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Abstract
In the paper, a delay-differential equation modeling a bidirectional associative
memory neural networks (BAM NNs) with reaction-diffusion terms is investigated, for
which the input and output variables are varied with the time and space variables. By
taking advantage of the inequality techniques, some Lyapunov-Krasovskii functional
candidates are introduced to arrive at the novel sufficient conditions that warrant the
passivity of spatially and temporally BAM NNs with mixed time delays. Moreover,
when the parameter uncertainties appear in spatially and temporally BAM NNs, the
criterion for robust passivity is also given. Novel passivity criteria are proposed in
terms of inequalities, which can be checked easily. A numerical example is provided
to demonstrate the effectiveness of the proposed results.
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1 Introduction
Since NNs related to BAM had been proposed by Kosko [], the BAM NNs have been one
of the most interesting research and extensively studied topics due to their potential ap-
plications in pattern recognition, etc. This class of NNs have been successfully applied to
pattern recognition, signal and image processing, and artificial intelligence due to its gen-
eralization of the single-layer auto-associative Hebbian correlation to a two-layer pattern
matched hetero-associative circuits. Some of these applications require that the designed
network has a unique stable equilibrium point []. Recently, these two-layer hetero asso-
ciative networks called BAM networks with axonal signal transmission delays have been
studied in [, ], which have been used to obtain important advances in many fields such
as pattern recognition and automatic control. Recently, studies on neural dynamical sys-
tems not only involved a discussion of stability properties, but they also involved many
dynamic behaviors such as periodic oscillatory behavior, bifurcation, and chaos [–].

Stability problems are often linked to the theory of dissipative systems, which postu-
late that the energy dissipated inside a dynamic system is less than that supplied from
an external source. Passivity is part of a broader and a general theory of dissipativeness
[, ]. The passivity theory originated from circuit theory and plays an important role
in the analysis and design of linear and nonlinear systems. It should be pointed out that
the essence of the passivity theory is that the passive properties of a system can keep the
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system’s internal stability. The passivity theory was first proposed in the circuit analysis
[], and since then it has found successful applications in diverse areas such as stability
[, ], signal processing [], complexity [], fuzzy control [], and synchronization
control []. These are the main reasons why passivity theory has become a very relevant
topic across many fields, and much investigative attention has been focused on this topic.
It is noted that research on passivity has attracted so much attention, little of that had been
devoted to the passivity properties of delayed NNs until [] derived the conditions for
passivity of delayed NNs. Recently, considerable attention has also been paid to the passiv-
ity analysis of NNs with time delay [–]. For example, some passivity conditions have
been proposed for continuous-time NNs with time delay in []. Considering this, some
delay-dependent conditions guaranteeing the passivity of NNs with time-varying delays
have been proposed in [] by use of an LMI approach. The results on passivity analysis
of discrete-time NNs with time-varying delays can be found in [].

In fact, one remarkable feature of passivity is that the passive system utilizes the prod-
uct of input and output as the energy provision, and it embodies the energy attenuation
character. A passive system only burns energy, without energy production, i.e., passivity
represents the property of energy consumption of the system. In addition, the passivity
analysis for NNs can help us understand the complex brain functionalities. It is worthy
pointing out that, in most existing works on the passivity of delayed NNs, the diffusion
effects were not discussed. The reaction-diffusion NNs (RDNNs) were firstly introduced
by Chua in order to study passivity and complexity in []. What is more, in man-made
NNs, strictly speaking, the diffusion phenomena cannot be ignored when electrons are
moving in asymmetric electromagnetic fields, thus we must consider the space is varying
with time [, –, , , ]. It is also common to consider the diffusion effect in biologi-
cal systems such as immigration [, ]. The stability of NNs with diffusion terms, which
is expressed by partial differential equations, are discussed in [, –, ]. Furthermore,
the input and output variables are also dependent on the time and space in many practical
situations. To the best of our knowledge, few authors considered the passivity problem
for delayed RDNNs. It is interesting and important to discuss the passivity of RDNNs, in
which the input and output variables are varied with the time and space variables. In NNs,
besides the diffusion phenomena, there might also be some uncertainties due to the ex-
istence of modeling errors, external disturbance, and parameter fluctuation, which might
lead to undesirable dynamic network behaviors such as oscillation and instability [, ].
Therefore, it is important to consider robust passivity of RDNNs against these uncertain-
ties.

Based on the above discussion, there are many results as regards the passivity problem
for delayed NNs. To the best of our knowledge, a passivity analysis has seldom been re-
ported for the class of delayed BAM NNs with reaction-diffusion terms. In the theory of
partial differential equations, Poincaré integral inequality is often used in the deduction
of a diffusion operator []. This paper will investigate the passivity problem for the class
of BAM RDNNs with mixed delays and Neumann boundary conditions, which is very
important in theories and applications and also is a very challenging problem. Several suf-
ficient general conditions are derived for the robust passivity of delayed BAM NNs with
reaction-diffusion terms by using Lyapunov functional method and Poincaré integral in-
equality, which are very convenient to verify. Finally, a numerical example is illustrated to
show the usefulness of the proposed criteria.
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2 Model description and preliminaries
In this paper, we consider the BAM NNs model described by the following partial differ-
ential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t =

