε

∫ t∗

t
y(τ ) dτ + M′

ε

∫ t∗

t
x′(τ ) dτ

= 
(
G

(
x
(
t∗)) – G

(
x(t)

))
+ ε

∫ t∗

t
y(τ ) dτ + M′

ε

(
x
(
t∗) – x(t)

)
,

where M′
ε = Mε + ‖p‖∞. Let us set

φ(t) =
∫ t∗

t
y(τ ) dτ .

Then we have

φ′(t) = –y(t).

Hence,

–φ′(t) – εφ(t) ≤ 
(
G

(
x
(
t∗)) – G

(
x(t)

))
+ M′

ε

(
x
(
t∗) – x(t)

)
. (.)
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Multiplying both sides of (.) by eεt and integrating over the interval [t, t∗] yields

–
∫ t∗

t

[
φ(τ )eετ

]′ dτ ≤
∫ t∗

t

[

(
G

(
x
(
t∗)) – G

(
x(τ )

))
+ M′

ε

(
x
(
t∗) – x(τ )

)]
eετ dτ .

Since φ(t∗) = , we have

φ(t)eεt ≤
∫ t∗

t

[

(
G

(
x
(
t∗)) – G

(
x(τ )

))
+ M′

ε

(
x
(
t∗) – x(τ )

)]
eετ dτ .

From x′(t) = λy(t) ≥ , t ∈ [α, t∗] we know that x(t) is increasing on the interval [α, t∗].
Therefore, we get, for t ∈ [α, t∗],

φ(t)eεt ≤ eεt∗
∫ t∗

t

[

(
G

(
x
(
t∗)) – G

(
x(τ )

))
+ M′

ε

(
x
(
t∗) – x(τ )

)]
dτ .

Furthermore,

φ(t) ≤ πeπε
[

(
G

(
x
(
t∗)) – G

(
x(t)

))
+ M′

ε

(
x
(
t∗) – x(t)

)]
.

Consequently, we can get, for t ∈ [α, t∗],

y(t) ≤ (
 + κ(ε)

)[

(
G

(
x
(
t∗)) – G

(
x(t)

))
+ M′

ε

(
x
(
t∗) – x(t)

)]
,

where κ(ε) = πεeπε . Recalling x′(t) = λy(t) and y(t) >  for t ∈ [α, t∗], we have

x′(t) ≤ √
 + κ(ε)

√

(
G

(
x
(
t∗)) – G

(
x(t)

))
+ M′

ε

(
x
(
t∗) – x(t)

)
.

Hence,

x′(t)√
 + κ(ε)

√
(G(x(t∗)) – G(x(t))) + M′

ε(x(t∗) – x(t))
≤ . (.)

Integrating both sides of (.) over interval [α, t∗] yields

√
 + κ(ε)

∫ cn

d

dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

≤ t∗ – α.

Similarly, we can get

√
 + κ(ε)

∫ cn

d

dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

≤ β – t∗.

Therefore, we obtain

√
 + κ(ε)

∫ cn

d

dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

≤ β – α.

Using (h) we can easily derive that, for n → ∞,

∫ d



dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

= o().
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Then we have

√
 + κ(ε)

∫ cn



dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

+ o() ≤ β – α.

It follows from Remark . that

lim
n→∞


τ (cn)

∫ cn



dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

= .

Consequently, we have

∫ cn



dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

= τ (cn)
(
 + o()

)
.

Furthermore,
∫ cn



dx
√

(G(cn) – G(x)) + M′
ε(cn – x)

≥ π + ε + o().

Since limε→+
√

 + κ(ε) = , there exist a sufficiently small ε >  and a sufficiently large n
such that, if max[,π ] x(t) = cn, then

β – α > π + ε,

which contradicts with the inequality β – α < π . Then we find ζ = cn for n sufficiently
large. Consequently, from the continuation Lemma ., we know that (.) has at least one
π periodic solution. �

Proof of Corollary . Let us denote ρ = lim infx→+∞ G(x)
x < 

 . Then there exists ε >  such
that ρε = ρ + ε ∈ (ρ, 

 ). Define

ψ(x) = ρεx – G(x), x ≥ .

Therefore, we have

lim sup
x→+∞

ψ(x) = lim sup
x→+∞

x
(

ρε –
G(x)

x

)
= +∞.

It follows that there exists a sequence {cn} with limn→+∞ cn = +∞ such that

ψ(x) ≤ ψ(cn), x ∈ (, cn).

Consequently,


(
G(cn) – G(x)

) ≤ ρε

(
c

n – x), x ∈ (, cn).

Hence, we have

τ (cn) = 
∫ cn



dx√
(G(cn) – G(x))

≥ 
∫ cn



dx
√

ρε(c
n – x)

=
√
ρε

(
π


– arcsin


cn

)
.
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As a result, we get

lim sup
n→+∞

τ (cn) ≥ π√
ρε

> π ,

which implies that lim supc→+∞ τ (c) > π . According to Theorem ., (.) has at least one
π periodic solution. �

Remark . In [], the existence of periodic solutions of the Hamiltonian systems of the
type

x′ = g(t, y), y′ = –g(t, x) (.)

was studied. A similar result was obtained (see [], Corollary .) for system (.). How-
ever, this corollary cannot be applied directly to obtain the main results of this paper be-
cause the asymptotic behavior of the primitive G of the nonlinearity g is treated in present
paper.
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