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Abstract
In this paper we have dealt with controlling a boundary condition of a parabolic
system in one dimension. This control aims to find the best appropriate right-hand
side boundary function which ensures the closeness between the solution of system
at final time and the desired target for the solution. Since these types of problems are
ill posed, we have used a regularized solution. By numerical examples we have tested
the theoretical results.
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1 Introduction
We consider the following one-dimensional parabolic partial differential equation:

∂u
∂t

= k
∂u
∂x + h(x, t), (x, t) ∈ Q = (, l) × (, T), (.)

u(x, ) = u(x), x ∈ � = (, l), (.)

∂u
∂x

(, t) = ,
∂u
∂x

(l, t) = g(t), t ∈ (, T), (.)

where k >  and h(x, t), u(x) are given functions satisfying the following conditions:

u(x) ∈ H(�), h(x, t) ∈ L(Q). (.)

We want to obtain a suitable sized boundary function g(t) ∈ H(, T) which approaches
the solution of the problem (.)-(.) to the desired target y(x) ∈ L(, l) at a final time
t = T .

This process requires the use of the following cost functional:

J(g) =
∥
∥u(x, T ; g) – y(x)

∥
∥


L(,l) (.)

and solving the problem

J∗ = inf J(g) = J(g∗). (.)
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On the other hand we know that the problem (.) is numerically ill posed. In other words,
quite different g(t) functions can minimize the functional (.). Therefore, instead of the
functional (.), we introduce the new functional

Jα(g) =
∥
∥u(x, T ; g) – y(x)

∥
∥


L(,l) + α‖g‖

H(,T) (.)

and solve the problem

Jα∗ = inf Jα(g) = Jα(g∗). (.)

Here α >  is a regularization parameter which ensures both the uniqueness of the so-
lution and a balance between the norms ‖u(x, T ; g) – y(x)‖

L(,l) and ‖g‖
H(,T). We show

the ill-posedness for α =  by a numerical example. Detailed information as regards the
regularization parameter can be found in [].

2 Some previous works and the different aspects of this work
Neumann boundary control problems with different objective functionals received a great
deal of attention in the last years [–]. Besides, important studies involving final time
targets are as follows.

In his famous work, Lions [] considered the control u in the parabolic system

∂

∂t
y(u) + A(t)y(u) = f in Q,

y(x, ; u) = y(x), x ∈ �,

∂

∂v
y(u) = u on � (boundary of �)

minimizing the cost function

J(u) =
∫

�

(

y(x, T ; u) – zd
) dx + (Nu, u)L(�)

with target zd and operator N . Taking f ∈ L(Q), y ∈ L(�), u ∈ L(�), he gave the opti-
mality conditions.

Hasanoğlu [] considered the boundary value problem

ut =
(

k(x)ux
)

x + F(x, t), (x, t) ∈ �T := (, l) × (, T],

u(x, ) = μ(x), x ∈ (, l),

ux(, t) = , –k(l)ux(l, t) = ν
[

u(l, t) – T(t)
]

, t ∈ (, T]

and investigated the determination of the pair w := {F(x, t), T(t)} in the set

F(x, t) ∈ H(�T ), T(t) ∈ H[, T],  < T∗ ≤ T(t) ≤ T∗ a.e. ∀t ∈ [, T]

minimizing the functional

J(w) =
∫ l



[

u(x, T ; w) – μT (x)
]

dx.



Şener and Subaşi Boundary Value Problems  (2015) 2015:166 Page 3 of 16

Hasanoğlu obtained the Fréchet derivative of the functional, established a minimizing se-
quence, and stated that this sequence weakly converges to the quasi-solution of the prob-
lem.

Dhamo and Tröltzsch [] investigated the controllability aspects for optimal parabolic
boundary control problems of type

min J(y, u) =



∫ 



(

y(x, T) – yd(x)
) dx

subject to the one-dimensional heat equation

yt(x, t) = yxx(x, t), (x, t) ∈ (, ) × (, T),

y(x, ) = , x ∈ (, ),

yx(, t) = , yx(l, t) = u(t), t ∈ (, T)

on the set of feasible controls

Uad =
{

u ∈ L(, T) : |u| ≤  a.e. in [, T]
}

.