∑l
k=

∂
∂xk

(Dik
∂ui
∂xk

) – piui(t, x) +
∑n

j= bjifj(vj(t, x))
+

∑n
j= b̃jifj(vj(t – θji(t), x)) +

∑n
j= b̄ji

∫ t
–∞ kji(t – s)fj(vj(s, x)) ds + σi(t, x),

∂vj
∂t =

∑l
k=

∂
∂xk

(D∗
jk

∂vj
∂xk

) – qjvj(t, x) +
∑m

i= dijgi(ui(t, x))
+

∑m
i= d̃ijgi(ui(t – τij(t), x)) +

∑m
i= d̄ij

∫ t
–∞ k̄ij(t – s)gi(ui(s, x)) ds + ϑj(t, x),

yi(t, x) = aiui(t, x) + ciσi(t, x),
zj(t, x) = ājvj(t, x) + c̄jϑj(t, x),

()

where x = (x, x, . . . , xl)T ∈ � ⊂ Rl , � is a compact set with smooth boundary ∂� and
mes� >  in space Rl ; u = (u, u, . . . , um)T ∈ Rm, v = (v, v, . . . , vn)T ∈ Rn, ui(t, x) and vj(t, x)
represent the states of the ith neuron and the jth neuron at time t and in space x, respec-
tively. bji, b̃ji, b̄ji, dij, d̄ij, and d̃ij are known constants denoting the synaptic connection
strengths between the neurons, respectively; fj and gi denote the activation functions of
the neurons and the signal propagation functions, respectively; σi(t, x) and ϑj(t, x) denote
inputs of the ith neuron and the jth neuron at time t and in space x, respectively; pi and qj

represent the rate with which the ith neuron and the jth neuron will reset its potential to
the resting state when disconnected from the networks and external inputs in space, re-
spectively; τij(t) and θji(t) represent continuous time-varying discrete delays, respectively;
Dik ≥  and D∗

jk ≥  stand for the transmission diffusion coefficient along the ith neuron
and jth neuron, respectively; yi(t, x) and zj(t, x) denote outputs of the ith neuron and the
jth neuron at time t and in space x, respectively. Finally, i = , , . . . , m, k = , , . . . , l and
j = , , . . . , n.

System () is supplemented with the following boundary conditions and initial values:

∂ui

∂n̄
:=

(
∂ui

∂x
,
∂ui

∂x
, . . . ,

∂ui

∂xl

)T

= ,

∂vj

∂n̄
:=

(
∂vj

∂x
,
∂vj

∂x
, . . . ,

∂vj

∂xl

)T

= , t ≥ , x ∈ ∂�,

()

ui(s, x) = ϕui(s, x), vj(s, x) = ϕvj(s, x), (s, x) ∈ (–∞, ] × � ()

for any i = , , . . . , m and j = , , . . . , n, where n̄ is the outer normal vector of ∂�,ϕ =
( ϕu

ϕv

)
=

(ϕu, . . . ,ϕum,ϕv, . . . ,ϕvn)T ∈ C are bounded and continuous, where

C =

{

ϕ

∣
∣
∣
∣ϕ =

(
ϕu

ϕv

)

,ϕ :

(
(–∞, ] × Rm

(–∞, ] × Rn

)

→ Rm+n

}

.

It is the Banach space of continuous functions which map
( (–∞,]

(–∞,]
)

into Rm+n with the
topology of uniform convergence for the norm

‖ϕ‖ =

∥
∥
∥
∥
∥

(
ϕu

ϕv

)∥
∥
∥
∥
∥

= sup
–∞≤s≤

[∫

�

m∑

i=

|ϕui| dx

]

+ sup
–∞≤s≤

[∫

�

n∑

j=

|ϕvj| dx

]

.

For system (), the following assumptions are made for each subsystem in this paper:
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(A) The functions τij(t), θji(t) are piecewise-continuous of class C on the closure of
each continuity subinterval and satisfy

 ≤ τij(t) ≤ τij,  ≤ θji(t) ≤ θji, τ̇ij(t) ≤ μτ < , θ̇ji(t) ≤ μθ < ,

τ = max
≤i≤m,≤j≤n

{τij}, θ = max
≤i≤m,≤j≤n

{θji},

with some constants τij ≥ , θji ≥ , τ > , θ > , for all t ≥ .
(A) The activation functions are bounded and Lipschitz continuous, i.e., there exist

positive constants Lf
j and Lg

i such that for all η,η ∈ R

∣
∣fj(η) – fj(η)

∣
∣ ≤ Lf

j |η – η|,
∣
∣gi(η) – gi(η)

∣
∣ ≤ Lg

i |η – η|. ()

(A) The delay kernels Kji(s), K̄ij(s) : [,∞) → [,∞) (i = , , . . . , m, j = , , . . . , n) are
real-valued non-negative continuous functions that satisfy the following conditions:

(i)
∫ +∞

 Kji(s) ds = ,
∫ +∞

 K̄ji(s) ds = ,
(ii)

∫ +∞
 sKji(s) ds < ∞,

∫ +∞
 sK̄ij(s) ds < ∞.

Definition  A system with inputs σ (t, x), ϑ(t, x) and outputs y(t, x), z(t, x) where σ (t, x) ∈
Rm, ϑ(t, x) ∈ Rn, y(t, x) ∈ Rm, z(t, x) ∈ Rm is said to be passive if there are constants γ ≥ 
and β ∈ R such that


∫ tp



∫

�

(
y(t, x)Tσ (t, x) + z(t, x)Tϑ(t, x)

)
dx

≥ –β – γ

∫ tp



∫

�

(
σ (t, x)Tσ (t, x) + ϑ(t, x)Tϑ(t, x)

)
dx ()

for all tp ≥ , where � is a bounded compact set.

Remark  According to passivity property, the authors in [, ] addressed the passive
stability, control, and synchronization of complex networks, in which the input and output
variables are only dependent on the time. However, the input and output variables in many
systems are varied with the space and time variables. To the best of our knowledge, for this
case, there are few results of passivity that have been proposed []. As a natural extension
of the definition of passivity in [, , ], we propose Definition , which extends the
definition of passivity in [, , ].

Lemma  [] (Poincaré integral inequality) Let � be a bounded domain of Rm with a
smooth boundary ∂� of class C by �. u(x) is a real-valued function belonging to H

(�)
and

∂u(x)
∂n̄

∣
∣
∣
∣
∂�

= .

Then
∫

�

∣
∣u(x)

∣
∣ dx ≤ 

λ

∫

�

∣
∣∇u(x)

∣
∣ dx,
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in which λ is the lowest positive eigenvalue of the Neumann boundary problem
{

–ϕ(x) = λϕ(x), x ∈ �,
∂u(x)
∂n̄ |∂� = , x ∈ ∂�.

