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Abstract
In this article, we consider the global behavior of weak solutions of the Navier-Stokes
equations of a compressible fluid in a bounded domain driven by bounded forces for
the adiabatic constant γ = 5/3. Under the condition of a small mass depending on
the given forces, we prove the existence of bounded absorbing sets of weak
solutions, and thus we further get global bounded trajectories and global attractors
to the weak solutions.
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1 Introduction
In this article, we investigate the global behavior of finite energy weak solutions to the
Navier-Stokes equations of a viscous compressible isentropic fluid:

∂tρ + div(ρu) = , ()

∂t(ρu) + div(ρu ⊗ u) + ∇P = μ�u + (μ + λ)∇ div u + ρf , ()

in � × I , and with a non-slip boundary condition:

u(t, x)|∂� = , t ∈ I ⊂R. ()

In this article, we always assume that � ⊂R
 is a bounded domain with Lipschitz bound-

ary, and I an open time interval. The unknown functions � = ρ(t, x) and u = u(t, x) =
(u(t, x), u(t, x), u(t, x)) represent the density and velocity of fluid, respectively. The exter-
nal force f = (f (t, x), f (t, x), f (t, x)) is given. The pressure takes the form P = aργ , where a
is a positive constant, and γ the adiabatic constant. μ >  and λ are the viscosity constants,
satisfying λ + μ ≥ .

Next we give the standard definition of finite energy weak solutions to the problem ()-
() as in [, ].

Definition . Let γ > /. we call the couple (ρ, u) a finite energy weak solution to the
problem ()-(), if it satisfies the following properties:
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• ρ , u enjoy the regularity

ρ ∈ L∞
loc

(
I; Lγ (�)

) ∩ Ls(γ )
loc

(
I; Ls(γ )(�)

)
, ui ∈ L

loc
(
I; W ,

 (�)
)

()

for i = , ,  and s(γ ) = (γ – )/.
• Let the energy E be defined as follows:

E[ρ, u](t) =
∫

�

[


ρ(t, x)

∣
∣u(t, x)

∣
∣ +

a
γ – 

ργ (t, x)
]

dx, ()

then E ∈ L
loc(I) satisfies the following energy inequality in D′(I):

d
dt

E[ρ, u](t) +
∫

�

[
μ

∣
∣∇u(t)

∣
∣ + (λ + μ)

∣
∣div u(t)

∣
∣]dx ≤

∫

�

ρ(t)f(t) · u(t) dx. ()

• Equations () and () hold in D′(I × �); moreover, () is satisfied in D′(I ×R
)

provided we prolong ρ, u to be zero on R
/�.

• Equation () is satisfied in the sense of renormalized solutions, i.e.,

b(ρ)t + div
(
b(ρ)u

)
+

(
b′(ρ)ρ – b(ρ)

)
div u =  ()

holds in D′(I × �) for any b satisfying

b ∈ C([,∞]
) ∩ C((,∞)

)
,

∣∣b′(t)
∣∣ ≤ Ct–λ , t ∈ (, ),λ < , ()

and

∣
∣b′(t)

∣
∣ ≤ Ctλ , t ≥ , where C > , – < λ ≤ s(γ )


– . ()

The existence of globally defined weak solutions for � ⊂ R
 was proved by Lions []

under the hypothesis that γ > /. Then, by using the curl-div lemma to subtly derive a
certain compactness, and applying Lions’ idea and a technique from [], Feireisl et al. []
extended Lions’ existence result to the case γ > /. For any  ≤ γ ≤ /, a global weak
solution still exists when the initial data have a certain symmetry (e.g., spherical, or ax-
isymmetric symmetry); see [, ]. The theory of weak solutions is also applied to other
models of fluid mechanics; see [–] for examples. In [, –] Feireisl and Petzeltová
investigated the global behavior of weak solutions of the problem ()-(), and showed the
existence of bounded absorbing sets, global bounded trajectories and global attractors to
weak solutions of compressible flows for γ > /. Jiang et al. [–] and Wang [] fur-
ther generalized their results to the Navier-Stokes-Poisson equations and nematic liquid
crystals, respectively. However, it is still an open problem for the case γ > /. In this arti-
cle, under the proof-frame of [, ], we investigate the global behavior of weak solutions
of the problem ()-() for γ = / under the assumption of small mass depending on the
given forces. Finally, we mention that, from the definition of renormalized solutions, the
total mass m is conserved, i.e.

m =
∫

�

ρ(x, t) dx is independent of t ∈ I. ()
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Next we start to state our main results. The first result concerns the existence of bounded
absorbing sets of weak solutions to the problem ()-().