Altmüller and Grüne [] studied the stability properties of a model with predictive control
without terminal constraints applied to the heat equation,

yt(x, t) = yxx(x, t) + μy(x, t) on � × (,∞),

y(x, ) = y(x) on �,

y(, t) = , yx(, t) = v(t) on (,∞)

by the cost functional

l(y, v) =


∥
∥y(·, nT)

∥
∥


L(�) +

λ


∥
∥v(nT)

∥
∥


L(�)

on the controls set L∞([, T]).
This work chooses more regular controls than previous work [, , ]. We take the con-

trols in the closed and convex set Gad ⊂ H(, T). This choice causes the addition of the
control in the norm of H(, T) to the functional. In the case that the control is in the
space L, the Fréchet derivative contains the solution of adjoint equation only. In the case
of H(, T) the Fréchet derivative contains not only the solution of the adjoint equation
but also a solution of a second-order ordinary differential equation.

Numerical examples are rarely encountered in the literature. This work contains a de-
tailed numerical investigation. Both the ill-posedness for α =  and the regularizing effect
of this parameter for α >  are illustrated in detail.

3 A motivation for the problem
In this section we give a motivation for the problem. Consider a wire with diffusivity con-
stant k. This wire is heated by a discontinuous heat source h. The initial temperature dis-
tribution is u. The left end is insulated and the right end has a heat flux g(t). The heat
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Figure 1 Scheme for the problem.

flux intensity function g(t) produces the heat distribution u(x, t; g) which is the solution of
the PDE.

We want to control both the magnify of the heat flux function g(t) and the distance
between the heat distribution u at final time T and y(x) via α. The optimal values are
shown by g∗ and J∗ (see Figure ).

4 Existence and uniqueness of optimal solution
In this section we prove the existence and uniqueness of optimal solution. Let us define
the closed and convex subset Gad ⊂ H(, T) of admissible controls.

First of all we know from [], p., that for every u(x) ∈ H(�), h(x, t) ∈ L(Q), and
g(t) ∈ H(, T), the boundary value problem (.)-(.) admits a unique solution u ∈
H,(Q) that depends continuously on h, u, and g by the following estimate:

‖u‖
H,(�) ≤ c

(‖h‖
L(Q) + ‖u‖

H(�) + ‖g‖
H(,T)

)

, (.)

where c is a constant independent from h, u, and g . Before giving the existence and
uniqueness theorem for an optimal solution, we rearrange the cost functional Jα(g) given
by (.) thus:

Jα(g) =
∫ l



[

u(x, T ; g)–u(x, T ; )+u(x, T ; )–y(x)
] dx+α

∫ T



[

g(t)+
(

g ′(t)
)]dt. (.)

To use the linearity of the transform g → u[g] – u[], we add and subtract the term
u(x, T ; ) to the functional Jα(g).

If we define the auxiliary functionals

π (g, g) =
∫ l



[

u(x, T ; g) – u(x, T ; )
][

u(x, T ; g) – u(x, T ; )
]

dx

+ α

∫ T



[

g(t) +
(

g ′(t)
)]dt, (.)
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Lg =
∫ l



[

u(x, T ; g) – u(x, T ; )
][

y(x) – u(x, T ; )
]

dx, (.)

b =
∫ l



[

y(x) – u(x, T ; )
] dx, (.)

then Jα(g) in (.) is briefly written as

Jα(g) = π (g, g) – Lg + b. (.)

Due to the linearity of the transform g → u[g] – u[], it can easily be seen that the func-
tional π (g, g) defined by (.) is bilinear, coercive, symmetric, continuous, and strictly con-
vex. In addition, the functional Lg is linear, continuous, and convex.

