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Abstract
In this paper, we are concerned with a nonlinear p-Laplace equation with critical
Sobolev-Hardy exponents and Robin boundary conditions. Through a compactness
analysis of the functional corresponding to the problem, we obtain the existence of
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1 Introduction
We are concerned with the following class of boundary value problems:

⎧
⎨

⎩

–�pu – μ
|u|p–u

|x|p + λ|u|p–u = |u|p∗(s)–u
|x|s + η|u|q–u, in �,

|∇u|p– ∂u
∂ν

+ α(x)|u|p–u = , on ∂�,
(.)

where  ∈ � ⊂R
n,  ≤ p < n, p∗(s) = p(n – s)/(n – p), p < q < p∗(s),  ≤ s < p, μ < μ̄ := (n–p)p

pp ,
η ≥  and λ ∈ R

 are parameters, α(x) ∈ C(∂�), α(x) ≥ . � is a bounded domain with a
smooth C boundary, ν denotes the unit outward normal to ∂�.

The main interest of this kind of problems is the presence of the singular potential 
|x|s ,

 ≤ s ≤ p, 
|x|s relating to the Hardy inequality. In the special case when μ = , problem

(.) is related to the well-known Sobolev-Hardy inequality

(∫

�

uq

|x|s dx
) p

q
≤ 

Cq,s,p

∫

�

|∇u|p dx, ∀u ∈ W ,p
 (�),

which is essentially due to Caffarelli, Kohn and Nirenberg (see []), where  < p < n, q ≤
p∗(s), Cq,s,p is a positive constant depending on p, q, s. When q = s = p, the above Sobolev
inequality becomes the well-known Hardy inequality (see [, ])

∫

�

|u|p
|x|p dx ≤ 

μ̄

∫

�

|∇u|p dx, ∀u ∈ W ,p
 (�).
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Moreover, the constant μ̄ is optimal and is not achieved since the Sobolev embedding is
not compact even locally in any neighborhood of zero. In addition to the inverse potential,
there is the presence of the critical Sobolev exponents and critical Sobolev-Hardy expo-
nents, which causes of loss of compactness of the embeddings. This loss of compactness
leads to many interesting existence and nonexistence phenomena for the elliptic equations
with critical Hardy terms (see, for example, [–] and the references therein).

For second-order semilinear elliptic differential equations on bounded domains, Brezis
and Lieb [] obtained an existence result of solutions for a class of elliptic equations with
critical Sobolev nonlinearities by verifying a sub-level which satisfies the Palais-Smale con-
ditions. A global compact result for a semilinear elliptic problem with critical Sobolev non-
linearities on bounded domains was obtained by Struwe []. Pierrotti and Terracini []
studied a class of critical elliptic equations with Neumann boundary conditions through a
compact analysis. Cao and Peng [] got a global compact result for (.) (when p = , s = )
with Dirichlet boundary conditions and showed some new blow-up phenomena. Deng, Jin
and Peng [] got a similar result for the Robin boundary problem of equation (.) (when
p = , s = ). In [], with the Dirichlet boundary conditions of equation (.) (when s 	= ),
they got the global compact result on the whole space and a bounded smooth domain, re-
spectively. For the elliptic differential equations on unbounded domains, there have also
been some global compact results (refer to [, , ]). In this paper, we discuss a general
Robin boundary problem involving critical Hardy terms and critical Sobolev-Hardy terms
with p ≥ ,  ≤ s < p. The different assumptions on the parameter s induce completely dif-
ferent results corresponding to the noncompactness analysis. In addition, the boundary
conditions make great influence on our noncompact analysis. Not only does it change the
form of our limiting equations, but it also adds more limiting equations which induce new
blow-up bubble such as Dμ (see Corollary .) to occur.

The first goal of this paper is a careful analysis of the features of a Palais-Smale sequence
for the corresponding variational functional Fμ(u) of (.). To this aim, following the same
idea adopted by Struwe [] and the main techniques of [], we shall employ the blow-
up technique to characterize all the energy levels where the Palais-Smale condition fails.
More precisely, we shall represent any diverging Palais-Smale sequence as the sum of crit-
ical points of a family of limiting functionals, which are invariant under scaling. In our
problem, due to the Hardy potential, critical Sobolev-Hardy terms, there are some critical
points of a new family of limiting functionals. As a by-product, we shall find the smallest
level where the Palais-Smale condition may fail. Thus we shall be able to determine safe
sublevels where standard critical point theorems can be applied. The second purpose of
this paper is to obtain the existence of critical points for the variational functional of (.)
under different conditions by applying the previous compactness analysis.

To mention our main results, it is convenient to introduce some notations.
Firstly, we denote by Fμ the functional associated to (.):

Fμ(u) =

p

∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx +

p

∫

∂�

α(x)|u|p dσ –


p∗(s)

∫

�

|u|p∗(s)

|x|s dx

+
λ

p

∫

�

|u|p dx –
η

q

∫

�

|u|q dx, u ∈ W ,p(�). (.)
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We denote by λ the smallest positive eigenvalue such that the following problem has a
positive solution:

⎧
⎪⎨

⎪⎩

–�pu – μ
|u|p–u

|x|p = λ|u|p–u, x ∈ �,
|∇u|p– ∂u

∂ν
+ α(x)|u|p–u = , x ∈ ∂�,

u ∈ W ,p(�),
(.)

i.e.,

λ = inf

{∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx +
∫

∂�

α(x)|u|p dσ ;
∫

�

|u|p dx = , u ∈ W ,p(�)
}

. (.)

From Lemma A. in the Appendix, λ can be attained. If μ ≤ , obviously λ > . If
μ ∈ (, μ̄), by Lemma A. in the Appendix of this paper, we have

μ

∫

�

|u|p
|x|p dx ≤

∫

�

|∇u|p + c(ε,μ)
∫

�

|u|p dx

for u ∈ W ,p(�). Hence, for suitably large λ > , we have λ + λ >  for μ ∈ (–∞, μ̄). Now,
for λ > –λ, we define the following norm:

‖u‖ =
[∫

�

(

|∇u|p – μ
|u|p
|x|p + λ|u|p

)

dx +
∫

∂�

α(x)|u|p dσ

] 
p

.

Then, by Lemma A. in the Appendix of this paper, ‖ · ‖ is equivalent to the usual norm
‖ · ‖W ,p(�).

Secondly, we denote Rn
+ := {y = (y, y, . . . , yn–, yn) := (y′, yn) ∈R

n | yn > } with boundary
R

n– = {y | (y′, ) ∈ R
n}. Denote C∞

 (�) = {u ∈ C∞(Rn) | supp u ⊂⊂ �}. The space D,p(�)
is the completion of C∞

 (�) with respect to the norm

‖u‖D,p(�) =
(∫

�

|∇u|p dx
)/p

,

the space D,p(Rn
+) is the space of the restrictions to R

n
+ of elements of D,p(Rn). Recall

p∗(s) = p(n – s)/(n – p) and denote p∗ = p∗() = np
n–p . In the following C and c denote various

generic positive constants. O(ε) denotes a quantity satisfying |O(ε)|/ε ≤ C, o(ε) means
|o(ε)|/ε →  as ε →  and o() is a generic infinitesimal value.

Finally we give the definition of the Palais-Smale sequence as follows: let X be a Banach
space, φ ∈ C(X,R) and c ∈ R. The sequence um ∈ X is called a Palais-Smale sequence of
φ at a level c if

φ(um) → c, φ′(um) →  as m → ∞.

Define

Sμ,s = inf
u∈D,p(Rn)\{}

∫

Rn (|∇u|p – μ
|u|p
|x|p ) dx

(
∫

Rn
|u|p∗(s)

|x|s dx)p/p∗(s)
,
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which plays an important role in our argument. In particular we denote S = S, and Sμ =
Sμ,.

In order to establish the global compactness result for problem (.), it is also convenient
to introduce the problems at infinity corresponding to (.) as follows.

–�pv = |v|p∗–v, v ∈ D,p(
R

n); (.)

–�pv – μ
|v|p–v
|x|p =

|v|p∗(s)–v
|x|s , v ∈ D,p(

R
n); (.)

⎧
⎨

⎩

–�pv = |v|p∗–v, v ∈ D,p(Rn
+),

|∇v|p– ∂v
∂ν

= , on R
n–;

(.)