Theorem . Let γ = /, a > –∞, I = (a,∞) ⊂R be an open interval, and the bounded
measurable function f = (f (t, x), f (t, x), f (t, x)) satisfy

max
i=,,

{
ess sup

t∈I,x∈�

∣∣f i(t, x)
∣∣
}

≤ K . ()

Then there exist constants m := m(K) ∈ (, ) and E∞ := E(K) satisfying the following
property:

For any positive constant E and any finite energy weak solution (ρ, u) of the problem
()-(), if

ess lim sup
t→a

E(t) ≤ E and m ≤ m, ()

then there exists a time point T = T(E, a) such that

E(t) := E[ρ, u](t) ≤ E∞ for a.e. t > T . ()

Here we explain why our arguments work only for γ = /. In Feireisl and Petzeltová’s
article [], they deduced the following key estimate:

sup
t∈[T ,T+]

E(t+)

≤ c(K , m)
(

 + sup
t∈[T ,T+]

√
E(t+) + c̃(m) sup

t∈[T ,T+]

∥∥�(t)
∥∥(γ –)((γ +θ–))

Lγ (�)

)
, ()

where c(K , m) and c̃(m) are two positive constants. Under the condition γ > /, (γ –
)/((γ + θ – )) < γ , and thus one can apply the Young inequality to the estimate above to
deduce

sup
t∈[T ,T+]

E(t+) ≤ L ()

for some constant L > . The local-time boundedness () is very important to further
deduce the existence of a bounded absorbing set. However, if γ ≤ /, then (γ – )/((γ +
θ – )) ≥ γ , and thus the above idea to deduce () obviously fails. However, when γ = /,
() implies

sup
t∈[T ,T+]

E(t+) ≤ c(K , m)
(

 + sup
t∈[T ,T+]

√
E(t+) + c̃(m) sup

t∈[T ,T+]
E(t+)

)
. ()

By careful analyzing the derivation of (), we observe that c(K , m) and m converge to zero
as m → , and thus () can be still deduced from () provided that the mass is sufficiently
small.

Based on Theorem ., we can further get global bounded trajectories of weak solutions
to the problem ()-() as in [], since the family of trajectories generated by the finite
energy weak solutions of ()-() defined on I possesses a bounded absorbing set in the
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energy ‘norm’. To this purpose, we define

Us[E,F ](t, t) =
{(

ρ(τ ), q(τ )
)
, τ ∈ [, ]|ρ(τ ) = ρ(t + τ ), q(τ ) = (ρu)(t + τ ),

where (ρ, u) is a finite energy weak solution to the

problem ()-() on an open interval I, such that (t, t + ] ⊂ I,

f ∈F , ess lim sup
t→t

E(t) ≤ E and m satisfy ()
}

. ()

Then we have the second result concerning the large-time behavior of the short trajecto-
ries defined in ().

Theorem . Let γ = /, J = (, ),

F be bounded subset of the
(
L∞(R× �)

) ()

and

F+ =
{

f
∣∣f = lim

τn→∞ hn(t + τn, x) weak star in L∞(R× �)

for a certain hn ∈F and τn → ∞
}

. ()

Assume that there exists a certain sequence tn → ∞ satisfying

(
ρn(tn + t, x), qn(tn + t, x)

) ∈ Us[E,F ](a, tn) (a ∈R),

then we can extract a subsequence (not relabeled) such that

ρn(tn + t, x) → ρ̄(t, x) in L/(J × �) and in C
(
J̄; Lα(�)

)
for  ≤ α < /, ()

qn(tn + t, x) → (ρ̄ū)(t, x) in Lp(J × �) ∩ C
(
J̄;

(
L



weak(�)

)), ()

and

E
[
ρn(tn + t, x), un(tn + t, x)

] → E
[
ρ̄(t, x), ū(t, x)

]
in L(J) ()

for any p ∈ [, 
 ), where (ρ̄ , ū) is a finite energy weak solution of the problem ()-() defined

on the whole real line I = R such that E ∈ L∞(R),
∫
�

ρ̄ dx = m, and f ∈F+.

The theorem above presents that the energy E of finite energy weak solutions defined on
I = R is uniformly bounded on R, and thus we can further construct a set of short trajec-
tories to which any finite energy weak solution is asymptotically attracted by Theorem ..
To this end, we define

As[F ] =
{(

ρ(τ ), q(τ )
)
τ∈[,]|

(
ρ, q = (ρu)

)
is a finite energy weak solution

of the problem ()-() on I = R, with f ∈F+, E[ρ, u] ∈ L∞(R)

and m satisfy ()
}

. ()
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Thus, we have the third conclusion as regards a global attractor to the short trajectories
of the set As(F ) as in [].