()

3 Passive analysis
Theorem  Under the assumptions (A)-(A), system () is passive if there exist constants
wi, wm+j >  and γ >  such that

(
�i wi – ai

wi – ai –γ – ci

)

≤ , ()

and
(

�j wm+j – āj

wm+j – āj –γ – c̄j

)

≤  ()

in which

�i = wi

(

–Diλ – pi +
n∑

j=

|bji|Lf
j +

n∑

j=

|b̃ji| +
n∑

j=

|b̄ji|
)

+ Lg
i

n∑

j=

wm+j|dij|

+


 – μτ

(
Lg

i
)

n∑

j=

wm+j|d̃ij| +
(
Lg

i
)

n∑

j=

wm+j|d̄ij|,

�j =
(
Lf

j
)

m∑

i=

wi|b̄ji| + Lf
j

m∑

i=

wi|bji|

+ wm+j

(

–D∗
j λ – qj +

m∑

i=

|dij|Lg
i +

m∑

i=

|d̃ij| + 
m∑

i=

|d̄ij|
)

+


 – μθ

(
Lf

j
)

m∑

i=

wi|b̃ji|,

i = , , . . . , m, j = , , . . . , n, Lf
j and Lg

i are Lipschitz constants, Di = min≤k≤l Dik , D∗
j =

min≤k≤l D∗
jk , λ is the lowest positive eigenvalue of problem ().

Proof Multiplying both sides of the first equation of () by ui(t, x) and integrating over �

yields




d
dt

∫

�

ui(t, x) dx

=
∫

�

l∑

k=

ui(t, x)
∂

∂xk

(

Dik
∂ui(t, x)

∂xk

)

dx – pi

∫

�

ui(t, x) dx

+
∫

�

n∑

j=

bjiui(t, x)fj
(
vj(t, x)

)
dx +

n∑

j=

∫

�

b̃jiui(t, x)fj
(
vj

(
t – θji(t), x

))
dx

+
n∑

j=

∫

�

b̄jiui(t, x)
∫ t

–∞
kji(t – s)fj

(
vj(s, x)

)
ds dx +

∫

�

ui(t, x)σi(t, x) dx. ()
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It is easy to calculate by the Neumann boundary conditions () that

∫

�

l∑

k=

ui(t, x)
∂

∂xk

(

Dik
∂ui(t, x)

∂xk

)

dx

=
∫

�

l∑

k=

ui(t, x)∇
(

Dik
∂ui(t, x)

∂xk

)

dx

=
∫

∂�

l∑

k=

ui(t, x)Dik
∂ui(t, x)

∂xk
dx –

∫

�

l∑

k=

Dik

(
∂ui(t, x)

∂xk

)

dx

= –
l∑

k=

∫

�

Dik

(
∂ui(t, x)

∂xk

)

dx. ()

Moreover, from Lemma , we can derive

–
l∑

k=

∫

�

Dik

(
∂ui(t, x)

∂xk

)

dx ≤ –
l∑

k=

∫

�

Di

(
∂ui(t, x)

∂xk

)

dx ≤ –Diλ
∥
∥ui(t, x)

∥
∥

. ()

From ()-(), we obtain
d
dt

∫

�

∣
∣ui(t, x)

∣
∣ dx

≤ –Diλ

∫

�

∣
∣ui(t, x)

∣
∣ dx – pi

∫

�

∣
∣ui(t, x)

∣
∣ dx

+ 
∫

�

n∑

j=

|bji|
∣
∣ui(t, x)

∣
∣Lf

j
∣
∣vj(t, x)

∣
∣dx + 

n∑

j=

∫

�

|b̃ji|
∣
∣ui(t, x)

∣
∣
∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣dx

+ 
n∑

j=

∫

�

|b̄ji|
∫ t

–∞
kji(t – s)

∣
∣ui(t, x)

∣
∣
∣
∣fj

(
vj(s, x)

)∣
∣ds dx

+ 
∫

�

ui(t, x)σi(t, x) dx. ()

Multiplying both sides of the second equation of system () by vj(t, x), similarly, we also
have

d
dt

∫

�

∣
∣vj(t, x)

∣
∣ dx ≤ –D∗

j λ

∫

�

∣
∣vj(t, x)

∣
∣ dx – qj

∫

�

∣
∣vj(t, x)

∣
∣ dx

+ 
∫

�

m∑

i=

|dij|Lg
i
∣
∣ui(t, x)

∣
∣
∣
∣vj(t, x)

∣
∣dx

+ 
m∑

i=

∫

�

|d̃ij|
∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣
∣
∣vj(t, x)

∣
∣dx

+ 
m∑

i=

∫

�

|d̄ij|
∫ t

–∞
k̄ij(t – s)

∣
∣gi

(
ui(s, x)

)∣
∣
∣
∣vj(t, x)

∣
∣ds dx

+ 
∫

�

vj(t, x)ϑj(t, x) dx. ()
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Let us construct the following Lyapunov functional:

V (t) =
∫

�

m∑

i=

wi

[

ui(t, x) +
n∑

j=

|b̃ji| 
 – μθ

∫ t

t–θji(t)

∣
∣fj

(
vj(ξ , x)

)∣
∣ dξ

+
n∑

j=

|b̄ji|
∫ +∞


kji(s)

∫ t

t–s

∣
∣fj

(
vj(ξ , x)

)∣
∣ dξ ds

]

dx

+
∫

�

n∑

j=

wm+j

[

vj(t, x) +
m∑

i=

|d̃ij| 
 – μτ

∫ t

t–τij(t)

∣
∣gi

(
ui(ξ , x)

)∣
∣ dξ

+
m∑

i=

|d̄ij|
∫ +∞


k̄ij(s)

∫ t

t–s

∣
∣gi

(
ui(ξ , x)

)∣
∣ dξ ds

]

dx.