⎧
⎨

⎩

–�pv – μ
|v|p–v

|x|p = |v|p∗(s)–v
|x|s , v ∈ D,p(Rn

+),

|∇v|p– ∂v
∂ν

= , on R
n–.

(.)

In fact, through scaling and transforming technique, and taking the limit, the Palais-Smale
sequence of (.) can be represent by the solutions of problems (.)-(.) (refer to Theo-
rem .).

All positive solutions of (.) are the well-known (n + )-parameter family of

Uε,y(x) := ε(p–n)/pU

(
x – y

ε

)

,

where

U(x) := c(n)
(
 + |x| p

p–
) p–n

p

for some appropriate constant c(n) > . These solutions are also known to minimize the
Sobolev quotient S, as was shown by Aubin []. Since U(x) is radical symmetric, then

∂U

∂ν

∣
∣
∣
xn=

= –
∂U

∂xn

∣
∣
∣
xn=

= –U ′

(|x|) xn

|x|
∣
∣
∣
xn=

= ,

which means that U(x) is also the solution of (.).
For  < μ < μ̄ and p > s ≥ , Kang in [] showed the existence of the positive solutions

of (.), and the form of the solutions V ε
μ(|x|) := ε

p–n
p Vμ(|x|/ε), where Vμ(x) is the unique

positive radial function in D,p(Rn) which achieves Sμ,s. Moreover,

V ε
μ() =

(
(n – s)(μ̄ – μ)

n – p

) 
p∗(s)–p

, (.)

lim
r→

ra(μ)Vμ(r) = c > , (.)

lim
r→+∞ rb(μ)Vμ(r) = c > , (.)

where r = |x|, c and c are constants depended on p, n. a(μ) and b(μ) are solutions of

 = (p – )τ p – (n – p)τ p– + μ,
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where τ ≥ ,  ≤ μ ≤ μ̄,  ≤ a(μ) < n–p
p < b(μ) < n–p

p– . Of course, V ε
μ(|x|) are also the solu-

tions of (.).
For convenience, we also define the following quantities which will represent the amount

of the functional Fμ(u) carried over by blowing-up bubbles:

D :=
∫

Rn

(

p
|∇U|p –


p∗ Up∗



)

dx =

n

Sn/p,

Dμ :=
∫

Rn

(

p
|∇Vμ|p – μ

V p
μ

|x|p –


p∗(s)
V p∗(s)

μ

|x|s
)

dx =
p – s

(n – s)p
S

n–s
p–s
μ,s .

In order to unify the notations, we shall refer to the solutions of problems (.)-(.) as
critical points of the following family of functionals:

F∞(u) =

p

∫

Rn
|∇u|p dx –


p∗

∫

Rn
|u|p∗

dx, (.)

F∞
μ (u) =


p

∫

Rn

(

|∇u|p – μ
|u|p
|x|p

)

dx –


p∗(s)

∫

Rn

|u|p∗(s)

|x|s dx, (.)

F∞
+ (u) =


p

∫

R
n
+

|∇u|p dx –


p∗

∫

R
n
+

|u|p∗
dx, (.)

F∞
μ,+(u) =


p

∫

R
n
+

(

|∇u|p – μ
|u|p
|x|p

)

dx –


p∗(s)

∫

R
n
+

|u|p∗(s)

|x|s dx. (.)

We shall prove that any diverging Palais-Smale sequence corresponding to (.) can be
represented as sums of scaled critical points of the functionals F∞

μ (u), F∞
μ,+(u) or F∞(u),

F∞
+ (u) by exploiting suitable blow-up arguments.
The first result of this paper is the following global compactness theorem.

Theorem . Let {um} ⊂ W ,p(�) be a Palais-Smale sequence of Fμ(u) at level d > , u is
a critical point of Fμ(u),

ζ (s) =

⎧
⎨

⎩

 if s = ,

 if s 	= .

Then there exist k, k, k ∈N∪ {} such that
(i) um can be decomposed as

um = u +
k∑

j=

r
n–p

p
m,j Uj(rm,jx) + ζ (s)

k+k+k∑

j=k+

r
n–p

p
m,j Uj

(
rm,j(x – xm,j)

)
+ ωm,

where ωm →  in W ,p(�) as m → +∞, and
for j = , . . . , k, rm,j → +∞ as m → +∞,

⎧
⎨

⎩

Uj satisfy (.) if  ∈ �,

Uj satisfy (.) if  ∈ ∂�;
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for j = k + , . . . , k + k, rm,j dist(xm,j, ∂�) → +∞, rm,j|xm,j| → +∞ as m → +∞, Uj

satisfy (.);
for j = k + k + , . . . , k + k + k, rm,j dist(xm,j, ∂�) → c < +∞, rm,j|xm,j| → +∞ as
m → +∞, Uj satisfy (.).

(ii) Fμ(um) can be decomposed as the following:
• for the case that  ∈ ∂�, as m → +∞,

Fμ(um) = Fμ(u) +
k∑

j=

F∞
μ,+(Uj) + ζ (s)

k+k∑

j=k+

F∞(Uj) + ζ (s)
k+k+k∑

j=k+k+

F∞
+ (Uj) + o(),

where

for j = , . . . , k, Uj is a solution of (.);

for j = k + , . . . , k + k, Uj is a solution of (.);

for j = k + k + , . . . , k + k + k, Uj is a solution of (.);

• for the case that  ∈ �, as m → +∞,

Fμ(um) = Fμ(u) +
k∑

j=

F∞
μ (Uj) + ζ (s)

k+k∑

j=k+

F∞(Uj) + ζ (s)
k+k+k∑

j=k+k+

F∞
+ (Uj) + o(),

where

for j = , . . . , k, Uj is a solution of (.);

for j = k + , . . . , k + k, Uj is a solution of (.);

for j = k + k + , . . . , k + k + k, Uj is a solution of (.).

Corollary . Any positive Palais-Smale sequence for Fμ(u) at a level d which is not of
the form kDμ + kD + 

 kD if  ∈ � and the form k
 Dμ + kD + 

 kD if  ∈ ∂� for
k, k, k ∈N∪ {}, gives rise to a nontrivial weak solution of equation (.).

By applying Theorem . and the mountain pass theorem [], we can obtain the follow-
ing existence theorems by proving that Fμ(u) satisfies the geometrical assumptions of the
mountain pass theorem and that the mountain pass level is actually below the compact-
ness threshold quoted in Theorem ..

Theorem . Suppose  ∈ �, p > s > , λ > –λ,  < μ < μ̄, then problem (.) has a positive
solution if

max

{

p,
n

b(μ)
,

p(n – b(μ)p – p)
n – p

}

< q < p∗(s).

Theorem . Suppose  ∈ �, s = , λ > –λ. Then there exists a constant μ∗ ∈ (, μ̄) such
that

() problem (.) has a positive solution if  < μ ≤ μ∗;
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() problem (.) has a positive solution if

μ∗ < μ < μ̄ and max

{

p,
n

b(μ)
,

p(n – b(μ)p – p)
n – p

}

< q < p∗.

Furthermore, μ∗ can be calculated by solving S
n
p = S

n
p
μ .

Remark . For the case that  ∈ ∂�, we cannot obtain the existence of the solutions of
problem (.) since we do not know the explicit form of the attaining functions of Sμ,s.

This paper is organized as follows. In Section , we prove Theorem . by carefully ana-
lyzing the features of a Palais-Smale sequence for Fμ(u). In Section , we apply Theorem .
and the mountain pass theorem [] to obtain the existence of critical points for Fμ(u) un-
der different assumptions on the parameters μ, λ and the fact that  ∈ �. Finally, we put
some preliminaries in the last section as an appendix.

2 Proof of Theorem 1.1
In this section, the features of a Palais-Smale sequence for Fμ(u) will be analyzed by the
blow-up technique adopted by Struwe [] for the Dirichlet problem. To this end, we need
the following lemma.

Lemma . Let {vm}m be a Palais-Smale sequence of Fμ(u) at level d > , and assume that
{vm}m converges weakly but not strongly to zero in W ,p(�).