Theorem . Assume γ = / and F satisfies (). Then the set As[F ] is compact in
L/(J × �) × (Lp(J × �)). Moreover, for any p ∈ [, ),

sup
(ρ,q)∈Us[E,F ](t,t)

[
inf

(ρ̄,q̄)∈As[F ]

(‖ρ – ρ̄‖L/(J×�)
)

+ ‖q – q̄‖Lp(J×�)

]
→ , ()

as t → ∞.

The theorem above shows that the set As(F ) is a global attractor to the space of short
trajectories; moreover, the set As(F ) is nonempty and compact, if F is nonempty. Similar
to [], we can further build a set of global trajectories. To this end, we define

A[F ] =
{

(ρ, q)|ρ = ρ(), q = (ρu)(), where ρ, u is a finite energy

weak solution of the problem ()-() on I = R

with f ∈F+ and E ∈ L∞(R), and m satisfy ()
}

, ()

and

U[E,F ](t, t)

=
{

(ρ, q)(t)
∣∣(ρ, u) is a finite energy weak solution of the problem

()-() on I such that (t, t] ⊂ I, f ∈F and ess lim sup
t→t

E(t) ≤ E,

and m satisfy ()
}

, ()

thus we get the fourth result on attractors as in [].

Theorem . We redefine the energy E by

E[ρ, u](t) =
∫

ρ(x,t)>

[



|ρu|
ρ

(t, x) +
a


ρ/(t, x)
]

dx. ()

Assume that γ = / and F satisfies (), then A[F ] is compact in Lα(�)× (L


weak(�)), i.e.,

for any  ≤ α < / and any φ ∈ (L(�)),

sup
(ρ,q)∈U[E,F ](t,t)

[
inf

(ρ̄,q̄)∈A[F ]

(
‖ρ – ρ̄‖Lα (�) +

∣∣∣
∣

∫

�

(q – q̄) · φ dx
∣∣∣
∣

)]
→  as t → ∞. ()

Remark . It should be noted that the energy E(t) defined by () is equal to () a.e. in I
(see [], Lemma .) and () is lower semicontinuous (see [], Proposition .). Then
the two conditions ‘ess lim supt→a E(t) ≤ E’ and ‘lim supt→a E(t) ≤ E’ are equivalent, and,
thus, the conclusions in Theorems .-. with E(t) defined by () still hold, in particular,
we have E(t) := E[ρ, u](t) ≤ E∞ for t > T in Theorem ..
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In next section, we use the proof-frame of [] to prove Theorem . under the condi-
tion of small mass. Once we establish Theorem ., the conclusions in Theorems .-.
obviously hold by the standard compactness method as in [, ]; hence we omit the proof.

2 Proof of Theorem 1.1
Similar to [], to get Theorem ., it suffices to obtain the following two results.

Proposition . Under the hypotheses of Theorem ., let m ∈ (, ) and (ρ, u) be a renor-
malized solution of ()-(), then the energy E is locally bounded variation on I (being rede-
fined on a set of measure zero if necessary), and

E(t+) = lim
s→t+

E(s) ≤ lim
s→t–

E(s) = E(t–) for any t ∈ I. ()

Moreover, there exists a constant c(K), only depending on K and independent of m, such
that

E(t–) ≤ (
 + E(t+)

)
ec(K )(t–t) –  for all  < t < t. ()

Proposition . Under the assumptions of Theorem ., there exists a constant m ∈ (, )
such that for any m ∈ (, m) there exists a constant L := L(K) enjoying the following prop-
erty:

If

E
(
(T + )–

)
> E(T+) –  for some T ∈ I, ()

then

sup
t∈(T ,T+)

E(t+) ≤ L. ()

For completeness of this article, we provide the proof of Theorem . in detail, based on
Propositions .-.. It is easy to see that there exists T = T(E, a) > a satisfying E(T–) >
E((T – )+) – . Indeed if it fails, then, when the t is sufficiently large, the energy would be
negative. This contradicts the fact that the energy is non-negative. Therefore E(t) ≤ L for
some t < T , where L is defined as in Proposition ..

