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Abstract
A nonlinear generalized Degasperis-Procesi equation is investigated. The local
well-posedness of a strong solution for the equation in the Sobolev space Hs(R) with
s > 3

2 is established. The L
1(R) stability is obtained under certain assumptions on the

initial data.
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1 Introduction
Degasperis and Procesi [] investigated a family of third order dispersive nonlinear equa-
tions

ut + αux + γ uxxx – βutxx =
(
αu + αu

x + αuuxx
)

x, ()

where constants αi (i = , , , ), β and γ ∈ R.
Applying the method of asymptotic integrability to Eq. (), it is found in [] that

only three equations satisfy asymptotic integrability conditions: the KdV equation, the
Camassa-Holm (CH) equation and one new equation of the form

ut + ux + uux + uxxx – β
(

utxx +



uxuxx +



uuxxx

)
= , ()

which can be transformed to the dispersionless form

ut – utxx + uux = uxuxx + uuxxx, t > , x ∈ R. ()

Equation () is called Degasperis-Procesi (DP) equation which represents a model for shal-
low water dynamics, and its asymptotic accuracy is similar to the CH equation.

Here, we set the coefficients of Eq. () γ = –αβ
, α = α and β > . The objective of

this work is to study the following nonlinear equation:

ut + αux – β(αuxxx + utxx) = αuux + αuxuxx + αuuxxx. ()

Obviously, DP equation () is the special case of Eq. ().
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Degasperis et al. [] proved the formal integrability of Eq. (), derived the infinite se-
quence of conserved quantities with a bi-Hamiltonian structure and obtained the exis-
tence of the non-smooth solutions by constructing a Lax pair. Lenells [] classified all
weak traveling wave solutions of Eq. (), while Coclite and Karlsen [] established the
well-posedness of periodic weak solutions for Eq. () and studied their long-time asymp-
totic behavior. It was shown in [] that several numerical schemes were constructed and
proved that they converged to weak solutions of Eq. (). Escher et al. [] discussed several
qualitative properties of the DP equation. The existence and uniqueness of global weak so-
lutions for Eq. () have been established provided that the initial data satisfy appropriate
conditions in [].

In fact, the KdV equation modeling weakly nonlinear unidirectional long waves and the
CH equation modeling the unidirectional shallow water waves have been extensively in-
vestigated (see [–]). For other approaches to study related partial differential equations,
the reader is referred to [–] and the references therein.

In this paper, assuming that the initial value u(, x) of Eq. () belongs to Hs(R) (s > 
 ),

we will prove the existence and uniqueness of the local solution for Eq. () in the space
C([,∞); Hs(R)) ∩ C([,∞); Hs–(R)) by using the Kato theorem (see []) and use the
approaches presented in Kruzkov [] to establish the L(R) local stability of the solution
for this nonlinear equation (). From our knowledge, Eq. () has not been discussed in the
literature.

In the following, we will give the conservation law in some case for Eq. () in Section .
The proof of existence for the local strong solution and its stability to Eq. () are given in
Section  and Section , respectively. For simplicity, we let c denote any positive constants.

2 Preliminaries
Applying the operator �– = ( – β∂

x )– to Eq. (), we have

ut + (α + bu)ux + b�
–∂xu = , ()

where b = α
β , b = –(α + α

β ).
Here we consider the Cauchy problem of Eq. ()

{
ut + αux – β(αuxxx + utxx) = αuux + αuxuxx + αuuxxx,
u(, x) = u(x),

()

which is equivalent to the problem

{
ut + (α + bu)ux + b�

–∂xu = ,
u(, x) = u(x).