Its upper Dini-derivative along the solution to system () can be calculated as

D+V (t) ≤
∫

�

m∑

i=

wi

[

–Diλ
∣
∣ui(t, x)

∣
∣ – pi

∣
∣ui(t, x)

∣
∣

+ 
n∑

j=

|bji|
∣
∣ui(t, x)

∣
∣Lf

j
∣
∣vj(t, x)

∣
∣ + 

n∑

j=

|b̃ji|
∣
∣ui(t, x)

∣
∣
∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣

+ 
n∑

j=

|b̄ji|
∫ t

–∞
kji(t – s)

∣
∣ui(t, x)

∣
∣
∣
∣fj

(
vj(s, x)

)∣
∣ds + ui(t, x)σi(t, x)

+
n∑

j=

|b̃ji| 
 – μθ

∣
∣fj

(
vj(t, x)

)∣
∣ +

n∑

j=

|b̄ji|
∫ +∞


kji(s)

∣
∣fj

(
vj(t, x)

)∣
∣ ds

–
n∑

j=

|b̃ji| 
 – μθ

(
 – θ̇ji(t)

)∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣

–
n∑

j=

|b̄ji|
∫ +∞


kji(s)

∣
∣fj

(
vj(t – s, x)

)∣
∣ ds

]

dx

+
∫

�

n∑

j=

wm+j

[

–D∗
j λ

∣
∣vj(t, x)

∣
∣

– qj
∣
∣vj(t, x)

∣
∣ + 

m∑

i=

|dij|Lg
i
∣
∣ui(t, x)

∣
∣
∣
∣vj(t, x)

∣
∣

+ 
m∑

i=

|d̃ij|
∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣
∣
∣vj(t, x)

∣
∣

+ 
m∑

i=

|d̄ij|
∫ t

–∞
k̄ij(t – s)

∣
∣gi

(
ui(s, x)

)∣
∣
∣
∣vj(t, x)

∣
∣ds + vj(t, x)ϑj(t, x)

+
m∑

i=

|d̃ij| 
 – μτ

∣
∣gi

(
ui(t, x)

)∣
∣

–
m∑

i=

|d̃ij| 
 – μτ

(
 – τ̇ij(t)

)∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣
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+
m∑

i=

|d̄ij|
∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t, x)

)∣
∣ ds

–
m∑

i=

|d̄ij|
∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t – s, x)

)∣
∣ ds

]

dx. ()

According to ()-() and (A)-(A), we can derive

D+V (t) ≤
∫

�

m∑

i=

wi

[

–Diλ
∣
∣ui(t, x)

∣
∣ – pi

∣
∣ui(t, x)

∣
∣

+
n∑

j=

|bji|Lf
j
(∣
∣ui(t, x)

∣
∣ +

∣
∣vj(t, x)

∣
∣)

+
n∑

j=

|b̃ji|
(∣
∣ui(t, x)

∣
∣ +

∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣)

+
n∑

j=

|b̄ji|
∫ t

–∞
kji(t – s)

(∣
∣ui(t, x)

∣
∣ +

∣
∣fj

(
vj(s, x)

)∣
∣)ds + ui(t, x)σi(t, x)

+
n∑

j=

|b̃ji| 
 – μθ

∣
∣fj

(
vj(t, x)

)∣
∣ +

n∑

j=

|b̄ji|
∫ +∞


kji(s)

∣
∣fj

(
vj(t, x)

)∣
∣ ds

–
n∑

j=

|b̃ji|
∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣ –

n∑

j=

|b̄ji|
∫ +∞


kji(s)

∣
∣fj

(
vj(t – s, x)

)∣
∣ ds

]

dx

+
∫

�

n∑

j=

wm+j

[

–D∗
j λ

∣
∣vj(t, x)

∣
∣ – qj

∣
∣vj(t, x)

∣
∣

+
m∑

i=

|dij|Lg
i
(∣
∣ui(t, x)

∣
∣ +

∣
∣vj(t, x)

∣
∣)

+
m∑

i=

|d̃ij|
(∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣ +

∣
∣vj(t, x)

∣
∣)

+ 
m∑

i=

|d̄ij|
∫ t

–∞
k̄ij(t – s)

(∣
∣gi

(
ui(s, x)

)∣
∣ +

∣
∣vj(t, x)

∣
∣)ds + vj(t, x)ϑj(t, x)

+
m∑

i=

|d̃ij| 
 – μτ

∣
∣gi

(
ui(t, x)

)∣
∣ –

m∑

i=

|d̃ij|
∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣

+
m∑

i=

|d̄ij|
∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t, x)

)∣
∣ ds

–
m∑

i=

|d̄ij|
∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t – s, x)

)∣
∣ ds

]

dx

=
∫

�

m∑

i=

{

wi

[

–Diλ – pi +
n∑

j=

|bji|Lf
j +

n∑

j=

|b̃ji| +
n∑

j=

|b̄ji|
]

+ Lg
i

n∑

j=

wm+j|dij| +


 – μτ

(
Lg

i
)

n∑

j=

wm+j|d̃ij| +
(
Lg

i
)

n∑

j=

wm+j|d̄ij|
}
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× ∣
∣ui(t, x)

∣
∣ dx

+
∫

�

n∑

j=

{

wm+j

[

–D∗
j λ – qj +

m∑

i=

|dij|Lg
i +

m∑

i=

|d̃ij| + 
m∑

i=

|d̄ij|
]

+


 – μθ

(
Lf

j
)

m∑

i=

wi|b̃ji| +
(
Lf

j
)

m∑

i=

wi|b̄ji|
∫ +∞


kji(s) ds + Lf

j

m∑

i=

wi|bji|
}

× ∣
∣vj(t, x)

∣
∣ dx

+ 
∫

�

[ m∑

i=

wiui(t, x)σi(t, x) +
n∑

j=

wm+jvj(t, x)ϑj(t, x)

]

dx. ()

Thus, we have

D+V (t) – 
∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx

– γ

∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx

≤
∫

�

m∑

i=

{

wi

[

–Diλ – pi +
n∑

j=

|bji|Lf
j +

n∑

j=

|b̃ji| +
n∑

j=

|b̄ji|
]

+ Lg
i

n∑

j=

wm+j|dij|

+


 – μτ

(
Lg

i
)

n∑

j=

wm+j|d̃ij| +
(
Lg

i
)

n∑

j=

wm+j|d̄ij|
}

∣
∣ui(t, x)

∣
∣ dx

+
∫

�

n∑

j=

{

wm+j

[

–D∗
j λ – qj +

m∑

i=

|dij|Lg
i +

m∑

i=

|d̃ij| + 
m∑

i=

|d̄ij|
]