Now, we give the following theorem for the existence and uniqueness in view of [].

Theorem . Let π (g, g) be a coercive, bilinear, continuous, and symmetric form and let
Lg be a linear and continuous functional. Then there is a unique element g∗ ∈ Gad such that

Jα(g∗) = inf
g∈Gad

Jα(g) (.)

for the functional given in (.).

Proof Let {gk} ∈ Gad be a minimizing sequence for Jα(g). By this we mean that

Jα(gk) → inf
g∈Gad

Jα(g) (.)

for k → ∞. Coercivity and continuity of π (g, g) give

Jα(g) ≥ α‖g‖
H(,T) – c‖g‖H(,T). (.)

Combining (.) with (.) we conclude that

‖gk‖H(,T) ≤ c. (.)

Then the sequence {gk} has a weakly converging subsequence {gkm} converging to the el-
ement g∗ ∈ H(, T). The set Gad is weakly closed, since it is closed and convex. Hence

g∗ ∈ Gad. (.)

Moreover, the transform g → Jα(g) is weakly lower semicontinuous, since g → π (g, g) is
weakly lower semicontinuous and g → Lg is weakly continuous. Then by the definition of
lower semicontinuity, we have

Jα(g∗) ≤ lim inf Jα(gkm ).

We can write the following using (.):

Jα(g∗) ≤ inf
g∈Gad

Jα(g)
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and by (.) we obtain

Jα(g∗) = inf
g∈Gad

Jα(g).

Hence the existence of the solution for the problem (.)-(.) is obtained.
For uniqueness we use the strict convexity of Jα(g), since for all g �= g ∈ H(, T) and

β ∈ (, ),

Jα
(

βg + ( – β)g
)

= π
(

βg + ( – β)g,βg + ( – β)g
)

– L
(

βg + ( – β)g
)

+ b

< βπ (g, g) + ( – β)π (g, g) – 
(

βLg + ( – β)Lg
)

+ b

< β
{

π (g, g) – Lg + b
}

+ ( – β)
{

π (g, g) – Lg + b
}

< βJα(g) + ( – β)Jα(g).

Now let g and g be two elements satisfying

Jα(g) = Jα(g) = inf
g∈Gad

Jα(g).

Since the set Gad is convex




(g + g) ∈ Gad

and since Jα(g) is strictly convex while g �= g we get

Jα
(




(g + g)
)

<



Jα(g) +



Jα(g) = inf
g∈Gad

Jα(g)

and this is a contradiction. Then we must have g = g. This shows that the minimum
element is unique. Theorem . has been proven. �

5 Well-posedness of the problem
In Section , we proved the existence and uniqueness of optimal solution. In this section,
we show that for a minimizing sequence {gk(t)}, the convergence of Jα({gk}) → Jα(g∗) im-
plies ‖gk – g∗‖H(,T) →  for k → ∞ while α > .

For this purpose we must show that the functional Jα(g) is strongly convex.

Theorem . The functional Jα(g) is strongly convex with the convexity constant α.

Proof By the definition of strong convexity of a functional, we must prove that

Jα
(

βg + ( – β)g
)≤ βJα(g) + ( – β)Jα(g) – χβ( – β)‖g – g‖

H(,T) (.)

for χ > .
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First, let us show that the functional α‖g‖
H(,T) is strongly convex. For all g, g ∈ Gad

and β ∈ [, ], we can write

α
∥
∥βg + ( – β)g

∥
∥


H(,T)

= α

∫ T



[(

βg + ( – β)g
) +

(

βg ′
 + ( – β)g ′


)]dt

= α

∫ T



[(

βg
 + ( – β)g

 – β( – β)(g – g))

+
(

β
(

g ′

) + ( – β)

(

g ′

) – β( – β)

(

g ′
 – g ′


))]dt

= αβ‖g‖
H(,T) + α( – β)‖g‖

H(,T) – αβ( – β)‖g – g‖
H(,T).