()

Lemma . Let y = u – β∂
x u and ȳ = ( – β∂

x )–u. The solutions of Eq. () in case α =
– α

β conform with the following conservation law:

∫

R
yȳ dx =

∫

R

∣
∣û(t, ξ )

∣
∣ dξ =

∫

R

∣
∣û(ξ )

∣
∣ dξ , ()

where u(x) = u(, x), û(t, ξ ) is the Fourier transform of u(t, x) with respect to x.
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Proof For y = u – β∂
x u, ȳ = ( – β∂

x )–u, we have ∂y
∂t = ut – β∂

x utxx and u = ȳ – βȳxx.
If α = – α

β , it has

d
dt

∫

R
yȳ dx = 

∫

R

∂y

∂t
ȳ dx

= 
∫

R

(
–αut + αβ

uxxx + αuux + αuxuxx + αuuxxx
)
ȳ dx

= 
∫

R
α

(
uȳx – βuȳxxx

)
–

(
αuȳx +

α


uȳxxx

)
dx

= 
∫

R

(
αu – αu)ux dx

= .

This completes the proof of Lemma .. �

3 Existence of the local solution for problem (6)
Firstly, we need to state some notions. Let Hs(R) (where s is a real number) denote the
Sobolev space with the norm defined by

‖h‖Hs =
(∫

R

(
 + |ξ |)s∣∣ĥ(t, ξ )

∣
∣

) 


< ∞,

where ĥ(t, ξ ) =
∫

R e–ixξ h(t, x) dx. For T >  and s ≥ , we let C([,∞); Hs(R)) denote the
Fréchet space of all continuous Hs-valued functions on [, T).

We introduce the abstract quasi-linear evolution equation
{

dφ

dt + Q(φ)φ = g(φ), t ≥ ,
φ() = φ.

()

Let X and Y be Hilbert spaces, where Y is continuously and densely embedded in X, and
W : Y → X be a topological isomorphism. We define L(Y , X) to be the space of all bounded
linear operators from Y to X. We denote L(X, X) by L(X). Note that ρ, ρ, ρ and ρ in
the following depend on max{‖y‖Y ,‖z‖Y }.

(I) Q(y) ∈ L(Y , X) for y ∈ X with

∥
∥(

Q(y) – Q(z)
)
w

∥
∥

X ≤ ρ‖y – z‖X‖w‖Y , y, z, w ∈ Y ,

Q(y) ∈ G(X, ,α) (α > ) and uniformly on bounded sets in Y .
(II) WQ(y)W – = Q(y) + Q̄(y), in which Q̄ ∈ L(X) is bounded and uniformly on

bounded sets in Y and

∥∥(
Q̄(y) – Q̄(z)

)
w

∥∥
X ≤ ρ‖y – z‖X‖w‖Y , y, z ∈ Y , w ∈ X.

(III) g : Y → Y extends to a map from X into X , is bounded on bounded sets in Y and
satisfies

∥∥g(y) – g(z)
∥∥

Y ≤ ρ‖y – z‖Y , y, z ∈ Y ,
∥∥g(y) – g(z)

∥∥
X ≤ ρ‖y – z‖X , y, z ∈ Y .
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Kato theorem ([]) Assume that (I), (II) and (III) hold. If φ ∈ Y , there is a maximal
T >  depending only on ‖φ‖Y and a unique solution u to problem () such that

φ = φ(·,φ) ∈ C
(
[, T); Y

) ∩ C([, T); X
)
.

Moreover, the map φ → φ(·,φ) is a continuous map from Y to the space C([, T); Y ) ∩
C([, T); X).

For problem (), we set Q(u) = (α + bu)∂x, Y = Hs(R), X = Hs–(R), g(u) = –b∂x�
–u

and W = �. Then we will verify that Q(u) and g(u) satisfy conditions (I)-(III). We cite
several conclusions presented in [].

Lemma . The operator Q(u) = (α +bu)∂x with φ ∈ Hs(R) (s > 
 ) belongs to G(Hs–, ,α).