+


 – μθ

(
Lf

j
)

m∑

i=

wi|b̃ji| +
(
Lf

j
)

m∑

i=

wi|b̄ji| + Lf
j

m∑

i=

wi|bji|
}

∣
∣vj(t, x)

∣
∣ dx

+ 
∫

�

[ m∑

i=

wiui(t, x)σi(t, x) +
n∑

j=

wm+jvj(t, x)ϑj(t, x)

]

dx

– 
∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx

– γ

∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx

=
∫

�

m∑

i=

{[

wi

(

–Diλ – pi +
n∑

j=

|bji|Lf
j +

n∑

j=

|b̃ji| +
n∑

j=

|b̄ji|
)

+ Lg
i

n∑

j=

wm+j|dij| +


 – μτ

(
Lg

i
)

n∑

j=

wm+j|d̃ij| +
(
Lg

i
)

n∑

j=

wm+j|d̄ij|
]
∣
∣ui(t, x)

∣
∣

+
[
(wi – ai)ui(t, x)σi(t, x) + (–γ – ci)σi(t, x)]

}

dx
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+
∫

�

n∑

j=

{[

wm+j

(

–D∗
j λ – qj +

m∑

i=

|dij|Lg
i +

m∑

i=

|d̃ij| + 
m∑

i=

|d̄ij|
)

+


 – μθ

(
Lf

j
)

m∑

i=

wi|b̃ji| +
(
Lf

j
)

m∑

i=

wi|b̄ji| + Lf
j

m∑

i=

wi|bji|
]
∣
∣vj(t, x)

∣
∣

+
[
(wm+j – āi)vj(t, x)ϑj(t, x) + (–γ – c̄i)ϑj(t, x)]

}

dx

=
∫

�

m∑

i=

(
ui(t, x)
σi(t, x)

)T (
�i wi – ai

wi – ai –γ – ci

)(
ui(t, x)
σi(t, x)

)

dx

+
∫

�

n∑

j=

(
vj(t, x)
ϑj(t, x)

)T (
�j wm+j – āj

wm+j – āj –γ – c̄j

)(
vj(t, x)
ϑj(t, x)

)

dx. ()

According to (), we can derive

D+V (t) – 
∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx

– γ

∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx ≤ . ()

By integrating the above inequality with respect to t over the time period  to tp, we have


∫ tp



∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx dt

≥ V (tp) – V () – γ

∫ tp



∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx dt. ()

Since V (tp) ≥  and V () ≥ , we have


∫ tp



∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx dt

≥ –β – γ

∫ tp



∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx dt ()

for all tp ≥ , where β =
√

V (). This completes the proof of Theorem . �

Remark  In Theorem , the Poincaré integral inequality is utilized firstly. This is a very
key step. Thus, the obtained passivity condition includes diffusion terms, which is novel
for delayed RDNNs.

Remark  References [, ] investigated the passivity of NNs with time-varying delay,
in which the input and output variables are only dependent on the time. Theorem  gives
a passivity condition of BAM RDNNs with Neumann boundary conditions and mixed
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time-varying delays. This condition not only connects with the delays, but it also relates
to the diffusion effect. There are few results on the passivity analysis of BAM RDNNs with
Neumann boundary conditions and mixed time-varying delays. Therefore, the passivity
criterion provided in Theorem  is essentially new compared with those given in [, ].

4 Robust passive analysis
Because of the presence of unavoidable factors, such as modeling errors, external pertur-
bations, and parameter fluctuations during the physical implementation, the NNs model
certainly involve uncertainties such as perturbations and component variations, which
will affect the passivity of the whole system. In this regard, to analyze the uncertainty of
BAM RDNNs, one reasonable method is to assume parameters in certain intervals. In or-
der to establish the passive condition for system (), the quantities may be considered as
intervals as follows:

DI :=
{

D = (Dik)m×l :
�

D ≤ D ≤ �

D, i.e.,
�

Dik ≤ Dik ≤ �

Dik , k = , . . . , l, i = , . . . , m
}

,

D∗
I :=

{
D∗ =

(
D∗

jk
)

n×l :
�

D∗ ≤ D∗ ≤ �

D∗, i.e.,
�

D∗
jk ≤ D∗

jk ≤ �

D∗
jk , k = , . . . , l, j = , . . . , n

}
,

PI :=
{

P = diag(pi) :
�

P ≤ P ≤ �

P, i.e., �pi ≤ pi ≤ �pi, i = , . . . , m
}

,

QI :=
{

Q = diag(qj) :
�

Q ≤ Q ≤ �

Q, i.e., �qj ≤ qj ≤ �qj, j = , . . . , n
}

,

BI :=
{

B = (bji)n×m :
�

B ≤ B ≤ �

B, i.e.,
�

bji ≤ bji ≤ �

bji, i = , . . . , m, j = , . . . , n
}

,

B̃I :=
{

B̃ = (b̃ji)n×m :
�

B̃ ≤ B̃ ≤
�

B̃, i.e.,
�

b̃ji ≤ b̃ji ≤
�

b̃ji, i = , . . . , m, j = , . . . , n
}

,

B̄I :=
{

B̄ = (b̄ji)n×m :
�

B̄ ≤ B̄ ≤
�

B̄, i.e.,
�

b̄ji ≤ b̄ji ≤
�

b̄ji, i = , . . . , m, j = , . . . , n
}

,

DI :=
{

D = (dij)m×n :
�

D ≤ D ≤ �

D, i.e.,
�

dij ≤ dij ≤
�

dij, i = , . . . , m, j = , . . . , n
}

,

D̃I :=
{

D̃ = (d̃ij)m×n :
�

D̃ ≤ D̃ ≤
�

D̃, i.e.,
�

d̃ij ≤ d̃ij ≤
�

d̃ij, i = , . . . , m, j = , . . . , n
}

,

D̄I :=
{

D̄ = (d̄ij)m×n :
�

D̄ ≤ D̄ ≤
�

D̄, i.e.,
�

d̄ij ≤ d̄ij ≤
�

d̄ij, i = , . . . , m, j = , . . . , n
}

.