Hence α‖g‖
H(,T) is strongly convex with the convexity constant χ = α. Recalling the ex-

pression of π (g, g) and using the above equality, we have

π
(

βg + ( – β)g,βg + ( – β)g
)

=
∫ l



[

β
(

u(x, T ; g) – u(x, T ; )
)

+ ( – β)
(

u(x, T ; g) – u(x, T ; )
)] dx

+ αβ‖g‖
H(,T) + α( – β)‖g‖

H(,T) – αβ( – β)‖g – g‖
H(,T).

On the other hand we know from Section  that π (g, g) is strictly convex, so we get

π
(

βg + ( – β)g,βg + ( – β)g
)

≤ β

∫ l



[

u(x, T ; g) – u(x, T ; )
] dx + ( – β)

∫ l



[

u(x, T ; g) – u(x, T ; )
] dx

+ αβ‖g‖
H(,T) + α( – β)‖g‖

H(,T) – αβ( – β)‖g – g‖
H(,T)

≤ βπ (g, g) + ( – β)π (g, g) – αβ( – β)‖g – g‖
H


.

The functional π (g, g) is strongly convex with the convexity constant α. As for Jα(g) we get

Jα
(

βg + ( – β)g
) ≤ βπ (g, g) + ( – β)π (g, g) – αβ( – β)‖g – g‖

H(,T)

– 
(

βLg + ( – β)Lg
)

+ b

and this implies (.). Hence Jα(g) is strongly convex with the convexity constant χ = α.
�

Theorem . For the strongly convex functional Jα(g) with the convexity constant α, there
is a minimizing sequence which converges strongly to an element g∗ and satisfies the follow-
ing inequality:

‖gk – g∗‖
H(,T) <


α

(

Jα(gk) – Jα(g∗)
)

. (.)

Proof This proof can be done in a similar way to []. If we take β = 
 in (.) then

Jα
(




gk +



g∗
)

≤ 


Jα(gk) +



Jα(g∗) – α



‖gk – g∗‖
H(,T).
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On the other hand, since

Jα(g∗) ≤ Jα
(




gk +



g∗
)

we get

Jα(g∗) ≤ 


Jα(gk) +



Jα(g∗) – α



‖gk – g∗‖
H(,T)

and

‖gk – g∗‖
H(,T) ≤ 

α

(

Jα(gk) – Jα(g∗)
)

.

Hence the proof is done. �

6 Obtaining the optimal solution
Up to now we have seen that if a minimizing sequence is found then the limit of this
sequence will be the solution of optimal control problem. In this section, we investigate
how we can get this minimizing sequence. To do this, we must obtain the adjoint problem
and the Fréchet derivation for the functional.

6.1 Adjoint problem and Fréchet derivation of the functional
The Lagrange functional for the problem can be written as follows:

L(u, g,η) =
∫ l



[

u(x, T ; g) – y(x)
] dx + α

∫ T


g(t) dt + α

∫ T



(

g ′(t)
) dt

+
∫ T



∫ l


η

(
∂u
∂t

– k
∂u
∂x – h(x, t)

)

dx dt.

The stationarity condition δL =  gives the adjoint problem

∂η

∂t
+ k

∂η

∂x = , (.)

η(x, T) = –
[

u(x, T ; g) – y(x)
]

, (.)

ηx(, t) = ηx(l, t) = . (.)

Let g(t) be an increment to the function g(t), then the difference function u(x, t) =
u(x, t; g + g) – u(x, t; g) is the solution of the difference problem:

∂u
∂t

= k
∂u
∂x , t ∈ (, T), x ∈ (, l), (.)

u(x, ) = , x ∈ (, l), (.)

∂u
∂x

(, t) = ,
∂u
∂x

(l, t) = g(t), t ∈ (, T). (.)

Furthermore the difference function u(x, t) satisfies the following estimate for t ∈ [, T]:

∥
∥u(·, t)

∥
∥


L(,l) ≤ c

(‖g‖
H(,T)

)

. (.)