Lemma . For u, z, w ∈ Hs(R) with s > 
 , Q(φ) ∈ L(Hs(R), Hs–(R)), it holds that

∥
∥(

Q(u) – Q(z)
)
w

∥
∥

Hs– ≤ ρ‖u – z‖Hs–‖w‖Hs .

Lemma . For u, z ∈ Hs(R) and w ∈ Hs–(R) (s > 
 ), it holds that Q̄(u) = [�, ( –

bu)∂x]�– ∈ L(Hs–) and

∥
∥(

Q̄(u) – Q̄(z)
)
w

∥
∥

Hs– ≤ ρ‖u – z‖Hs‖w‖Hs– .

Lemma . ([]) Let r and q be real numbers such that –r < q ≤ r. Then

‖uu‖Hq ≤ c‖u‖Hr ‖u‖Hq if r >



,

‖uu‖
Hr+q– 


≤ c‖u‖Hr ‖u‖Hq if r <




.

Lemma . Let u, z ∈ Hs(R) with s > 
 and g(u) = –b∂x�

–u. Then g is bounded on
bounded sets in Hs and satisfies

∥∥g(u) – g(z)
∥∥

Hs ≤ ρ‖u – z‖Hs , ()
∥∥g(u) – g(z)

∥∥
Hs– ≤ ρ‖u – z‖Hs– . ()

Proof For s > 
 , we have ‖u‖L∞ ≤ c‖u‖Hs and ‖u‖Hs– ≤ c‖u‖Hs . Applying the algebra

property of Hs(R) and Lemma ., we get

∥
∥g(u) – g(z)

∥
∥

Hs ≤ |b|
∥
∥∂x�

–(u – z)∥∥
Hs

≤ c
∥
∥u – z∥∥

Hs–

≤ c‖u – z‖Hs–

≤ ρ‖u – z‖Hs ,

which completes the proof of (). Similarly, we get (). �

Now we give the following theorem.
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Theorem . Let u(x) ∈ Hs(R) with s > 
 . There exists T >  depending on ‖u‖Hs(R) such

that problem () or () has a unique solution u(t, x) ∈ C([, T); Hs(R)) ∩ C([, T); Hs–(R)).

Proof Using Lemmas .-. and ., we know that conditions (I), (II) and (III) hold. Ap-
plying the Kato theorem, we find that problem () or () has a unique local solution

u = u(t, x) ∈ C
(
[, T); Hs(R)

) ∩ C([, T); Hs–(R)
)
,

where T >  depends on ‖u‖Hs . �

Remark . Let T >  be described in Theorem .. Using the Sobolev embedding theo-
rem, we ensure the boundedness of solution u(t, x) to problem () in the domain [, T)×R.
Namely, provided that u ∈ Hs(R) with s > 

 , we have ‖u‖L∞(R) ≤ MT , where MT is a pos-
itive constant.

4 L1 Stability of the local solution for problem (6)
Letting f ′(u) = α + bu, 
(t, x, u) = b�

–∂xu in the first equation of (), we get

{
ut + f ′(u)ux + 
(t, x, u) = ,
u(, x) = u(x).

()

Assume that u(t, x) and u(t, x) are solutions of problem () in the domain [, T) × R
with initial functions u(x) and u(x) ∈ Hs(R) (s > 

 ). Here we give several lemmas.

Lemma . Let u(t, x) be the solution of problem () and u(x) ∈ Hs(R) with s > 
 . Then

‖
(t, x, u)‖L∞(R) ≤ MT and

∥
∥
(t, x, u)

∥
∥

L∞(R) ≤ cM
T ,

where positive constant c depends on b, β , ‖u‖L∞ .

Proof We have

∣∣
(t, x, u)
∣∣ =

∣∣b�
–∂xu∣∣

≤ |b|
∣∣
∣∣


β

∫

R
e– 

β
|x–y| sign(y – x)u dy

∣∣
∣∣

≤ cM
T .