()

Definition  System () with the parameter ranges defined by () is called robustly pas-
sive, if, for all D ∈ DI , D∗ ∈ D∗

I , P ∈ PI , Q ∈ QI , B ∈ BI , B̃ ∈ B̃I , B̄ ∈ B̄I , D ∈ DI , D̃ ∈ D̃I , and
D̄ ∈ D̄I , there are constants γ ≥  and β ∈ R such that


∫ tp



∫

�

(
y(t, x)Tσ (t, x) + z(t, x)Tϑ(t, x)

)
dx

≥ –β – γ

∫ tp



∫

�

(
σ (t, x)Tσ (t, x) + ϑ(t, x)Tϑ(t, x)

)
dx ()

for all tp ≥ .

Theorem  Under the assumptions (A)-(A), system () with the parameter ranges de-
fined by () is robustly passive if there exist constants wi, wm+j >  and γ >  such that

–γ – �ci < , –γ – 
�

c̄j < , ()

�∗
i – a∗

i (–γ – �ci)– ≤ , ()
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and

�∗
j – ā∗

j (–γ – 
�

c̄j)– ≤ , ()

in which

b∗
ij = max

(|�bij|, |
�

bij|
)
, b̃∗

ij = max
(|

�

b̃ij|, |
�

b̃ij|
)
, b̄∗

ij = max(
�

b̄ij,
�

b̄ij),

d∗
ij = max

(|�dij|, |
�

dij|
)
, d̃∗

ij = max
(|

�

d̃ij|, |
�

d̃ij|
)
, d̄∗

ij = max
(|

�

d̄ij|, |
�

d̄ij|
)
,

a∗
i = max

(|wi – �ai|, |wi – �ai|
)
, ā∗

j =
(|wm+j –

�

āj|, |wm+j –
�

āj|
)
,

�∗
i = wi

(

–
�

Diλ – �pi +
n∑

j=

b∗
jiL

f
j +

n∑

j=

b̃∗
ji +

n∑

j=

b̄∗
ji

)

+ Lg
i

n∑

j=

wm+jd∗
ij

+


 – μτ

(
Lg

i
)

n∑

j=

wm+jd̃∗
ij +

(
Lg

i
)

n∑

j=

wm+jd̄∗
ij,

�∗
j =

(
Lf

j
)

m∑

i=

wib̄∗
ji + Lf

j

m∑

i=

wib∗
ji

+ wm+j

(

–
�

D∗
j λ – �qj +

m∑

i=

d∗
ijL

g
i +

m∑

i=

d̃∗
ij + 

m∑

i=

d̄∗
ij

)

+


 – μθ

(
Lf

j
)

m∑

i=

wib̃∗
ji,

i = , , . . . , m, j = , , . . . , n,
�

Di = min≤k≤l
�

Dik ,
�

D∗
j = min≤k≤l

�

D∗
jk , Lf

j and Lg
i are Lipschitz

constants, λ is the lowest positive eigenvalue of problem ().

Proof Let us construct the following Lyapunov functional:

V (t) =
∫

�

m∑

i=

wi

[

ui(t, x) +
n∑

j=

b̃∗
ji


 – μθ

∫ t

t–θji(t)

∣
∣fj

(
vj(ξ , x)

)∣
∣ dξ

+
n∑

j=

b̄∗
ji

∫ +∞


kji(s)

∫ t

t–s

∣
∣fj

(
vj(ξ , x)

)∣
∣r dξ ds

]

dx

+
∫

�

n∑

j=

wm+j

[

vj(t, x) +
m∑

i=

d̃∗
ij


 – μτ

∫ t

t–τij(t)

∣
∣gi

(
ui(ξ , x)

)∣
∣ dξ

+
m∑

i=

d̄∗
ij

∫ +∞


k̄ij(s)

∫ t

t–s

∣
∣gi

(
ui(ξ , x)

)∣
∣ dξ ds

]

dx.

From ()-(), its upper Dini-derivative along the solution to system () can be calculated
as

D+V (t) ≤
∫

�

m∑

i=

wi

[

–
�

Diλ
∣
∣ui(t, x)

∣
∣ – �pi

∣
∣ui(t, x)

∣
∣

+ 
n∑

j=

b∗
ji
∣
∣ui(t, x)

∣
∣Lf

j
∣
∣vj(t, x)

∣
∣ + 

n∑

j=

b̃∗
ji
∣
∣ui(t, x)

∣
∣
∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣

+ 
n∑

j=

b̄∗
ji

∫ t

–∞
kji(t – s)

∣
∣ui(t, x)

∣
∣
∣
∣fj

(
vj(s, x)

)∣
∣ds + ui(t, x)σi(t, x)
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+
n∑

j=

b̃∗
ji


 – μθ

∣
∣fj

(
vj(t, x)

)∣
∣ +

n∑

j=

b̄∗
ji

∫ +∞


kji(s)

∣
∣fj

(
vj(t, x)

)∣
∣ ds

–
n∑

j=

b̃∗
ji


 – μθ

(
 – θ̇ji(t)

)∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣

–
n∑

j=

b̄∗
ji

∫ +∞


kji(s)

∣
∣fj

(
vj(t – s, x)

)∣
∣ ds

]

dx

+
∫

�

n∑

j=

wm+j

[

–
�

D∗
j λ

∣
∣vj(t, x)

∣
∣ – �qj

∣
∣vj(t, x)

∣
∣

+ 
m∑

i=

d∗
ijL

g
i
∣
∣ui(t, x)

∣
∣
∣
∣vj(t, x)

∣
∣ + 

m∑

i=

d̃∗
ij
∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣
∣
∣vj(t, x)

∣
∣

+ 
m∑

i=

d̄∗
ij

∫ t

–∞
k̄ij(t – s)

∣
∣gi

(
ui(s, x)

)∣
∣
∣
∣vj(t, x)

∣
∣ds + vj(t, x)ϑj(t, x)

+
m∑

i=

d̃∗
ij


 – μτ

∣
∣gi

(
ui(t, x)

)∣
∣ –

m∑

i=

d̃∗
ij


 – μτ

(
 – τ̇ij(t)

)∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣

+
m∑

i=

d̄∗
ij

∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t, x)

)∣
∣ ds

–
m∑

i=

d̄∗
ij

∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t – s, x)

)∣
∣ ds

]

dx. ()

According to ()-(), () and (A)-(A), we can get

D+V (t) ≤
∫

�

m∑

i=

wi

[

–
�

Diλ
∣
∣ui(t, x)

∣
∣ – �pi

∣
∣ui(t, x)

∣
∣

+
n∑

j=

b∗
jiL

f
j
(∣
∣ui(t, x)

∣
∣ +

∣
∣vj(t, x)

∣
∣) +

n∑

j=

b̃∗
ji
(∣
∣ui(t, x)

∣
∣ +

∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣)

+
n∑

j=

b̄∗
ji

∫ t

–∞
kji(t – s)

(∣
∣ui(t, x)

∣
∣ +

∣
∣fj

(
vj(s, x)

)∣
∣)ds + ui(t, x)σi(t, x)

+
n∑

j=

b̃∗
ji


 – μθ

∣
∣fj

(
vj(t, x)

)∣
∣ +

n∑

j=

b̄∗
ji

∫ +∞


kji(s)

∣
∣fj

(
vj(t, x)

)∣
∣ ds

–
n∑

j=

b̃∗
ji
∣
∣fj

(
vj

(
t – θji(t), x

))∣
∣ –

n∑

j=

b̄∗
ji

∫ +∞


kji(s)

∣
∣fj

(
vj(t – s, x)

)∣
∣ ds

]

dx

+
∫

�

n∑

j=

wm+j

[

–
�

D∗
j λ

∣
∣vj(t, x)

∣
∣ – �qj

∣
∣vj(t, x)

∣
∣

+
m∑

i=

d∗
ijL

g
i
(∣
∣ui(t, x)

∣
∣ +

∣
∣vj(t, x)

∣
∣)

+
m∑

i=

d̃∗
ij
(∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣ +

∣
∣vj(t, x)

∣
∣)
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+ 
m∑

i=

d̄∗
ij

∫ t

–∞
k̄ij(t – s)

(∣
∣gi

(
ui(s, x)

)∣
∣ +

∣
∣vj(t, x)

∣
∣)ds + vj(t, x)ϑj(t, x)

+
m∑

i=

d̃∗
ij


 – μτ

∣
∣gi

(
ui(t, x)

)∣
∣ –

m∑

i=

d̃∗
ij
∣
∣gi

(
ui

(
t – τij(t), x

))∣
∣

+
m∑

i=

d̄∗
ij

∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t, x)

)∣
∣ ds

–
m∑

i=

d̄∗
ij

∫ +∞


k̄ij(s)

∣
∣gi

(
ui(t – s, x)

)∣
∣ ds

]

dx

=
∫

�

m∑

i=

{

wi

[

–
�

Diλ – �pi +
n∑

j=

b∗
jiL

f
j +

n∑

j=

b̃∗
ji +

n∑

j=

b̄∗
ji

∫ t

–∞
kji(t – s) ds

]

+ Lg
i

n∑

j=

wm+jd∗
ji +


 – μτ

(
Lg

i
)

n∑

j=

wm+jd̃∗
ji

+
(
Lg

i
)

n∑

j=

wm+jd̄∗
ji

∫ +∞


k̄ij(s) ds

}
∣
∣ui(t, x)

∣
∣ dx

+
∫

�

n∑

j=

{

wm+j

[

–
�

D∗
j λ – �qj +

m∑

i=

d∗
ijL

g
i +

m∑

i=

d̃∗
ij

+ 
m∑

i=

d̄∗
ij

∫ t

–∞
k̄ij(t – s) ds

]

+


 – μθ

(
Lf

j
)

m∑

i=

wib̃∗
ij +

(
Lf

j
)

m∑

i=

wib̄∗
ij

∫ +∞


kji(s) ds + Lf

j

m∑

i=

wib∗
ij

}

× ∣
∣vj(t, x)

∣
∣ dx

+ 
∫

�

[ m∑

i=

wiui(t, x)σi(t, x) +
n∑

j=

wm+jvj(t, x)ϑj(t, x)

]

dx. ()

Thus, we get

D+V (t) – 
∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx

– γ

∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx

≤
∫

�

m∑

i=

{

wi

[

–
�

Diλ – �pi +
n∑

j=

b∗
jiL

f
j +

n∑

j=

b̃∗
ji +

n∑

j=

b̄∗
ji

∫ t

–∞
kji(t – s) ds

]

+ Lg
i

n∑

j=

wm+jd∗
ij +


 – μτ

(
Lg

i
)

n∑

j=

wm+jd̃∗
ij

+
(
Lg

i
)

n∑

j=

wm+jd̄∗
ij

∫ +∞


k̄ij(s) ds

}
∣
∣ui(t, x)

∣
∣ dx
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+
∫

�

n∑

j=

{

wm+j

[

–
�

D∗
j λ – �qj +

m∑

i=

d∗
ijL

g
i +

m∑

i=

d̃∗
ij + 

m∑

i=

d̄∗
ij

∫ t

–∞
k̄ij(t – s) ds

]

+


 – μθ

(
Lf

j
)

m∑

i=

wib̃∗
ji +

(
Lf

j
)

m∑

i=

wib̄∗
ji

∫ +∞


kji(s) ds + Lf

j

m∑

i=

wib∗
ji

}
∣
∣vj(t, x)

∣
∣ dx

+ 
∫

�

[ m∑

i=

wiui(t, x)σi(t, x) +
n∑

j=

wm+jvj(t, x)ϑj(t, x)

]

dx

– 
∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx

– γ

∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx

=
∫

�

m∑

i=

{[

wi

(

–
�

Diλ – �pi +
n∑

j=

b∗
jiL

f
j +

n∑

j=

b̃∗
ji +

n∑

j=

b̄∗
ji

)

+ Lg
i

n∑

j=

wm+jd∗
ij +


 – μτ

(
Lg

i
)

n∑

j=

wm+jd̃∗
ij +

(
Lg

i
)

n∑

j=

wm+jd̄∗
ij

]
∣
∣ui(t, x)