Şener and Subaşi Boundary Value Problems  (2015) 2015:166 Page 9 of 16

On the other hand, the difference for the functional subject to g(t) is

∣
∣Jα(g)

∣
∣ =
∫ l



{[

u(x, T ; g + g) – y(x)
] –

[

u(x, T ; g) – y(x)
]}dx

+ α

∫ T


g(t)g(t) dt + α

∫ T


g(t) dt

+ α

∫ T


g ′(t)g ′(t) dt + α

∫ T



(

g ′(t)
) dt

= 
∫ l



[

u(x, T ; g) – y(x)
]

u(x, T) dx +
∫ l


u(x, T) dx

+ α

∫ T


g(t)g(t) dt + α

∫ T


g(t) dt

+ α

∫ T


g ′(t)g ′(t) dt + α

∫ T



(

g ′(t)
) dt. (.)

We can obtain the following equality using the adjoint and difference problems:

∫ l



[

u(x, T ; g) – y(x)
]

u(x, T) dx

= –
∫ T


kη(l, t)g(t) dt. (.)

Also, considering (.) in (.), we get

∣
∣Jα(g)

∣
∣ = –

∫ T


kg(t)η(l, t) dt +

∫ l


u(x, T) dx

+ α

∫ T


g(t)g(t) dt + α

∫ T


g(t) dt

+ α

∫ T


g ′(t)g ′(t) dt + α

∫ T



(

g ′(t)
) dt. (.)

In order to have the inner product in the space H(, T) we must consider the function ξ ,
which is the weak solution of the following problem:

ξ ′′ – ξ = kη(l, t),

ξ ′() = ξ ′(T) = .
(.)

Then we write

∣
∣Jα(g)

∣
∣ = –

∫ T


ξ ′′g(t) dt +

∫ T


ξg(t) dt +

∫ l


u(x, T) dx

+ α

∫ T


g(t)g(t) dt + α

∫ T


g(t) dt

+ α

∫ T


g ′(t)g ′(t) dt + α

∫ T



(

g ′(t)
) dt
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and

∣
∣Jα(g)

∣
∣ =
∫ T


ξ ′g ′(t) dt +

∫ T


ξg(t) dt +

∫ l


u(x, T) dx

+ α

∫ T


g(t)g(t) dt + α

∫ T


g(t) dt

+ α

∫ T


g ′(t)g ′(t) dt + α

∫ T



(

g ′(t)
) dt.

Rearranging this, we obtain the equality

∣
∣Jα(g)

∣
∣ =
∫ T



(

ξ + αg(t)
)

g(t) dt

+
∫ T



(

ξ ′ + αg ′(t)
)

g ′(t) dt

+
∫ l


u(x, T) dx + α

[∫ T


g(t) dt +

∫ T



(

g ′(t)
) dt

]

. (.)

We take into account (.) and the following definition of the Fréchet derivation:

∣
∣Jα(g)

∣
∣ =
〈

J ′
α(g),g

〉

H(,T) + o
(‖g‖

H(,T)
)

.

We get the Fréchet derivation for the functional thus:

J ′
α(g) = ξ + αg. (.)

6.2 Constituting a minimizing sequence
In this section, we construct a minimizing sequence using the gradient method. If we take
the initial element g ∈ Gad, we can constitute a minimizing sequence by the rule

gk+ = gk – βk · J ′(gk), k = , , . . . , (.)

where J ′(gk) is the Fréchet derivation accompanying the element gk . The βk are sufficiently
small numbers satisfying

Jα(gk+) – Jα(gk) = βk

[

–
∥
∥J ′

α(gk)
∥
∥

 +
o(βk)
βk

]

< . (.)

Computations of the βk can be carried out by one of the methods shown in []. Since the
functional is weakly lower semicontinuous, we have

Jα∗ ≤ Jα(g) ≤ lim
k→∞

Jα(gk) = Jα∗.