Applying Remark . and the integral
∫

R e– 
β

|x–y| dy = β , we complete the proof. �

Lemma . Assume that u(t, x) and u(t, x) are solutions of problem () in the domain
[, T) × R with initial functions u(x) and u(x) ∈ Hs(R) (s > 

 ), respectively. Then

∫ +∞

–∞

∣
∣
(t, x, u) – 
(t, x, u)

∣
∣dx ≤ c

∫ +∞

–∞
|u – u|dx, ()

where c >  depends on b, β , ‖u‖L∞(R), ‖u‖L∞(R) and T .
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Proof Using the property of the operator �– and Remark ., we get
∫ +∞

–∞

∣
∣
(t, x, u) – 
(t, x, u)

∣
∣dx

=
∫ +∞

–∞

∣∣b∂x�
–(u

 – u

)∣∣dx

≤ c
∫ +∞

–∞
dx

∫ +∞

–∞

∣∣e– 
β

|x–y| sign(y – x)
(
u

 – u

)∣∣dy

≤ c
∫ +∞

–∞

∣
∣u

 – u

∣
∣dx

∫ +∞

–∞
e– 

β
|x–y| dy

≤ c
∫ +∞

–∞
|u – u|dx,

in which we apply the Tonelli theorem to complete the proof. �

We introduce a function δ(σ ) which is infinitely differential on (–∞, +∞) and δ(σ ) ≥
, δ(σ ) ≡  for |σ | ≥ ,

∫ +∞
–∞ δ(σ ) dσ = . Let δε(σ ) = δ(ε–σ )�ε, where ε is an arbitrary

positive constant. It is found that δε(σ ) ∈ C∞
 (–∞, +∞) and

{
δε(σ ) ≥ , δε(σ ) =  for |σ | ≥ ε,
|δε(σ )| ≤ c

ε
,

∫ +∞
–∞ δε(σ ) dσ = .

()

Let the function φ(x) be defined and locally integrable on (–∞, +∞). Set φε(x) to denote
the approximation function of φ(x) as

φε(x) =

ε

∫ +∞

–∞
δ

(
x – y

ε

)
φ(y) dy. ()

We call x a Lebesgue point of the function φ(x) if

lim
ε→


ε

∫ x+ε

x–ε

∣
∣φ(x) – φ(x)

∣
∣dx = .

At any Lebesgue point x, we get

lim
ε→

φε(x) = φ(x).

Since the set of points which are not Lebesgue points of φ(x) has measure zero, we have
φε(x) → φ(x) as ε →  almost everywhere.

For any T ∈ [, T), we denote the band {(t, x) : [, T] × R} by πT . Let Kr = {x : |x| ≤ r}
and

� =
{

(t, x, τ , y) :
∣∣
∣∣
t – τ



∣∣
∣∣ ≤ ε,ρ ≤ t + τ


≤ T – ρ,

∣∣
∣∣
x – y



∣∣
∣∣ ≤ ε,

∣∣
∣∣
x + y



∣∣
∣∣ ≤ r – ρ

}
,

where r > , ρ > .

Lemma . ([]) Let the function φ(t, x) be bounded and measurable in cylinder [, T]×
Kr . If for any ρ ∈ (, min[r, T]) and any ε ∈ (,ρ), the function

Vε =

ε

∫∫∫∫

�

∣
∣φ(t, x) – φ(τ , y)

∣
∣dt dx dτ dy
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satisfies

lim
ε→

Vε = .

Lemma . ([]) If ∂�(φ)
∂φ

is bounded, then the function H(φ,φ) = sign(φ – φ)(�(φ) –
�(φ)) satisfies the Lipschitz condition in φ and φ.

We state the concept of a characteristic cone. Let T be described in Theorem . and
‖φ‖L∞(R) ≤ MT . For any T ∈ [, T) and R > , we define

N > max
(t,x)∈[,T]×KR

∣
∣f ′(φ)

∣
∣.