Next we claim that

E
(
(t + n)+

) ≤ L for any n ≥ , ()

By induction, we assume E((t + n)+) ≤ L. Making use of () and Proposition ., either

sup
t∈(t+n,t+n+)

E(t+) ≤ L,

which implies E((t + n + )–) ≤ L, or

E
(
(t + n + )+

) ≤ E
(
(t + n + )–

) ≤ E
(
(t + n)+

)
–  ≤ L – .
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Consequently, in view of () and Lemma ., we take the value

E∞ = ( + L)ec(K ) – ,

to obtain Theorem .. This completes the proof of Theorem ..
Next we turn to strictly show the two propositions above. We mention that all the esti-

mate constants appearing in this section is independent of m.

2.1 Proof of Proposition 2.1
Let E(t) satisfy

d
dt

E(t) +
∫

�

μ|∇u| + (λ + μ)|div u| dx =
∫

�

ρf · u dx a.e. for t ∈ I, ()

then E := (E – E) ∈ L
loc(I). In view of (), we get

d
dt

E(t) ≤  in D′(I). ()

Hence E is the sum of ‘an absolutely function’ and ‘a nonincreasing function’, and thus, E is
a continuous function except a countable set of points in which () holds. In addition,
using the condition (), we can control the right-hand side of () as follows:

∫

�

ρf · u dx ≤ K
(∫

�

ρ dx
) 


(∫

�

ρ|u| dx
) 

 ≤ √
mK

(
 +

∫

�

ρ|u| dx
)

≤ √
mK

(
 + E(t)

) ≤ 
√

K
(
 + E(t)

)
:= c(K)

(
 + E(t)

)
, ()

where we have used the condition m ∈ (, ). Thus, using the Gronwall lemma, we imme-
diately get (), and we complete the proof of Proposition ..

2.2 Proof of Proposition 2.2
Before further providing the proof of Proposition ., we shall establish the following four
auxiliary lemmas.

Lemma . Under the hypotheses of Theorem . and (), let m ∈ (, ), then

∫ T+

T

∥∥u(t)
∥∥

W ,
 (�) dt ≤ c

(
 +

∫ T+

T

∥∥ρ(t)
∥∥

L

 (�)

dt
)

()

holds for a constant c = c(K).

Proof Exploiting (), the energy inequality (), the embedding theorem W ,(�) ⊂ L(�),
and the Poincaré inequality, we can estimate

∫

�

μ
∣
∣∇u(t)

∣
∣ dx ≤ c,

(
 +

∫ T+

T

∫

�

ρ|u|dx dt
)

.
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On the other hand, we can use the Hölder inequality and the condition m ∈ (, ) to esti-
mate

∫

�

ρ|u|dx ≤ √
m

(∫

�

ρ|u| dx
) 

 ≤ ‖ρ‖/
L/(�)‖u‖L(�).

Consequently, we immediately get the desired result by using the embedding theorem
again. �

Lemma . Under the assumptions of Theorem . and (), there exists a constant m ∈
(, ) depending on K such that, for any

m ∈ (, m], ()

we have

E(t+) ≤ c

(
 +

∫ T+

T

∥
∥ρ(s)

∥
∥/

L/(�) ds
)

for any t ∈ [T , T + ] ()

for some constant c = c(K).

Proof We integrate () for the choice t = T +  with respect to t to obtain

E
(
(T + )–

) ≤ c,

(
 +

∫ T+

T
E(s) ds

)
.

In addition,

E(T+) < E
(
(T + )–

)
+  ≤ c,

(
 +

∫ T+

T
E(s) ds

)
. ()

Thus, we can take t = T in () and use () to obtain

E(T+) ≤ c,

(
 +

∫ T+

T
E(s) ds

)
for any t ∈ [T , T + ).

Now, exploiting the Hölder inequality and Lemma ., we can infer that

∫ T+

T

∫

�

ρ|u| dx dt ≤ sup
t∈[T ,T+)

∥∥ρ(t)
∥∥

L/(�)

∫ T+

T
‖u‖

W ,
 (�)

ds

≤ c, sup
t∈[T ,T+]

∥∥ρ(t)
∥∥

L/(�)

(
 +

∫ T+

T
‖ρ‖L/(�) dt

)
.

We can use the interpolation inequality to get

‖ρ‖L/(�) ≤ ‖ρ‖/
L(�)‖ρ‖/

L/(�),

and thus
∫ T+

T

∫

�

ρ|u| dx dt ≤ c, sup
t∈[T ,T+]

E(t+)/
(

 + m/
∫ T+

T

∥∥ρ(s)
∥∥/

L/(�) ds
)

.
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Hence we further have

sup
t∈[T ,T+]

E(t+) ≤ c,

[
 +

∫ T+

T

∥
∥ρ(t)

∥
∥/

L/(�) ds

+ sup
t∈[T ,T+]

E(t+)/
(

 + m/
∫ T+

T
‖ρ‖/

L/(�) dt
)]

.