Iteration can be stopped by one of the following criteria:

‖gk+ – gk‖ < ε,
∣
∣Jα(gk+) – Jα(gk)

∣
∣ < ε,

∥
∥J ′

α(gk)
∥
∥ < ε. (.)
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7 A numerical example
Let us consider the following problem on the domain (x, t) ∈ Q = (, ) × (, ), choosing
k = , l = , T = :

ut = uxx +

⎧

⎪⎨

⎪⎩

–x sin t – x sin t – x cos t –  cos t,  ≤ x < 
 ,  ≤ t ≤ ,

–x sin t – x sin t – x sin t
+ 

 sin t – x cos t –  cos t, 
 < x ≤ ,  ≤ t ≤ ,

(.)

u(x, ) =

{

x + x,  ≤ x ≤ 
 ,

x + x + x – 
 , 

 ≤ x ≤ ,
(.)

ux(, t) = , ux(, t) = g(t). (.)

We use the cost functional

Jα(g) =
∫ 



[

u(x, ; g) –

{

cos()(x + x),  ≤ x ≤ 


cos()(x + x + x – 
 ), 

 ≤ x ≤ 

]

dx + α‖g‖
H(,) (.)

and want to solve the problem

Jα∗ = Jα(g∗) = inf Jα(g). (.)

We consider the solution of the parabolic problem (.)-(.) as u = u +u with u = x

l g(t).
Then the following problem with a homogeneous boundary condition for the function u

is obtained:

∂u

∂t
= k

∂u

∂x + h(x, t) +
k
l

g(t) –
x

l
g ′(t), (.)

u(x, ) = u(x) –
x

l
g(), (.)

∂u

∂x
(, t) = ,

∂u

∂x
(l, t) = . (.)

The weak solution for the problem (.)-(.) can be defined as follows:

∫ l



∂u

∂t
v(x) dx +

∫ l


k
∂u

∂x
∂v
∂x

dx

=
∫ l


h(x, t)v(x) dx +

k
l

∫ l


g(t)v(x) dx –

∫ l



x

l
g ′(t)v(x) dx ∀v ∈ H(�)

and the solution to this equality can be approximated by the Feado-Galerkin method using
the sum

uN
 (x, t) =

N
∑

k=

ck(t)ϕk(x). (.)

Here the functions ϕk(x) are an orthogonal basis in H(�). Compatible with the boundary
values, we can take these functions as

{
√

l
, cos

π

l
x, cos

π

l
x, . . . , cos

(n – )π
l

x
}

.



Şener and Subaşi Boundary Value Problems  (2015) 2015:166 Page 12 of 16

The unknown functions ck(t) in (.) are found from the system of first-order ordinary
differential equations

M
dC
dt

+ AC = H ,

C() = C.
(.)

In this system,

C =

⎡

⎢
⎢
⎢
⎢
⎣

CN
 (t)

CN
 (t)
...

CN
N (t)

⎤

⎥
⎥
⎥
⎥
⎦

is the matrix of unknowns,

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫ l
[u(x) – x

l g()]ϕ(x) dx
∫ l

[u(x) – x

l g()]ϕ(x) dx
...

∫ l
[u(x) – x

l g()]ϕN (x) dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is the initial data matrix. The coefficient matrices M and A are such that

M =

⎡

⎢
⎢
⎢
⎢
⎣

  · · · 
  · · · 
...

...
...

  · · · 

⎤

⎥
⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎣

  · · · 
 ( π

l ) · · · 
...

...
...

  · · · ( (n–)π
l )

⎤

⎥
⎥
⎥
⎥
⎦

and the right-hand side matrix H is

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫ l
 h(x, t)ϕ(x) dx +

∫ l


k
l g(t)ϕ(x) dx –

∫ l


x

l g ′(t)ϕ(x) dx
∫ l

 h(x, t)ϕ(x) dx +
∫ l


k
l g(t)ϕ(x) dx –

∫ l


x

l g ′(t)ϕ(x) dx
...