Let � represent the cone {(t, x) : |x| ≤ R – Nt,  ≤ t ≤ T = min(T, RN–)} and Sτ desig-
nate the cross-section of the cone � by the plane t = τ , τ ∈ [, T].

Lemma . Let u(t, x) be the solution of problem () on πT , q(t, x) ∈ C∞
 (πT ). It holds

that
∫∫

πT

{|u – k|qt + sign(u – k)
[
f (u) – f (k)

]
qx

– sign(u – k)q(t, x)
(t, x, u)
}

dt dx = , ()

where k is an arbitrary constant.

Proof Suppose that F(u) is a twice differential function. Multiplying the first equation of
problem () by F ′(u)q(t, x) and integrating over πT , we get

∫∫

πT

{
F ′(u)qut + F ′(u)qf ′(u)ux + F ′(u)q
(t, x, u)

}
dt dx = . ()

The application of the method of integration by parts yields

∫∫

πT

F ′(u)qut dt dx = –
∫∫

πT

F ′(u)qt dt dx. ()

Since
(∫ u

k
F ′(z)f ′(z) dz

)′
= F ′(u)f ′(u)ux,

we have
∫∫

πT

F ′(u)f ′(u)uxq dt dx = –
∫∫

πT

(∫ u

k
F ′(z)f ′(z)dz

)
qx dt dx

= –
∫∫

πT

{
F ′(u)

[
f (u) – f (k)

]

–
∫ u

k
F ′′(z)

[
f (z) – f (k)

]
dz

}
qx dt dx. ()



Chen and Li Boundary Value Problems  (2015) 2015:170 Page 8 of 13

Substitute Eqs. () and () into Eq. (). Let Fε(u) be an approximation of the function
F(u) = |u – k|. When ε → , Fε(u) → F(u), we obtain Eq. (). �

Set function q(t, x) ∈ C∞
 (πT ), q(t, x) ≡  outside the cylinder � = {(t, x)} = [ρ, T –

ρ] × Kr–ρ , where Kr–ρ = {|x| : |x| ≤ r – ρ}, r > ,  < ρ < min(T, r). Now we give the
proof of the local stability for problem () or ().

Theorem . Assume that u(t, x) and u(t, x) are two local strong solutions of problem
() or () with initial data u(x), v(x) ∈ L(R) ∩ Hs(R) (s > 

 ), respectively. Let T >  be the
maximum existence time of u(t, x) and u(t, x). For any t ∈ [, T), it holds that

∥
∥u(t, x) – u(t, x)

∥
∥

L ≤ ect∥∥u(x) – u(x)
∥
∥

L ,

where c is a positive constant depending on ‖u‖L∞(R) and ‖u‖L∞(R).

Proof We define

P(t, x, τ , y) = q
(

t + τ


,

x + y


)
δε

(
t – τ


,

x – y


)
= q(· · · )λε(

...), ()

in which (· · · ) = ( t+τ
 , x+y

 ), (
...) = ( t–τ

 , x–y
 ). Thus, we obtain

Pt + Pτ = qt(· · · )λε(
...), Px + Py = qx(· · · )λε(

...).

Using Lemma . and the Kruzkov’s device of doubling the variables [], we get

∫∫∫∫

πT ×πT

{∣∣u(t, x) – u(τ , y)
∣∣Pt + sign

(
u(t, x) – u(τ , y)

)

× [
f
(
u(t, x)

)
– f

(
u(τ , y)

)]
Px – sign

(
u(t, x) – u(τ , y)

)

× 

(
t, x, u(t, x)

)
P
}

dt dx dτ dy = . ()

Similarly, we have

∫∫∫∫

πT ×πT

{∣∣u(τ , y) – u(t, x)
∣∣Pτ + sign

(
u(τ , y) – u(t, x)

)

× [
f
(
u(τ , y)

)
– f

(
u(t, x)

)]
Py – sign

(
u(τ , y) – u(t, x)