() For the case s 	= ,
• if  ∈ �, there exists a positive sequence km such that, up to a subsequence,

wm = vm(x) – k
n–p

p
m v(kmx), x ∈ �, (.)

is a Palais-Smale sequence for Fμ(u) in W ,p(�) at level d – p–s
(n–s)p S

n–s
p–s
μ,s , and v solves

(.). Moreover, wm →  weakly in W ,p(�) as m → +∞;
• if  ∈ ∂�, there exists a positive sequence km such that, up to a subsequence,

wm = vm(x) – k
n–p

p
m v(kmx), x ∈ �, (.)

is a Palais-Smale sequence for Fμ(u) in W ,p(�) at level d – p–s
(n–s)p S

n–s
p–s
μ,s , and v solves

(.). Moreover, wm →  weakly in W ,p(�) as m → +∞.
() For the case that s = , then either
• if  ∈ �, there exists a positive sequence km such that, up to a subsequence,

wm = vm(x) – k
n–p

p
m v(kmx), x ∈ �, (.)

is a Palais-Smale sequence for Fμ(u) in W ,p(�) at level d – 
n S

n
p
μ , and v solves (.).

Moreover, wm →  weakly in W ,p(�) as m → +∞;
• if  ∈ ∂�, there exists a positive sequence km such that, up to a subsequence,

wm = vm(x) – k
n–p

p
m v(kmx), x ∈ �, (.)
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is a Palais-Smale sequence for Fμ(u) in W ,p(�) at level d – 
n S

n
p
μ , and v solves (.).

Moreover, wm →  weakly in W ,p(�) as m → +∞;
or there exist sequences ym ∈ �, Km ∈R

+ such that, up to a subsequence,
Case :

wm(x) = vm(x) – K
n–p

p
m v

(
Km(x – ym)

)
, x ∈ �, (.)

is a Palais-Smale sequence for Fμ(u) at level d – 
n S

n
p if limm→+∞ Km dist(ym, ∂�) < +∞.

Moreover, wm →  weakly in W ,p(�) as m → +∞ and v is the solution of (.);
Case :

wm(x) = vm(x) – K
n–p

p
m v

(
Km(x – ym)

)
, x ∈ �, (.)

is a Palais-Smale sequence for Fμ(u) at level d – 
n S

n
p if limm→+∞ Km dist(ym, ∂�) = +∞.

Moreover, wm →  weakly in W ,p(�) and v is the solution of (.).

Proof We only prove the case when  ≤ μ < μ̄ since the proof of the case when μ <  is
similar. By Lemma A. in the Appendix, we deduce that there are positive constants ci

(i = , ) such that

c ≤
∫

�

|∇vm|p dx ≤ c, ∀m ∈N. (.)

From (.), let δ >  be small (will be determined later) such that

lim sup
m→+∞

∫

�

|∇vm|p dx > δ. (.)

Fix m, by the integral absolute continuity, ∀ε > , there exists a constant a >  for any
set E ⊂ � and the measure m(E) < a, then

∫

E
|∇vm|p dx < ε.

Define F(R) =
∫

B(,R)∩�
|∇vm|p dx, then F(R) is a continuous function of R satisfying

lim
R→+∞ F(R) =

∫

�

|∇vm|p dx, lim
R→

F(R) = .

Up to a subsequence, we can choose minimal 
km

>  such that

∫

B(, 
km )∩�

|∇vm|p dx = δ. (.)

We denote by E : W ,p(�) → W ,p(Rn) the extension operator such that

E(v)|� = v,
∥
∥E(v)

∥
∥

W ,p(Rn) ≤ C(�)‖v‖W ,p(�)
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(remember that ∂� ∈ C). For the simplicity of notations, we shall denote by the same
symbol both the function v ∈ W ,p(�) and its extension E(v) ∈ W ,p(Rn). Define

v̄m := k
p–n

p
m vm

(
x

km

)

and �,m :=
{

x ∈ R
n
∣
∣
∣

x
km

∈ �

}

,

then
∫

B(,)∩�,m
|∇ v̄m|p dx = δ. Let us point out that, thanks to (.)-(.), the sequence

{km} is bounded away from zero.
Obviously v̄m ∈ W ,p(�,m) ⊂ D,p(Rn). Moreover,

‖v̄m‖D,p(Rn) = ‖vm‖D,p(Rn) ≤ C(�)‖vm‖W ,p(�) ≤ c.

Up to a subsequence, there exists v ∈ D,p(Rn) such that v̄m → v weakly in D,p(Rn) and
v̄m → v a.e. in R

n as m → +∞. We have either v 	≡  or v ≡ .
Case (I): Assume v 	≡ .
Since vm →  (m → +∞) weakly in W ,p(�) and v̄m → v 	≡  weakly in W ,p(�), we

have km → +∞ (m → +∞).
In this case we claim that v satisfies (.) and the sequence

wm(x) := vm(x) – k
n–p

p
m v(kmx), x ∈ �

is a Palais-Smale sequence for Fμ(u) at level d – p–s
(n–s)p S

n–s
p–s
μ,s .

Since v̄m is bounded in D,p(Rn), then

v̄m → v weakly in D,p(
R

n), W ,p
loc

(
R

n) as m → +∞;

v̄m → v a.e. in R
n as m → +∞;

v̄m → v in Lp∗(s)–
loc

(
R

n, |x|–s) as m → +∞;

v̄m → v in Lp–
loc

(
R

n, |x|–p) as m → +∞;

v̄m → v in Lq
loc

(
R

n),  < q < p∗, as m → +∞.

(.)

If  ∈ �, fix a ball B(x, r) and a test function φ ∈ C∞
 (B(x, r)). Notice that for sufficiently

large m, B(x, r) ⊂ �,m. Then we have

∫

�,m

|∇ v̄m|p–∇ v̄m∇φ dx =
∫

B(x,r)
|∇ v̄m|p–∇ v̄m∇φ dx

→
∫

B(x,r)
|∇v|p–∇v∇φ dx;

∫

�,m

|vm|p∗(s)–vmφ̄m

|x|s dx =
∫

B(x,r)

|vm|p∗(s)–vmφ̄m

|x|s dx →
∫

B(x,r)

|v|p∗(s)–vφ

|x|s dx;

∫

�,m

μ
|v̄m|p–v̄mφ

|x|p dx =
∫

B(x,r)
μ

|v̄m|p–v̄mφ

|x|p dx →
∫

B(x,r)
μ

|v|p–vφ

|x|p dx

(.)

as m → +∞.
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And since km → +∞ as m → +∞, then

λ

kp
m

∫

�,m

φv̄m|v̄m|p– dx =
λ

kp
m

∫

B(x,r)
φv̄m|v̄m|p– dx → ;

η

k
n– n–p

p q
m

∫

�,m

φ|v̄m|q–v̄m dx =
η

k
n– n–p

p q
m

∫

B(x,r)
φ|v̄m|q–v̄m dx → ;


kp–

m

∫

∂�,m

α

(
x

km

)

φv̄m|v̄m|p– dσ = .

(.)

Therefore we have

〈
φ, DF∞

μ

(
v,Rn)〉

=
∫

B(x,r)
|∇v|p–∇v∇φ dx –

∫

B(x,r)

|v|p∗(s)–vφ

|x|s dx –
∫

B(x,r)
μ

|v|p–vφ

|x|p dx

=
∫

�,m

|∇ v̄m|p–∇ v̄m∇φ dx –
∫

�,m

|v̄m|p∗(s)–v̄mφ

|x|s dx –
∫

�,m

μ
|v̄m|p–v̄mφ

|x|p dx

+


kp–
m

∫

∂�,m

α

(
x

km

)

φv̄m|v̄m|p– dσ +
λ

kp
m

∫

�,m

φv̄m|v̄m|p– dx

–
η

k
n– n–p

p q
m

∫

�,m

φ|v̄m|q–v̄m dx + o()

=
∫

�

|∇vm|p–∇vm∇φ̄m dy –
∫

�

|vm|p∗(s)–vmφ̄m

|y|s dy – μ

∫

�

|vm|p–vmφ̄m

|y|p dy

+
∫

∂�

α(y)φ̄mvm|vm|p– dσ + λ

∫

�

|vm|p–vmφ̄m dy

– η

∫

�

φ̄m|vm|q–vm dy + o()
(

let y =
x

km

)

= o() as m → +∞,

where φ̄m(x) = k
n–p

p
m φ(kmx). Since ‖φ‖D,p(B(x,r)) = ‖φ̄m‖W ,p(�) + o(), v solves (.).