Consequently, there exists a sufficiently small constant m ∈ (, ) dependent on K such
that, for any m ∈ (, m], () holds. �

Lemma . Let (ρ, u) be a finite energy weak solutions to the problem ()-() and

Sε[v] = ϑε ∗ v, where ϑε = ϑε(x) is a regularizing sequence.

Then

∂tSε

[
b(ρ)

]
+ div

(
Sε

[
b(ρ)

]
u
)

+ Sε

[(
b′(ρ)ρ – b(ρ)

)
div u

]
= rε ()

a.e. in I ×R
. Moreover, if

b(ρ) is in L∞
loc

(
R

+, Lβ (�)
)
, β ≥ ,

then

rε →  in L
loc

(
R

+; Lα(�)
)

for ε →  with α =
β

β + 
. ()

Proof Please, refer to [], Lemma . or [], Lemmas .-.. �

Lemma . Let p, r ∈ (,∞) be given numbers, then there exists a bounded linear opera-
tor B,

B = [B,B,B] :
{

f ∈ Lp(�)
∣∣
∣
∫

�

f dx = 
}

�→ [
W ,p

 (�)
],

∥∥B{f }∥∥W ,p
 (�) ≤ c(p,�)‖f ‖Lp(�) ()

such that v := B{f } satisfies

div v = f a.e. in �, v|∂� = . ()

In addition, if f ∈ Lr(�) can be written by

f = div h for a certain h ∈ [
Lr(�)

], h · n|∂� = ,

then

∥∥B{f }∥∥Lr(�) ≤ c(p,γ ,�)‖h‖Lr (�). ()
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Proof The bounded linear operator B was first considered by Bogovskii [], please refer
to [], Proposition ., for a detailed proof. �

We are now in the position to prove Proposition .. Let  ≤ ψ ≤ , ψ ∈ D(T , T + ),
and Sε are the smoothing operators given by Lemma .. We consider test functions

ϕi(t, x) = ψ(t)Bi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
, i = , , ,

where

b ∈ C(R), b(z) = z/ for z ≥ . ()

Taking the ϕi as test functions for () and exploiting Lemmas . and ., we can obtain
the following identity:

a
∫ T+

T

∫

�

ψρ/Sε

[
b(ρ)

]
dx dt

=
∫ T+

T
ψ

(∫

�

aρ/ dx
)


|�|

∫

�

Sε

[
b(ρ)

]
dx) dt

+ (λ + μ)
∫ T+

T

∫

�

ψSε

[
b(ρ)

]
div u dx dt

–
∫ T+

T

∫

�

ψtρuiBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt

+ μ

∫ T+

T

∫

�

ψ∂xj u
i∂xjBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt

–
∫ T+

T

∫

�

ψρuiuj∂xjBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt

+
∫ T+

T

∫

�

ψρuiBi

{
Sε

[(
b(ρ) – b′(ρ)ρ

)
div u

]

–


|�|
∫

�

Sε

[(
b(ρ) – b′(ρ)ρ

)
div u

]
dx

}
dx dt

+
∫ T+

T

∫

�

ψρuiBi

{
rε –


|�|

∫

�

rε dx
}

dx dt

–
∫ T+

T

∫

�

ψρuiBi
{
div

(
Sε

[
b(ρ)

])
u
}

dx dt

–
∫ T+

T

∫

�

ψρfiBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt. ()

Using the condition (), we can get the following estimates; please, refer to [] for the
omitted details:

∣
∣∣∣

∫ T+

T
ψ

(∫

�

aρ/ dx
)(


|�|

∫

�

Sε

[
b(ρ)

]
dx

)
dt

∣
∣∣∣ ≤ c

∫ T+

T

∫

�

ρ/ dx dt, ()

∣∣
∣∣

∫ T+

T

∫

�

ψSε

[
b(ρ)

]
div u dx dt

∣∣
∣∣ ≤ c

∫ T+

T

∥
∥u(t)

∥
∥

W ,
 (�) dt, ()
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∣
∣∣∣

∫ T+

T

∫

�

ψtρuiBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt

∣
∣∣∣

≤ c

∫ T+

T
|ψt|‖√ρu‖L(�) dt, ()