)

× 

(
τ , y, u(τ , y)

)
P
}

dt dx dτ dy = . ()

Adding () and (), we obtain

 ≤
∫∫∫∫

πT ×πT

{∣∣u(t, x) – u(τ , y)
∣
∣qtλε

+ sign
(
u(t, x) – u(τ , y)

)

× [
f
(
u(t, x)

)
– f

(
u(τ , y)

)]
qxλε

}
dt dx dτ dy
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+
∣∣
∣∣

∫∫∫∫

πT ×πT

{
sign

(
u(t, x) – u(τ , y)

)

× [



(
t, x, u(t, x)

)
– 


(
τ , y, u(τ , y)

)]
qλε

}
dt dx dτ dy

∣
∣∣
∣. ()

We note that the first two terms of the integrand of () have the form

Gε = G
(
t, x, τ , y, u(t, x), u(τ , y)

)
λε(

...), ()

where G satisfies the Lipschitz condition in all its variables. Then
∫∫∫∫

πT ×πT

Gε dt dx dτ dy

=
∫∫∫∫

πT ×πT

G
(
t, x, τ , y, u(t, x), u(τ , y)

)
λε dt dx dτ dy

=
∫∫∫∫

πT ×πT

{
G

(
t, x, τ , y, u(t, x), u(τ , y)

)

– G
(
t, x, t, x, u(t, x), u(t, x)

)}
λε dt dx dτ dy

+
∫∫∫∫

πT ×πT

G
(
t, x, t, x, u(t, x), u(t, x)

)
λε dt dx dτ dy

= A(ε) + A.

As Gε =  outside the region �, applying the estimate |λε(
...)| ≤ c

ε and Lemma ., we
get

∣∣A(ε)
∣∣ ≤ c

[
ε +


ε

∫∫∫∫

�

∣∣u(t, x) – u(τ , y)
∣∣dt dx dτ dy

]
,

where c is a positive constant independent of ε. Using Lemma ., we know A(ε) →  as
ε → .

For the term A, we substitute t = η, t–τ
 = μ, x = η, x–y

 = μ. Combining with the
identity

∫ ε

–ε

∫ +∞

–∞
λε(μ,μ) dμ dμ = ,

we obtain

A = 
∫∫

πT ×πT

G
(
η,η,η,η, u(η,η), u(η,η)

)

×
(∫ ε

–ε

∫ +∞

–∞
λε(μ,μ) dμ dμ

)
dη dη

= 
∫∫

πT

G
(
t, x, t, x, u(t, x), u(t, x)

)
dt dx.

Thus, we have

lim
ε→

∫∫∫∫

πT ×πT

Gε dt dx dτ dy = 
∫∫

πT

G
(
t, x, t, x, u(t, x), u(t, x)

)
dt dx. ()
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Similarly, the integrand of the third term in () can be represented as

Bε = sign
(
u(t, x) – u(τ , y)

)[



(
t, x, u(t, x)

)
– 


(
τ , y, u(τ , y)

)]
qλε

= B
(
t, x, τ , y, u(t, x), u(τ , y)

)
λε(

...). ()

Then
∫∫∫∫

πT ×πT

Bε dt dx dτ dy

=
∫∫∫∫

πT ×πT

{
B
(
t, x, τ , y, u(t, x), u(τ , y)

)

– B
(
t, x, t, x, u(t, x), u(t, x)

)
λε

}
dt dx dτ dy

+
∫∫∫∫

πT ×πT

B
(
t, x, t, x, u(t, x), u(t, x)

)
λε dt dx dτ dy

= A(ε) + A.

Applying Lemma ., we get

∣
∣A(ε)

∣
∣ ≤ c

[
ε +


ε

∫∫∫∫

�

∣
∣u(t, x) – u(τ , y)

∣
∣dt dx dτ dy

]
.