If  ∈ ∂�, fix a ball B(x, r) and a test function φ ∈ C∞
 (B(x, r)). Notice that for sufficiently

large m, B(x, r) ∩R
n
+ ⊂ �,m, we have

〈
φ, DF∞

μ

(
v,Rn

+
)〉

=
∫

B(x,r)∩Rn
+

|∇v|p–∇v∇φ dx –
∫

B(x,r)∩Rn
+

|v|p∗(s)–vφ

|x|s dx

–
∫

B(x,r)∩Rn
+

μ
|v|p–vφ

|x|p dx

=
∫

�,m

|∇ v̄m|p–∇ v̄m∇φ dx –
∫

�,m

|v̄m|p∗(s)–v̄mφ

|x|s dx –
∫

�,m

μ
|v̄m|p–v̄mφ

|x|p dx

+


kp–
m

∫

∂�,m

α

(
x

km

)

φv̄m|v̄m|p– dσ +
λ

kp
m

∫

�,m

φv̄m|v̄m|p–v̄m dx
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–
η

k
n– n–p

p q
m

∫

�,m

φ|v̄m|q–v̄m dx + o()

=
∫

�

|∇vm|p–∇vm∇φ̄m dx –
∫

�

|vm|p∗(s)–vmφ̄m

|x|s dx –
∫

�

μ
|vm|p–vmφ̄m

|x|p dx

+
∫

∂�

α(x)φ̄mvm|vm|p– dσ + λ

∫

�

|vm|p–vmφ̄m dx – η

∫

�

φ̄m|vm|q–vm dx + o()

= o() as m → +∞,

where φ̄m(x) = k
n–p

p
m φ(kmx). Since ‖φ‖D,p(B(x,r)) = ‖φ̄m‖W ,p(�) + o(), v solves (.).

By Lemma A. in the Appendix and the invariance of dilation, we have for large m

Fμ(wm) = Fμ(vm) – F∞
μ (v) + o() = d –

p – s
(n – s)p

S
n–s
p–s
μ,s , for  ∈ �,

Fμ(wm) = Fμ(vm) – F∞
+,μ(v) + o() = d –

p – s
(n – s)p

S
n–s
p–s
μ,s , for  ∈ ∂�,

DFμ(wm) →  in W –,p(�).

Also, from k
n–p

p
m v(kmx) →  weakly in W ,p(�) and vm →  weakly in W ,p(�), it is obvious

that wm →  weakly in W ,p(�).
Case (II): Assume v ≡ .
If  ∈ �, let h ∈ C∞

 (B(, )), then we have
∫

Rn

∣
∣∇(v̄mh)

∣
∣p dx

=
∫

Rn
|∇ v̄m|php dx + o()

=
〈
DFμ(v̄m), hpv̄m

〉
+

∫

Rn

μhpv̄p
m

|x|p dx +
∫

Rn

|v̄m|p∗(s)hp

|x|s dx + o()

≤ ppμ

(n – p)p

∫

Rn

∣
∣∇(v̄mh)

∣
∣p dx + S–

,s

(∫

B(,)

|v̄m|p∗(s)

|x|s dx
) p–s

n–s
∫

Rn

∣
∣∇(v̄mh)

∣
∣p dx

+ o() as m → +∞. (.)

Choose δ suitably small, from (.) and the fact that  ≤ μ < (n–p)p

pp , we can find a ∈ (, )
such that

∫

B(,a)
|∇ v̄m|p dx →  as m → +∞. (.)

Thus we have
∫

B(,a)

|v̄m|p
|x|p dx → ,

∫

B(,a)

|v̄m|p∗(s)

|x|s dx →  as m → +∞. (.)

If  ∈ ∂�, define

v̄′
m =

{
vm(x′, xn), xn ≥ ,
vm(x′, –xn), xn < ,
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where x′ = (x, . . . , xn–). Proceeding as to obtain (.), we deduce

∫

B(,a)

∣
∣∇ v̄′

m
∣
∣p dx →  as m → +∞ for some a ∈ (, ),

which implies that

∫

B(,a)∩Rn
+

|∇ v̄m|p dx →  as m → +∞ for some a ∈ (, ).

For p > s > , we can deduce that Case (II) cannot happen.
In fact, if  ∈ �, from (.) and  < p < p∗,  < p∗(s) < p∗, then ∀R > ,

∫

B(,)\B(,a)

|v̄m|p
|x|p dx ≤

∫

B(,)\B(,a)

|v̄m|p
ap dx = o() as m → +∞, (.)

∫

B(,)\B(,a)

|v̄m|p∗(s)

|x|s dx ≤
∫

B(,)\B(,a)

|v̄m|p∗(s)

as dx = o() as m → +∞. (.)

From (.)-(.), we have

∫

B(,)

|v̄m|p
|x|p dx =

∫

B(,)

|v̄m|p∗(s)

|x|s dx = o() as m → +∞. (.)

Since δ > , from (.) there exists a positive constant ā such that km ≥ ā > , thus
B(, 

km
) ⊂ B(, 

ā ). Choose

 < gm ∈ C∞
 (�), supp gm ⊂ B

(

,


km

)

, and gm ≡  in B
(

,


km

)

,

and gm is bounded in C∞
 (�) since vm is the Palais-Smale sequence of Fμ(u), then

〈
F ′

μ(vm), vmgm
〉

= o() as m → +∞ (.)

a.e.

∫

�

|∇vm|p–∇vm∇(vmgm) dx

= μ

∫

�

|vm|pgm

|x|p dx +
∫

�

|vm|p∗(s)gm

|x|s dx –
∫

∂�

α(x)|vm|pgm dx

+ η

∫

�

|vm|qgm dx – λ

∫

|vm|pgm dx. (.)

Since

vm →  weakly in W ,p(�) as m → +∞;

vm →  in Lq(�), Lp(∂�),  < q < p∗, as m → +∞;

vm →  a.e. in � as m → +∞,

(.)
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then from (.)-(.) we have

∫

B(, 
km )

|∇vm|p dx

≤
∫

�

|∇vm|p dx

≤
∫

�

|∇vm|p–|vm||∇gm|dx + |λ|
∫

�

|vm|p|gm|dx

+ c
∫

B(, 
km )

|vm|p
|x|p dx + c

∫

B(, 
km )

|vm|p∗(s)

|x|s dx + c
∫

∂�

α(x)|vm|p dx + cη
∫

�

|vm|q dx

≤ c
(∫

�

|∇vm|p dx
) p–

p
(∫

�

|vm|p dx
) 

p
+ c

∫

B(,)

|v̄m|p
|x|p dx

+ c
∫

B(,)

|v̄m|p∗(s)

|x|s dx + o()

= o() as m → +∞, (.)

where c is a positive constant. Then we have

‖vm‖D,p(B(, 
km )) = ‖v̄m‖D,p(B(,)) = o() as m → +∞, (.)

which contradicts (.).
If  ∈ ∂�, similarly as (.), (.), we have

∫

B(,)\B(,a)

|v̄′
m|p

|x|p dx = o() as m → +∞, (.)

∫

B(,)\B(,a)

|v̄′
m|p∗(s)

|x|s dx = o() as m → +∞, (.)

then we obtain (.).
Thus

‖vm‖D,p(B(, 
km )∩�) = o() as m → +∞,

which contradicts (.).
For the case that s = , we denote v̄m by zm.
Denote by

Qm() = sup
x∈�,m

∫

B(x,r)
|∇zm|p dx

the concentration function of zm. From (.), (.) we can choose xm ∈ �̄m, rm ∈ R and
define

z̄m(x) := r
p–n

p
m zm

(
x

rm
+ xm

)



Jin and Li Boundary Value Problems  (2015) 2015:185 Page 14 of 27

so that

Q̄m() = sup
x

rm +xm∈�,m

∫

B(x,)
|∇ z̄m|p dx =

∫

B(,)
|∇ z̄m|p dx = δ ≤ 

L
S

n
p
μ , (.)

where  < δ < δ, L denotes the least number of balls with radius  in R
n that are needed

to cover a ball of radius .
Note that there exists a constant b >  such that rm ≥ b. Set

�̃m :=
{

x ∈R
n
∣
∣
∣

x
rm

+ xm ∈ �,m

}

.