∣
∣

+
[
(wi – ai)ui(t, x)σi(t, x) + (–γ – ci)σi(t, x)]

}

dx

+
∫

�

n∑

j=

{[

wm+j

(

–
�

D∗
j λ – �qj +

m∑

i=

d∗
ijL

g
i +

m∑

i=

d̃∗
ij + 

m∑

i=

d̄∗
ij

)

+


 – μθ

(
Lf

j
)

m∑

i=

wib̃∗
ji +

(
Lf

j
)

m∑

i=

wib̄∗
ji + Lf

j

m∑

i=

wib∗
ji

]
∣
∣vj(t, x)

∣
∣

+
[
(wm+j – āi)vj(t, x)ϑj(t, x) + (–γ – c̄i)ϑj(t, x)]

}

dx

=
∫

�

m∑

i=

(
ui(t, x)
σi(t, x)

)T (
�∗

i wi – ai

wi – ai –γ – ci

)(
ui(t, x)
σi(t, x)

)

dx

+
∫

�

n∑

j=

(
vj(t, x)
ϑj(t, x)

)T (
�∗

j wm+j – āj

wm+j – āj –γ – c̄j

)(
vj(t, x)
ϑj(t, x)

)

dx. ()

Since –γ – ci < –γ – �ci <  and –γ – c̄j < –γ – 
�

c̄j < , it is easy to see that

(
�∗

i wi – ai

wi – ai –γ – ci

)

≤  is equivalent to �∗
i – (wi – ai)(–γ – ci)– ≤ . ()

Similarly, we see that

(
�∗

j wm+j – āj

wm+j – āj –γ – c̄j

)

≤  is equivalent to �∗
j – (wm+j – āj)(–γ – c̄j)– ≤ . ()
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In addition,

�∗
i – (wi – ai)(–γ – ci)– ≤ �∗

i – a∗
i (–γ – �ci)–, ()

and

�∗
j – (wm+j – āj)(–γ – c̄j)– ≤ �∗

j – ā∗
j (–γ – 

�

c̄j)–. ()

According to ()-(), we can derive

D+V (t) – 
∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx

– γ

∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx ≤ . ()

By integrating () with respect to t over the time period  to tp, we have


∫ tp



∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx dt

≥ V (tp) – V () – γ

∫ tp



∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx dt. ()

Since V (tp) ≥  and V () ≥ , thus


∫ tp



∫

�

[ m∑

i=

yi(t, x)σi(t, x) +
n∑

j=

zj(t, x)ϑj(t, x)

]

dx dt

≥ –β – γ

∫ tp



∫

�

[ m∑

i=

σi(t, x) +
n∑

j=

ϑj(t, x)

]

dx dt ()

for all tp ≥ , where β =
√

V (). This completes the proof of Theorem . �

5 Illustration example
To illustrate the effectiveness of our criterion, we give the following example.

Example  Consider the following BAM RDNNs with mixed delays and Neumann
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t = ∂

∂x
(Di

∂ui
∂x

) – piui(t, x) +
∑n

j= bjifj(vj(t, x))
+

∑n
j= b̃jifj(vj(t – θji(t), x)) +

∑n
j= b̄ji

∫ t
–∞ kji(t – s)fj(vj(s, x)) ds + σi(t, x),

∂vj
∂t = ∂

∂x
(D∗

j
∂vj
∂x

) – qjvj(t, x) +
∑m

i= dijgi(ui(t, x))
+

∑m
i= d̃ijgi(ui(t – τij(t), x)) +

∑m
i= d̄ij

∫ t
–∞ k̄ij(t – s)gi(ui(s, x)) ds + ϑj(t, x),

yi(t, x) = aiui(t, x) + ciσi(t, x),
zj(t, x) = ājvj(t, x) + c̄jϑj(t, x),

()
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where � = {x| < x <
√

.π} ⊂ R, Di = D∗
j = , n = m = r = , kji(t) = k̄ij(t) = te–t , fj(η) =

gi(η) = 
 (|η + | + |η – |), Lf

j = Lf̄
j = Lg

i = Lḡ
i = , λ = , τ = θ = ln , ai = āj = , ci = c̄j = .,

pi = , qj = , i, j = , , μτ = μθ = ., d = ., d = , d = ., d = ., d̄ = .,
d̄ = ., d̄ = ., d̃ = ., d̃ = ., d̃ = ., d̃ = ., d̄ = ., b = ., b = .,
b = , b = –., b̄ = –, b̄ = ., b̄ = ., b̄ = ., b̃ = –., b̃ = ., b̃ = .,
b̃ = .. By a simple calculation with w = w = w = w =  and γ = , we get

(
� w – a

w – a –γ – c

)

=

(
–. 

 –

)

≤ , ()

(
� w – a

w – a –γ – c

)

=

(
–. 

 –

)

≤ , ()

(
� w – ā

w – ā –γ – c̄

)

=

(
–. 

 –

)

≤ , ()

and
(

� w – ā

w – ā –γ – c̄

)

=

(
–. 

 –

)

≤ . ()

That is, () and () hold. Therefore, it follows from Theorem  that system () is passive.

6 Conclusions
In this paper, we have investigated the passivity analysis problem for a class of spatially
and temporally BAM NNs with mixed time delays. The model suggested in this paper is
comprehensive, since it simultaneously incorporates reaction-diffusion terms and mixed
time delays. We have not only developed several novel sufficient conditions to ensure the
passivity of BAM NNs with reaction-diffusion terms and mixed time delays but also inves-
tigated the robust passivity of the corresponding system with unknown parameters. In par-
ticular, many techniques and approaches, such as the Lyapunov functional and Poincaré
integral inequality, have been successfully applied in this paper. Moreover, our obtained
passivity conditions depend on time delays and reaction-diffusion terms, and thus are less
conservative than delay-independent and reaction-diffusion-independent criteria. There-
fore, the results obtained in this paper are less conservative, and they generalize and im-
prove many earlier results. Finally, a numerical example has been presented to show the
effectiveness of the derived results.
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