By using Lemma ., it yields A(ε) →  as ε → . Repeating the steps as before, we have

A = 
∫∫

πT

B
(
t, x, t, x, u(t, x), u(t, x)

)
dt dx. ()

From () to (), we get

∫∫

πT

{∣∣u(t, x) – u(t, x)
∣∣qt + sign

(
u(t, x) – u(t, x)

)[
f (u) – f (u)

]
qx

}
dt dx

+
∣∣
∣∣

∫∫

πT

sign
(
u(t, x) – u(t, x)

)[

(t, x,φ) – 
(t, x,ψ)

]
q dt dx

∣∣
∣∣ ≥ . ()

Set

l(t) =
∫ +∞

–∞

∣∣u(t, x) – u(t, x)
∣∣dx ()

and

νε(σ ) =
∫ σ

–∞
δε(z) dz. ()

Take two numbers ρ, τ ∈ (, T) and ρ < τ . In (), we let

q(t, x) =
[
νε(t – ρ) – νε(t – τ )

]
χ (t, x), ε < min(ρ, T – τ ), ()



Chen and Li Boundary Value Problems  (2015) 2015:170 Page 11 of 13

in which

χ (t, x) = χθ (t, x) =  – νθ

(|x| + Nt – R + θ
)
, ()

where θ is a small positive constant and χ (t, x) =  outside the cone �. When θ → ,
R → +∞, we observe that χθ → . By the definition of the number N , we have

 = χt + N |χx| ≥ χt + Nχx, (t, x) ∈ �.

According to ()-(), we get

∫∫

πT

{∣∣u(t, x) – u(t, x)
∣∣[δε(t – ρ) – δε(t – τ )

]
χθ (t, x)

}
dt dx

+
∫ T


dt

∫ +∞

–∞

{∣∣
(t, x, u) – 
(t, x, u)
∣∣

× [
νε(t – ρ) – νε(t – τ )

]
χθ (t, x)

}
dx ≥ . ()

For (), sending θ → , R → +∞ combining with Lemma ., we obtain

∫ T



[
δε(t – ρ) – δε(t – τ )

]
l(t) dt + c

∫ T



[
νε(t – ρ) – νε(t – τ )

]
l(t) dt ≥ , ()

where c is independent of ε.
Applying the properties of the function δε for ε ≤ min(ρ, T – ρ), we get

∣
∣∣
∣

∫ T


δε(t – ρ)l(t) – l(ρ) dt

∣
∣∣
∣ =

∣
∣∣
∣

∫ T


δε(t – ρ)

[
l(t) – l(ρ)

]
dt

∣
∣∣
∣

≤ c
ε

∫ ρ+ε

ρ–ε

∣
∣l(t) – l(ρ)

∣
∣dt.

Consequently,

∫ T


δε(t – ρ)l(t)dt → l(ρ) as ε → . ()

Now set

K(ρ) =
∫ T


νε(t – ρ)l(t) dt =

∫ T


dt

∫ t–ρ

–∞
δε(σ )l(t) dσ .

It is seen that

K ′(ρ) = –
∫ T


δε(t – ρ)l(t) dt.

Letting ε → , we derive

K ′(ρ) → –l(ρ)



Chen and Li Boundary Value Problems  (2015) 2015:170 Page 12 of 13

and

K(ρ) → K() –
∫ ρ


l(t) dt, K(τ ) → K() –

∫ τ


l(t) dt.

Hence, we get

K(ρ) – K(τ ) →
∫ τ

ρ

l(t) dt as ε → . ()

Applying ()-(), we obtain the inequality

l(ρ) + c
∫ τ

ρ

l(t) dt ≥ l(τ ).

As ρ → , τ → t, we get the following result:

∫ +∞

–∞

∣
∣u(, x) – u(, x)

∣
∣dx + c

∫ t


dt

∫ +∞

–∞

∣
∣u(t, x) – u(t, x)

∣
∣dx

≥
∫ +∞

–∞

∣∣u(t, x) – u(t, x)
∣∣dx.