We may assume z̄m ∈ D,p(Rn). Moreover, {z̄m} is bounded uniformly in D,p(Rn). Thus, up
to a subsequence,

z̄m → v̄ weakly in D,p(
R

n) as m → +∞.

We are going to prove that the convergence actually holds in the strong W ,p
loc (Rn) sense.

Since C∞
 (Rn)∩W ,p

loc (Rn) is dense in W ,p
loc (Rn), then without loss of generality we can as-

sume that v̄m – v̄ ∈ C∞
 (Rn)∩W ,p

loc (Rn). Let x be a fixed point of Rn, from Proposition .
in [], we can find ρ ∈ [, ] such that the solution w̄m of the Dirichlet problem

⎧
⎨

⎩

�pw =  in B(x, )\B(x,ρ),

w|∂B(x,ρ) = v̄m – v̄, w|∂B(x,) = 
(.)

satisfies the following conditions:

w̄m →  in W ,p(B(x, )\B(x,ρ)
)

as m → +∞. (.)

Define

ϕm =

⎧
⎪⎪⎨

⎪⎪⎩

v̄m – v̄ in B(x,ρ),

w̄m in B(x, )\B(x,ρ),

 in R
n\B(x, ).

(.)

It follows from the above equation that ‖ϕm‖Lp(Rn) →  as m → +∞. Now, scaling back
the function ϕm,

ϕ̄m = r
n–p

p
m ϕm

(
rm(x – xm)

)
,

then there exists a constant β >  such that supp ϕ̄m ⊂ B(x,β) ⊂ �,m for m large.
Taking into account (.), (.) and (.), letting m → +∞, we have

‖∇ϕ̄m‖p
Lp(B(x,β)) – ‖ϕm‖p

D,p(Rn) – ‖z̄m – v̄‖p
D,p(B(x,ρ)) → . (.)

By scale invariance and the fact that {zm} is a Palais-Smale sequence for Fμ(u), it follows
that

〈
DFμ,m(z̄m),ϕm

〉
=

〈
DFμ(zm), ϕ̄m

〉
+ o() = o(),
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where

Fμ,m(v̄) =

p

∫

�̃m

(

|∇ v̄|p – μ
|v̄|p

|x + rmxm|p
)

dx +


prp–
m

∫

∂�̃m

α

(

xm +
x

rm

)

|v̄|p dσ

–


p∗

∫

�̃m

|v̄|p∗
dx –

η

qr
n– n–p

p q
m

∫

�̃m

|v̄|q dx +
λ

prp
m

∫

�̃m

|v̄|p dx.

Therefore, from the definitions of Fμ,m, ϕm and (.), we have

o() =
∫

�̃m∩B(x,ρ)

[

|∇ z̄m|p–∇ z̄m∇(z̄m – v̄) – μ
|z̄m|p–z̄m(z̄m – v̄)

|x + rmxm|p
]

dx

–
∫

�̃m∩B(x,ρ)
|z̄m|p∗–z̄m(z̄m – v̄) dx + o()

=
∫

�̃m∩B(x,ρ)

(
∣
∣∇(z̄m – v̄)

∣
∣p – μ

|z̄m – v̄|p
|x + rmxm|p

)

dx

–
∫

�̃m∩B(x,ρ)
|z̄m – v̄|p∗

dx + o()

=
∫

�̃m

(

|∇ϕm|p – μ
|ϕm|p

|x + rmxm|p
)

dx –
∫

�̃m

|ϕm|p∗
dx + o().

Moreover, by scale invariance and

∫

B(x,β)
|ϕ̄m|p dx =

∫

�,m

|ϕ̄m|p dx =


rp
m

∫

Rn
|ϕm|p dx = o() as m → +∞,

o() =
∫

�,m

(

|∇ϕ̄m|p – μ
|ϕ̄m|p
|x|p

)

dx –
∫

�,m

|ϕ̄m|p∗
dx

≥
∫

�,m

(

|∇ϕ̄m|p – μ
|ϕ̄m|p
|x|p

)

dx
(

 –
‖ϕ̄m‖p∗

Lp∗ (�,m)
∫

�,m
(∇ϕ̄m|p – μ

|ϕ̄m|p
|x|p ) dx

)

≥
∫

�,m

(

|∇ϕ̄m|p – μ
|ϕ̄m|p
|x|p

)

dx
(

 –
‖∇ϕ̄m‖p∗–p

Lp(�,m)

S
p∗
p

μ

)

≥
∫

�,m

(

|∇ϕ̄m|p – μ
|ϕ̄m|p
|x|p

)

dx
(

 –
‖∇(z̄m – v̄)‖p∗–p

Lp(B(x,ρ))

S
p∗
p

μ

)

. (.)

Let us cover B(x,ρ) with L balls of radius one, from (.) then

∥
∥∇(z̄m – v̄)

∥
∥p

Lp(B(x,ρ)) ≤ ‖∇ z̄m‖p
Lp(B(x,ρ)) + o()

≤ L‖∇ z̄m‖p
Lp(B(,)) + o() ≤ 


Sn/p

μ + o(), (.)

so that (.) and (.) yield

‖ϕ̄m‖W ,p(B(x,β)) = ‖ϕ̄m‖W ,p(�,m) →  as m → +∞.
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Finally, using again the properties of the extension operator, we obtain from (.)

‖ϕ̄m‖p
W ,p(B(x,β)) ≥ 

Cp ‖ϕ̄m‖p
W ,p(Rn)

=


Cp ‖ϕm‖p
W ,p(Rn) + o()

=


Cp ‖z̄m – v̄‖p
W ,p(B(x,ρ)) + o() as m → +∞,

where C is a positive constant depending on the domain B(x,β). Therefore

∀x ∈R
n, ‖z̄m – v̄‖W ,p(B(x,ρ)) → .

Since
∫

B(,) |∇ z̄m|p dx = δ > , we have v̄ 	≡ . Hence by local properties of the extension
operator, we have that v̄|�̃m � . Since zm →  weakly in D,p(Rn), we also have rm → +∞
as m → +∞.

Now, using the result of Case (I), we have

z̄m(x) = r
p–n

p
m v̄m

(
x

rm
+ xm

)

= (rmkm)
p–n

p vm

(
x

rmkm
+

xm

km

)

.

Define Km = rmkm, ym = xm/km; then ym → y ∈ �, Km|ym| = rm|xm|. By (.) we have
|xm| > a > , so Km|ym| → +∞. Also, by the fact that {km} is bounded away from zero,

Km → +∞ (as m → +∞). Then �̃m = {x ∈R
n| x

Km
+ ym ∈ �}, v̄m = K

p–n
p

m vm( x
Km

+ ym).
Since we have

∫

�̃m
|z̄m|p– z̄mφ

|x+Kmym|p dx = o() for large m and any given φ ∈ C∞
 (B(x, r)), we can

proceed our proof as follows.
() For the case when limm→+∞ Km dist(ym, ∂�) = +∞ uniformly, we claim that v̄ solves

(.). Indeed, for a fixed ball B(x, r) and a test function φ ∈ C∞
 (B(x, r)) and for sufficiently

large m, B(x, r) ⊂ �̃m. Therefore, we have

〈
φ, DF∞(

v̄,Rn)〉

=
∫

B(x,r)
|∇ v̄|p–∇ v̄∇φ dx –

∫

B(x,r)
|v̄|p∗–v̄φ dx

=
∫

�̃m

|∇ z̄m|p–∇ z̄m∇φ dx –
∫

�̃m

|z̄m|p∗–z̄mφ dx –
∫

�̃m

μ
|z̄m|p–z̄mφ

|x + Kmym|p dx

–
η

K
n– n–p

p q
m

∫

�̃m

φ|z̄m|q–z̄m dx +


Kp–
m

∫

∂�̃m

α

(
x

Km
+ ym

)

φz̄m|z̄m|p– dσ

+
λ

Kp
m

∫

�̃m

|z̄m|p–z̄mφ dx + o()