∣∣
∣∣

∫ T+

T

∫

�

ψ∂xj u
i∂xjBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt

∣∣
∣∣

≤ c

∫ T+

T

∥∥u(t)
∥∥

W ,
 (�) dt, ()

∣∣∣
∣

∫ T+

T

∫

�

ψρuiuj∂xjBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ

]
dx

}
dx dt

∣∣∣
∣

≤ c sup
t∈[T ,T+]

∥∥ρ(t)
∥∥

L/(�)

∫ T+

T

∥∥u(t)
∥∥

W ,
 (�) dt, ()

∣
∣∣
∣

∫ T+

T

∫

�

ψρuiBi

{
Sε

[(
b(ρ) – b′(ρ)ρ

)
div u

]

–


|�|
∫

�

Sε

[
(b(ρ) – b′(ρ)ρ div u

]
dx

}
dx dt

∣
∣∣
∣

≤ c sup
t∈[T ,T+]

∥
∥ρ(t)

∥
∥

L/(�)

∫ T+

T

∥
∥u(t)

∥
∥

W ,
 (�) dt, ()

∣
∣∣∣

∫ T+

T

∫

�

ψρuiBi

{
rε –


|�|

∫
rε

}
dx dt

∣
∣∣∣

≤ c

∫ T+

T
‖ρ‖L/(�)‖u‖W ,(�)‖rε‖L/(�) dt, ()

∣∣
∣∣

∫ T+

T

∫

�

ψρfiBi
{
div

(
Sε

[
b(ρ)

]
u
)}

dx dt
∣∣
∣∣

≤ c sup
t∈[T ,T+]

∥∥ρ(t)
∥∥

L/(�)

∫ T+

T

∥∥u(t)
∥∥

W ,
 (�) dt, ()

and

∣
∣∣∣

∫ T+

T

∫

�

ψρfiBi

{
Sε

[
b(ρ)

]
–


|�|

∫

�

Sε

[
b(ρ)

]
dx

}
dx dt

∣
∣∣∣ ≤ c(K). ()

In addition, we can use () to see that

b(ρ) is in L∞
loc

(
R+, L(�)

)
,

thus, exploiting () and (), we further get

lim
ε→+

∣
∣∣
∣

∫ T+

T

∫

�

ψρuiBi

{
rε –


|�|

∫
rε

}
dx dt

∣
∣∣
∣ = . ()

Noting that there exists a sequence ψε approximating the characteristic function of the
interval [T , T + ], thus, letting ε →  in ()-(), we can obtain
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∫ T+

T

∫

�

ρ/ dx dt ≤ c(K)
[

 + sup
t∈[T ,T+]

∥∥√
ρu(t)

∥∥
L(�)

+
(

 + sup
t∈[T ,T+]

∥∥ρ(t)
∥∥

L/(�)

)∫ T+

T

∥∥u(t)
∥∥

W ,
 (�) dt

]
. ()

Recalling the interpolating the spaces L and L/, we have

∫ T+

T
‖ρ‖/

L/(�) dt ≤ cm/
[∫ T+

T

∫

�

ρ/ dx dt
]/

. ()

Then, exploiting Lemma ., one has

∣∣
∣∣ sup
t∈[T ,T+]

∥
∥ρ(t)

∥
∥

L/(�)

∫ T+

T

∥
∥u(t)

∥
∥

W ,
 (�) dt

∣∣
∣∣




≤ c(K)
[

 + sup
t∈[T ,T+]

∥∥ρ(t)
∥∥

L/(�) sup
t∈[T ,T+]

∥∥ρ(t)
∥∥

L

 (�)

] 


≤ c(K)
[
 + sup

t∈[T ,T+]

∥∥ρ(t)
∥∥

L/(�)

]/
. ()

In addition, thanks to (), we have

ess sup
t∈[T ,T+]

∥∥√
ρu(t)

∥∥
L(�) ≤ sup

t∈[T ,T+]

√

E(t+). ()

Finally, making use of Lemma . and the estimates ()-(), we conclude

sup
t∈[T ,T+]

E(t+)

≤ c(K)
(

 + sup
t∈[T ,T+]


√

E(t+) + m/ sup
t∈[T ,T+]

∥
∥ρ(t)

∥
∥/

L/(�)

)
. ()

Consequently, () implies the existence of the constant L which has the property stated
in Proposition . provided that

m ≤ min

{(
a

c(K)(γ – )

) 


, m

}
.

This completes the proof of Proposition ..
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