Finally, we complete the proof of Theorem . by using the Gronwall inequality. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed to each part of this study equally and approved the final version of the manuscript.

Author details
1School of Science, Southwest University of Science and Technology, Mianyang, 621000, China. 2School of Economics,
Peking University, Beijing, 100871, China.

Acknowledgements
This work is supported by the National Natural Science Foundation of China (11471263).

Received: 8 July 2015 Accepted: 6 September 2015

References
1. Degasperis, A, Procesi, M: Asymptotic integrability. In: Symmetry and Perturbation Theory, pp. 23-37. World Scientific,

Singapore (1999)
2. Degasperis, A, Holm, DD, Hone, ANW: A new integrable equation with peakon solution. Theor. Math. Phys. 2,

1463-1474 (2002)
3. Lenells, J: Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306, 72-82 (2005)
4. Coclite, GM, Karlsen, KH: Periodic solutions of the Degasperis-Procesi equation: well-posedness and asymptotics.

J. Funct. Anal. 268, 1053-1077 (2015)
5. Coclite, GM, Karlsen, KH, Risebro, NH: Numerical schemes for computing discontinuous solutions of the

Degasperis-Procesi equation. IMA J. Numer. Anal. 28, 80-105 (2007)
6. Escher, J, Liu, Y, Yin, ZY: Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct.

Anal. 241, 457-485 (2006)
7. Lenells, J: Conservation laws of the Camassa-Holm equation. J. Phys. A 38, 869-880 (2005)
8. Cavalcanti, MM, Domingos Cavalcanti, VN, Komornik, V, Rodrigues, JH: Global well-posedness and exponential decay

rates for a KdV-Burgers equation with indefinite damping. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31, 1079-1100
(2014)

9. Hirayama, H: Local well-posedness for the periodic higher order KdV type equations. Nonlinear Differ. Equ. Appl. 19,
677-693 (2012)

10. Wazwaz, AM: New kinds of solitons and periodic solutions to the generalized KdV equation. Numer. Methods Partial
Differ. Equ. 23, 247-255 (2007)

11. Rodriguez-Blanco, G: On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46, 309-327 (2001)
12. Degasperis, A, Holm, DD, Hone, ANW: A new integral equation with peakon solutions. Theor. Math. Phys. 133,

1461-1477 (2002)



Chen and Li Boundary Value Problems  (2015) 2015:170 Page 13 of 13

13. Coclite, GM, Karlsen, KH: On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 233, 60-91 (2006)
14. Escher, J, Yin, Z: Well-posedness, blow-up phenomena and global solutions for the b-equation. J. Reine Angew. Math.

624, 51-80 (2008)
15. Lai, SY, Yan, HB, Chen, HJ, Wang, J: The stability of local strong solutions for a shallow water equation. J. Inequal. Appl.

2014, 410 (2014)
16. Gu, F, Lu, YG, Zhang, Q: Global solutions to one-dimensional shallow water magnetohydrodynamic equations.

J. Math. Anal. Appl. 401, 714-723 (2013)
17. Mutlubas, ND: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for

waves of moderate amplitude. Nonlinear Anal. 97, 145-154 (2014)
18. Liu, XX, Yin, ZY: Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm

system. Nonlinear Anal. 88, 1-15 (2013)
19. Kruzkov, SN: First order quasi-linear equations in several independent variables. Math. USSR Sb. 10, 217-243 (1970)
20. Kato, T: Quasi-linear equations of evolution with applications to partial differential equations. In: Spectral Theory and

Differential Equations. Lecture Notes in Math., vol. 448, pp. 25-70 (1975)


	The local well-posedness and stability to a nonlinear generalized Degasperis-Procesi equation
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of the local solution for problem (6)
	L1 Stability of the local solution for problem (6)
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