∫ l
 h(x, t)ϕN (x) dx +

∫ l


k
l g(t)ϕN (x) dx –

∫ l


x

l g ′(t)ϕN (x) dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since M and A are diagonal, each equation in the system (.) gives an ordinary differen-
tial equation. Therefore we can solve (.) and find the functions ck(t) exactly.

First, let us take α =  and consider the functional,

J(g) =
∫ 



[

u(x, ; g) –

{

cos()(x + x),  ≤ x ≤ 


cos()(x + x + x – 
 ), 

 ≤ x ≤ 

]

dx.

The minimum value of this functional is J∗ =  and the functional takes this value for
g∗ =  cos(t). Taking N =  to approximate the solution for the Feado-Galerkin method
we obtain the minimum value as J∗ = . × –.
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Figure 2 Two quite different functions that give
nearly the same functional value for T = 1.

The problem is ill posed in this case, since the minimum value is nearly obtained by
quite different g(t) functions.

Starting with the initial element g = cos t, if we construct a minimizing sequence by
(.) for β = . then we obtain the following element after  iterations:

g = cos t + . + . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t).

The value of the functional for the element g is J(g) = .. But the norm of the
difference between these functions is ‖g – g∗‖H(,) = .. A graph of this solution
is given in Figure .

If we start another initial element g = , and we construct a minimizing sequence by
(.) for β = ., then we obtain the following element after  iterations:

g = . + . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t).

The value of the functional for the element g is J(g) = .. But the norm of the
difference between these functions is ‖g – g∗‖H(,) = ..

These examples show that the problem is numerically ill posed for α = .
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Table 1 Some α, ‖u(x, 1; g) – y(x)‖2
L2(0,1) and ‖g‖2

H1(0,1)
values

α ‖u(x, 1; g) – y(x)‖2
L2(0,1) ‖g‖2

H1(0,1)

0.001 0.025 25.610
0.05 0.088 23.032
0.1 0.241 20.941
0.4 2.077 13.014
0.6 3.563 10.003
0.8 5.004 7.927
1 6.337 6.438
2 11.318 2.881

Figure 3 The results for some regularization parameters.

We take α >  as a regularization parameter and minimize the functional (.) using the
minimizing sequence by (.) for β = ..

The values
∫ 

 [u(x, ; g) – y(x)] dx and ‖g‖
H(,) are obtained as given in Table , if the

stopping criterion is taken as |Jα(gk+) – Jα(gk)| <  × –.
In Figure , we can see that the values of

∫ 
 [u(x, ; g) – y(x)] dx become smaller and the

values of ‖g‖
H(,) become larger as the α decrease. The opposite occurs as the α increase.

The problem is well posed for any α > . For example if we take α = . we get the
functional

J.(g) =
∫ 



[

u(x, ; g) –

{

cos()(x + x),  ≤ x ≤ 


cos()(x + x + x – 
 ), 

 ≤ x ≤ 

]

dx + (.)‖g‖
H(,).

Let us construct a minimizing sequence by (.) for β = . and stop the iteration by the
criterion |Jα(gk+) – Jα(gk)| <  × –. If we start with the initial element g = , we get the
minimum value J.∗ = . and the minimum element

g = . – . cos(.t) + . cos(.t)

– . cos(.t) + . cos(.t)

– . cos(.t) + . cos(.t)

– . cos(.t)

+ . cos(.t). cos(.t).
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Figure 4 Minimum elements corresponding different initial elements.

If we start with the initial element g = cos(t), we get the minimum value J.∗ = .
and the minimum element

g = . + . cos t – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t)

+ . cos(.t) – . cos(.t).

The norm of the difference between these functions is ‖g – g‖H(,) = ..
It can be seen from Figure  that minimum values and minimum elements are close

enough to each other, respectively. The problem is numerically well posed.
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12. İskenderov, AD, Tagiyev, RQ, Yagubov, QY: Optimization Methods. Çaşıoğlu, Bakü (2002)
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