=
∫

�

|∇vm|p–∇vm∇φ̄m dx –
∫

�

|vm|p∗–vmφ̄m dx –
∫

�

μ
|vm|p–vmφ̄m

|x|p dx

+
∫

∂�

α(x)φ̄mvm|vm|p– dσ – η

∫

�

φ̄m|vm|q–vm dx + λ

∫

�

|vm|p–vmφ̄m dx + o()

= o() as m → +∞,

where φ̄m(x) = K
n–p

p
m φ(Km(x – ym)).
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() For the case when limm→+∞ Km dist(ym, ∂�) → c < +∞, we claim that v̄ solves (.).
Indeed, fix a ball B(x, r) and a test function φ ∈ C∞

 (B(x, r)) and note that, for sufficiently
large m, B(x, r) ∩R

n
+ ⊂ �̃m we have

〈
φ, DF∞


(
v̄,Rn

+
)〉

=
∫

B(x,r)∩Rn
+

|∇ v̄|p–∇ v̄∇φ dx –
∫

B(x,r)∩Rn
+

|v̄|p∗–v̄φ dx

=
∫

�̃m

|∇ z̄m|p–∇ z̄m∇φ dx –
∫

�̃m

|z̄m|p∗–z̄mφ dx –
∫

�̃m

μ
|z̄m|p–z̄mφ

|x + Kmym|p dx

–
η

K
n– n–p

p q
m

∫

�̃m

φ|z̄m|q–z̄m dx +


Kp–
m

∫

∂�̃m

α

(
x

Km
+ ym

)

φz̄m|z̄m|p– dσ

+
λ

Kp
m

∫

�̃m

|z̄m|p–z̄mφ dx + o()

=
∫

�

|∇vm|p–∇vm∇φ̄m dx –
∫

�

|vm|p∗–vmφ̄m dx –
∫

�

μ
|vm|p–vmφ̄m

|x|p dx

+
∫

∂�

α(x)φ̄mvm|vm|p– dσ – η

∫

�

φ̄m|vm|p–vm dx + λ

∫

�

vmφ̄m dx + o()

= o() as m → +∞,

where φ̄m(x) = K
n–p

p
m φ(Km(x – ym)).

Define

wm(x) = vm(x) – K
n–p

p
m v̄

(
Km(x – ym)

)
.

For the case that limm→+∞ Km dist(ym, ∂�) = c < +∞, we have that v̄ is a weak solution of
equation (.) and wm is a Palais-Smale sequence of Fμ(u) at level d – 

n S
n
p . For the case

that limm→+∞ Km dist(ym, ∂�) = +∞, we have that v̄ is a weak solution of equation (.)
and wm is a Palais-Smale sequence of Fμ(u) at level d – 

n S
n
p .

This concludes the proof of Lemma .. �

Now, we are going to complete the proof of Theorem ..

Proof of Theorem . By applying Lemma ., Lemmas A.-A. recursively, the iteration
must stop after a finite number of steps; moreover, the last Palais-Smale sequence must
strongly converge to zero. Hence we prove parts (i) and (ii).

As a consequence, we finish the proof of Theorem .. �

3 The proofs of existence results
In this section, we shall apply Theorem . and the mountain pass theorem [] to obtain
the existence of critical points for Fμ(u) under different assumptions on the parameters μ,
λ and the fact that  ∈ � or  ∈ ∂�. For convenience, we only consider the case of α(x) = .

Lemma . For λ > –λ, Fμ(u) satisfies the geometry structure of the mountain pass theo-
rem.
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By Lemma A. in the Appendix, the proof of Lemma . can be completed easily.
Define

cμ =: inf
γ∈�

sup
t∈[,]

Fμ

(
γ (t)

)
,

where � = {γ ∈ C([, ], W ,p(�)) : γ () = ,γ () = ψ ∈ W ,p(�)}. The ψ is chosen such
that Fμ(tψ) ≤  for all t ≥ .

According to Theorem ., we easily have the following.

Proposition . For the case that s 	= , the following two statements are true:
() Suppose  ∈ �, μ ∈ (, μ̄) and λ > –λ. If

 < cμ <
p – s

(n – s)p
S

n–s
p–s
μ,s , (.)

then (.) has a positive solution satisfying Fμ(u) ≤ cμ.
() Suppose  ∈ ∂�, μ ∈ (, μ̄) and λ > –λ. If

 < cμ <
p – s

(n – s)p
S

n–s
p–s
μ,s , (.)

then (.) has a positive solution satisfying Fμ(u) ≤ cμ.

Proposition . For the case that s = , the following two statements are true:
() Suppose  ∈ �, μ ∈ (, μ̄) and λ > –λ. If

 < cμ < min

{


n
S

n
p ,


n

S
n
p
μ

}

, (.)

then (.) has a positive solution satisfying Fμ(u) ≤ cμ.
() Suppose  ∈ ∂�, μ ∈ (, μ̄) and λ > –λ. If

 < cμ <


n
S

n
p
μ , (.)

then (.) has a positive solution satisfying Fμ(u) ≤ cμ.

Proof of Theorem . By Proposition ., we only need to prove that cμ < p–s
(n–s)p S(n–s)/(p–s)

μ,s .
Let ϕ(x) ∈ C∞

 (�), ϕ(x) =  for |x| ≤ R, ϕ(x) =  for |x| ≥ R, where B(, R) ⊂ �. Set vε(x) =
ϕ(x)V ε

μ(x), we only need to verify

max
t>

Fμ(tvε) <
p – s

(n – s)p
S(n–s)/(p–s)

μ,s . (.)

It is easy to get the following estimates (Lemma . in []):

∫

�

(

|∇vε|p – μ
|vε|p
|x|p

)

dx = S(n–s)/(p–s)
μ,s + O

(
εb(μ)p+p–n); (.)

∫

�

|vε|p∗(s)

|x|s dx = S(n–s)/(p–s)
μ,s + O

(
εb(μ)p∗(s)–n+s); (.)
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∫

�

|vε|p dx =

⎧
⎪⎪⎨

⎪⎪⎩

O(εb(μ)p+p–n), p < n
b(μ) ,

O(εp| log ε|), p = n
b(μ) ,

O(εp), p > n
b(μ) ;

(.)

∫

�

|vε|q dx =

⎧
⎪⎪⎨

⎪⎪⎩

O(ε(b(μ)+– n
p )q), q < n

b(μ) ,

O(εn+(– n
p )q| log ε|), q = n

b(μ) ,

O(εn+(– n
p )q), q > n

b(μ) .

(.)

Since max{p, n
b(μ) , p(n–b(μ)p–p)

n–p } < q < p∗(s) and from (.), we have
∫

�

|vε|q dx = O
(
ε

n+(– n
p )q), O

(
εp) + O

(
εp| log ε|) + O

(
εb(μ)p+p–n) = o

(
ε

n+(– n
p )q). (.)

Similar as the proof of Lemma . in [], let tε be the attaining point of maxt> Fμ(tvε),
we claim tε is uniformly bounded for ε >  small. In fact, we consider the function

g(t) = Fμ(tvε) =
tp

p

∫

�

(

|∇vε|p – μ
|vε|p
|x|p

)

dx –
tp∗(s)

p∗(s)

∫

�

|vε|p∗(s)

|x|s dx

+
tp

p

∫

�

λ|vε|p dx – η
tq

q

∫

�

|vε|q dx.

Since limt→+∞ g(t) = –∞ and g(t) >  when t is close to , so that maxt> g(t) is attained
for tε > . Then

g ′(tε) = tp–
ε

∫

�

(

|∇vε|p – μ
|vε|p
|x|p + λ|vε|p

)

dx

– tp∗(s)–
ε

∫

�

|vε|p∗(s)

|x|s dx – ηtq–
ε

∫

�

|vε|q dx = . (.)

Since η > , from (.)-(.) and (.), for ε sufficiently small, we have

tp∗(s)–p
ε <

∫

�
(|∇vε|p – μ

|vε |p
|x|p + λ|vε|p) dx

∫

�

|vε |p∗(s)

|x|s dx
< . (.)

Thus from (.), (.), (.), p < q < p∗(s) and for ε sufficiently small,
∫

�

(

|∇vε|p – μ
|vε|p
|x|p + λ|vε|p

)

dx

≤ tp∗(s)–p
ε

∫

�

|vε|p∗(s)

|x|s dx + 
q–p

p∗(s)–p η

∫

�

|vε|q dx

≤ tp∗(s)–p
ε

∫

�

|vε|p∗(s)

|x|s dx +



∫

�

(

|∇vε|p – μ
|vε|p
|x|p + λ|vε|p

)

dx. (.)

By (.)-(.), (.) and choosing ε small enough, we have

tp∗(s)–p
ε ≥



∫

�
(|∇vε|p – μ

|vε |p
|x|p + λ|vε|p) dx

∫

�

|vε |p∗(s)

|x|s dx
>




. (.)

Thus tε is uniformly bounded for ε >  small enough.
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Then from (.)-(.), (.) and (.), for ε sufficiently small, we have

max
t>

Fμ(tvε) = Fμ(tεvε)

≤ max
t>

{
tp

p

∫

�

(

|∇vε|p – μ
|vε|p
|x|p

)

dx –
tp∗(s)

p∗(s)

∫

�

|vε|p∗(s)

|x|s dx
}

+
tp
ε

p

∫

�

λ|vε|p dx – η
tq
ε

q

∫

�

|vε|q dx

=
p – s

(n – s)p
S

n–s
p–s
μ,s + O

(
εb(μ)p+p–n) – O

(
εb(μ)p∗(s)–n+s)

– η

⎧
⎪⎪⎨

⎪⎪⎩

O(ε(b(μ)+– N
p )q), q < n

b(μ) ,

O(εn+(– n
p )q| log ε|), q = n

b(μ) ,

O(εn+(– n
p )q), q > n

b(μ)

+ λ

⎧
⎪⎪⎨

⎪⎪⎩

O(εb(μ)p+p–n), p < n
b(μ) ,

O(εp| log ε|), p = n
b(μ) ,

O(εp), p > n
b(μ)

<
p – s

(n – s)p
S

n–s
p–s
μ,s

(
by (.)

)
,

which completes the proof of Theorem .. �

Proof of Theorem . Since S = S, limμ→μ̄ Sμ =  and Sμ is continuous with respect to μ,

we deduce that there exists μ∗ ∈ (, μ̄) such that 
 S

n
p ≤ S

n
p
μ for  < μ ≤ μ∗ and 

 S
n
p > S

n
p
μ

for μ∗ < μ < μ̄. From this fact, we can define μ∗ as above.
() By Proposition . and the definition of μ∗, it suffices to prove

cμ <


n
S

n
p . (.)

Let B(x, r) be a ball containing �, ∂B(x, r) ∩ ∂� 	= ∅, x ∈ ∂B(x, r) ∩ ∂�. Then without loss
of generality we may suppose that � ⊂ {x ∈ R

n, xn > xn
}, where x = (x

 , x
, . . . , x

n). Since
μ > , η > , we have

max
t>

Fμ

(
tUε

x

) ≤ yε := max
t>

{
tp

p

∫

�

(∣
∣∇Uε

x

∣
∣p + λ

∣
∣Uε

x

∣
∣p)dx –

tp∗

p∗

∫

�

∣
∣Uε

x

∣
∣p∗

dx
}

,

and by Lemma . in [], we have

yε <


n
Sn/p. (.)

It follows from the definition of cμ and (.) that (.) holds.
() For the case that μ∗ < μ < μ̄, let vε and tε be defined as in the proof of Theorem ..

Since μ > , η > , we have

max
t>

Fμ(tvε) = Fμ(tεvε)

≤ max
t>

{
tp

p

∫

�

(

|∇vε|p – μ
|vε|p
|x|p

)

dx –
tp∗

p∗

∫

�

|vε|p∗
dx

}

+
tp
ε

p

∫

�

λ|vε|p dx – η
tq
ε

q

∫

�

|vε|q dx
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≤ max
t>

{
tp

p

∫

�

|∇vε|p dx –
tp∗

p∗

∫

�

|vε|p∗
dx

}

+
tp
ε

p

∫

�

λ|vε|p dx – η
tq
ε

q

∫

�

|vε|q dx.

By a similar argument as in the proof of (.) for the special case s = , μ = , we have

cμ <

n

S
n
p .

The proof of Theorem . is complete. �

Appendix
In this appendix, we give some lemmas and detailed proofs for the convenience of the
reader. In the following, assume that � ⊂R

n is a bounded domain and ∂� ∈ C.

Lemma A. Define

λ = inf

{∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx +
∫

∂�

α(x)|u|p dσ ;
∫

�

|u|p dx = , u ∈ W ,p(�)
}

, (A.)

then λ is obtained.

Proof Let {um} be the minimizing sequence for λ. That is,

lim
m→+∞

∫

�

(

|∇um|p – μ
|um|p
|x|p

)

dx +
∫

∂�

α(x)|um|p dx = λ,
∫

�

|um|p dx = .

By the Sobolev-Hardy inequality, and μ ≤ μ̄, α(x) ≥ , we have

∫

�

(

|∇um|p – μ
|um|p
|x|p

)

dx +
∫

∂�

α(x)|um|p dx ≥
(

 –
μ

μ̄

)∫

�

|∇um|p dx ≥ .

Then um is bounded in W ,p(�), there exists u ∈ W ,p(�) such that, up to a subsequence
still denoted by um,

um → u weakly in W ,p(�) as m → +∞.

By the Sobolev imbedding theorem we have

um → u in Lp(�) and Lp(∂�) as m → +∞,

um → u a.e. in � as m → +∞.

Thus by the Fatou lemma we have

∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx +
∫

∂�

α(x)|u|p dx

≤ lim
m→+∞

[∫

�

(

|∇um|p – μ
|um|p
|x|p

)

dx +
∫

∂�

α(x)|um|p dx
]

. (A.)



Jin and Li Boundary Value Problems  (2015) 2015:185 Page 22 of 27

And since limm→∞
∫

�
|um|p dx =

∫

�
|u|p dx, from (A.) (A.), the proof of the lemma is

complete. �

Lemma A. For any δ > , there exists a constant C = C(δ) >  such that

∫

�

|u|p
|x|p dx ≤

(

μ̄

+ δ

)∫

�

|∇u|p dx + C(δ)
∫

�

|u|p dx

for u ∈ W ,p(�).

Proof The proof is similar to that in []. Here for convenience we give the details of the
proof. For y ∈R

n, denote the unit ball centered at y by B(y) and domain

D = B(y) ∩ {
xn > h

(
x′)},

where h(x′) is a C function defined in {x′ ∈R
n– : |x′ – y′| < } with yn = h(y, . . . , yn–) and

∇h vanishing at y′ = (y, . . . , yn–), h ≥ . Employing similar arguments in Lemma . of
[], it can be proved that if u ∈ W ,p(D) with supp u ∈ B(y), then ∀ε > , there exists a
constant r >  depending on ε such that

∫

D

|u|p
|x|p dx ≤

(

μ̄

+ ε

)∫

D
|∇u|p dx (A.)

provided |∇h| ≤ r. In fact, if h ≡ ,

∫

D
|∇u|p dx =




∫

B(y)
|∇u|p dx ≥ μ̄



∫

B(y)

|u|p
|x|p dx = μ̄

∫

D

|u|p
|x|p dx. (A.)

If h ≥ , h 	≡ , make the coordinate transformation

z′ = x′, zn = xn – h
(
x′), (A.)

which straightens the bottom of D, and write z = F(x), then

∂zi u(x) = ∂xi u(x) + ∂xn u(x)∂xi h
(
x′), i = , , n – ,

∣
∣∂zi u(x)

∣
∣ =

∣
∣∂xi u(x)

∣
∣ +

∣
∣∂xn u(x)∂xi h

(
x′)∣∣ + 

∣
∣∂xn u(x)∂xi u(x)∂xi h

(
x′)∣∣,

∣
∣∇zu(x)

∣
∣ ≤ ∣

∣∇xu(x)
∣
∣ + |∇h|∣∣∇xu(x)

∣
∣,

|z| ≤ |x|.

Denote D = F(D), then we have

∫

D
|∇u| dx ≥ (

 – |∇h|)
∫

D

|∇zu| dz

≥ (
 – |∇h|)μ̄

∫

D

|u|p
|z|p dz ≥ (

 – |∇h|)μ̄
∫

D

|u|p
|x|p dx. (A.)

Then (A.) is obtained provided |∇h| ≤ r.
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Let ε be a small positive constant to be determined later, and let (ϕk)m
k= be a partition of

unity on � with diam(suppϕk) ≤ r for each k, where diam(suppϕk) is the diameter of the
domain suppϕk . From (A.), we see

∫

�

|ϕku|p
|x|p dx ≤

(

μ̄

+ ε

)∫

�

∣
∣∇(ϕku)

∣
∣p dx, ∀ ≤ k ≤ m, u ∈ W ,p(�)

for sufficiently small r. Hence

∫

�

|u|p
|x|p dx ≤

∫

�

m∑

k=

ϕk
|u|p
|x|p dx ≤

(

μ̄

+ ε

) m∑

k=

∫

�

∣
∣∇(

ϕ

p

k u
)∣
∣p dx

≤
(


μ̄

+ ε

) m∑

k=

∫

�

ϕk

(

|∇u|p + C
p∑

j=

|∇u|p–j + C|u|p
)

dx

≤
(


μ̄

+ ε

)[

( + ε)
∫

�

|∇u|p dx + C(ε)
∫

�

|u|p dx
]

.

As a consequence, by choosing ε appropriately, we obtain the desired result. �

Lemma A. For λ > –λ, the norm

‖u‖ =
[∫

�

(

|∇u|p – μ
|u|p
|x|p + λ|u|p

)

dx +
∫

∂�

α(x)|u|p dσ

] 
p

is equivalent to ‖ · ‖W ,p(�).

Proof For simplicity, we suppose α(x) ≡ . We only consider the case  < μ < μ̄ since the
case μ ≤  is similar.

First we have

∫

�

(

|∇u|p – μ
|u|p
|x|p + λ|u|p

)

dx ≥ (λ + λ)
∫

�

|u|p dx, ∀u ∈ W ,p(�).

By Lemma A., we deduce that for all u ∈ W ,p(�),

C(δ)μ
λ + λ

∫

�

(

|∇u|p – μ
|u|p
|x|p + λ|u|p

)

dx ≥ C(δ)μ
∫

�

|u|p dx

≥ μ

∫

�

|u|p
|x|p dx – μ

(

μ̄

+ δ

)∫

�

|∇u|p dx.

Hence, for δ >  small enough,

(

 +
C(δ)μ
λ + λ

)∫

�

(

|∇u|p – μ
|u|p
|x|p + λ|u|p

)

dx

≥
[

 – μ

(

μ̄

+ δ

)]∫

�

|∇u|p dx + λ

∫

�

|u|p dx

≥ c
∫

�

|∇u|p dx + c
∫

�

|u|p dx,
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which implies that

‖u‖ ≥ c‖u‖W ,p(�)

for some c > .
On the other hand, it is easy to check that

‖u‖ ≤ C‖u‖W ,p(�)

for some C > . As a result, we complete the proof. �

Lemma A. Let {um}m be a Palais-Smale sequence for Fμ(u) at level d ∈ R. Then {um}m

is bounded in W ,p(�). Moreover, every Palais-Smale sequence for Fμ(u) at a level zero
converges strongly to zero.

Proof Since {um}m is a Palais-Smale sequence for Fμ(u) at level d ∈R, we have

d + o() = Fμ(um) –

p
〈
F ′

μ(um), um
〉

=
(


p

–


p∗(s)

)∫

�

|um|p∗(s)

|x|s dx +
(


p

–

q

)∫

�

|um|q dx. (A.)

Hence

∫

�

|um|p∗(s)

|x|s dx ≤ C,
∫

�

|um|q dx ≤ C,

since q, p∗(s) > p.
As a result, by Lemma A.,

‖um‖p
W ,p(�) ≤ c‖um‖p = pcd +

pc
p∗(s)

∫

�

|um|p∗(s)

|x|s dx +
pc
q

∫

�

|um|q dx + o() ≤ C. (A.)

Take d = , from (A.) then

∫

�

|um|p∗(s)

|x|s dx → ,
∫

�

|um|q dx → , as m → +∞

and from (A.), we have ‖um‖p
W ,p(�) → , the lemma is complete. �

Let {um}m be a Palais-Smale sequence of Fμ(u), we shall assume that, up to a subse-
quence,

um → u weakly in W ,p(�) as m → +∞. (A.)

Then we have the following lemma.

Lemma A. DFμ(u) = .
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Proof We have to prove that 〈v, DFμ(u)〉 =  for every v ∈ W ,p(�) as m → +∞. Since
∂� ∈ C, it is enough to prove that the above relation holds for every restriction to � of a
C∞

 (Rn) function φ.
From (A.), the Sobolev imbedding theorem and Lemma .() in [], we have as

m → +∞

∇um → ∇u weakly in Lp(�),

um → u in Lp∗(s)–(�, |x|–s),

um → u in Lp–(�, |x|–p),

um → u in Lp–(∂�),

um → u in Lq(�) for  < q < p∗,

then

〈
φ, DFμ(um)

〉
=

∫

�

(

|∇um|p–∇um∇φ – μ
um|um|p–φ

|x|p
)

dx –
∫

�

um|um|p∗(s)–φ

|x|s dx

– η

∫

�

|um|q–umφ dx + λ

∫

�

|um|p–umφ dx +
∫

∂�

α(x)|um|p–umφ dx

→ 〈
φ, DFμ(u)

〉
as m → +∞,

i.e.,

 = lim
m→+∞

〈
φ, DFμ(um)

〉
=

〈
φ, DFμ(u)

〉
. �

Put ym = um – u, then ym →  weakly in W ,p(�). Then we have the following lemma.

Lemma A. {ym}m is a Palais-Smale sequence for Fμ(u) at level d = d – Fμ(u).

Proof Since um is bounded in W ,p(�), by the Sobolev-Hardy inequality
∫

�

|um|p∗(s)

|x|s dx,
∫

�

|um|p
|x|p dx is bounded. That is, um is bounded in Lp∗(s)(�, |x|–s), Lp(�, |x|–p). And as

m → +∞

um → u weakly in W ,p(�),

um → u in Lp(�),

um → u a.e. in �.

By the Brezis and Lieb lemma [] we obtain, as m → +∞,

∫

�

|ym|p∗(s)

|x|s dx =
∫

�

|um|p∗(s)

|x|s dx –
∫

�

|u|p∗(s)

|x|s dx + o(), (A.)
∫

�

|ym|p
|x|p dx =

∫

�

|um|p
|x|p dx –

∫

�

|u|p
|x|p dx + o(). (A.)
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Similarly,

∫

�

|∇ym|p dx =
∫

�

|∇um|p dx –
∫

�

|∇u|p dx + o(), (A.)
∫

�

|ym|q dx =
∫

�

|um|q dx –
∫

�

|u|q dx + o(), ∀p ≤ q ≤ p∗(s), (A.)
∫

∂�

|ym|p dσ =
∫

∂�

|um|p dσ –
∫

∂�

|u|p dσ + o(). (A.)

From (A.)-(A.), we obtain Fμ(ym) = Fμ(um) – Fμ(u) + o() = d – Fμ(u) + o(). On the
other hand, for any test function v ∈ W ,p(�),

∫

�

|ym|p∗(s)–ymv
|x|s dx =

∫

�

|um|p∗(s)–umv
|x|s dx –

∫

�

|u|p∗(s)–uv
|x|s dx + o(),

∫

�

|ym|q–ymv dx =
∫

�

|um|q–umv dx –
∫

�

|u|quv dx + o(), ∀p ≤ q < p∗(s),
∫

∂�

|ym|p–ymv dσ =
∫

∂�

|um|p–umv dσ –
∫

∂�

|u|p–uv dσ + o(),

∫

�

|ym|p–ymv
|x|p dx =

∫

�

|um|p–umv
|x|p dx –

∫

�

|u|p–uv
|x|p dx + o(),

∫

�

|∇ym|p–∇ym∇v dx =
∫

�

|∇um|p–∇um∇v dx –
∫

�

|∇u|p–∇u∇v dx + o(),

that is, 〈v, DFμ(ym)〉 = 〈v, DFμ(um)〉– 〈v, DFμ(u)〉 = o(), thus we complete the proof of the
lemma. �
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