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Abstract
We study the existence of fast homoclinic solutions for a kind of ordinary p-Laplacian
system

(FHS)
d

dt
(
∣
∣u̇(t)

∣
∣
p–2

u̇(t)) + c
∣
∣u̇(t)

∣
∣
p–2

u̇(t) +∇F(t,u) = 0,

where u ∈ R
n, 1 < p ≤ 2 and c ≥ 0 are constants and F(t,u) ∈ C1(R×R

n,R).
Furthermore, in some particular case, the uniqueness of fast homoclinic solutions of
(FHS) is also obtained. Recent results in the literature are generalized and improved.
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1 Introduction
In papers [] and [], Arias et al. firstly introduced the concept of fast heteroclinic solutions
for the following second-order ODE:

u′′ + cu + f (u) =  (.)

satisfying the boundary conditions

lim
t→–∞ u(t) = –, lim

t→+∞ u(t) = ,

and obtained the existence results to fast heteroclinic solutions of (.) by solving a mini-
mum or constrained minimum problem. Let

Hc =
{

u ∈ H
loc(, +∞) :

∫ +∞


ectu′(t) dt < +∞, u(+∞) = 

}

,

F(u) =
∫ u


f (s) ds

and

F : Hc →R, F (u) =
∫ +∞


ect

(
u′(t)


– F

(

u(t)
)
)

dt.
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Under some proper conditions, a critical point of F is a solution of (.). It should be a fast
solution because of its integrability property near +∞. Motivated by the above works, in
a very recent paper, the authors [] considered a second order non-autonomous system
and proved the following main theorem.

Theorem . Assume that L and U satisfy the following conditions:

(A) L(t) ∈ C(R,Rn ) is a symmetric matrix for all t ∈ R and there is a continuous function
α : R → R such that α(t) >  for all t ∈ R and (L(t)q, q) ≥ α(t)|q| and α(t) → +∞ as
|t| → +∞;

(A) W (t, q) = a(t)|q|γ , where a : R → R is a continuous function such that a(t) >  for
some t ∈ R and a ∈ L


–γ (ect),  < γ <  is a constant.

Then

q̈ + cq̇ + Uq(t, q) =  (.)

has at least one nontrivial fast homoclinic solution, where U(t, q) = – 
 (L(t)q, q) + W (t, q). If

c = , (A) and (A) are supposed, then (.) has at least one nontrivial homoclinic solution.

After that, when the coefficient c of (.) is variable, Chen et al. [] dealt with the exis-
tence and multiplicity of homoclinic solutions of the following damped vibration problem:

u′′(t) + q(t)u′(t) – L(t)u(t) + ∇W
(

t, u(t)
)

= .

For more problems of homoclinic solutions, see [–]. Motivated by the works mentioned
above, when F is the form of (.), we will study the existence of homoclinic solutions for
the following ordinary p-Laplacian system:

d
dt

(∣
∣u̇(t)

∣
∣
p–u̇(t)

)

+ c
∣
∣u̇(t)

∣
∣
p–u̇(t) + ∇F(t, u) = , (FHS)

where  < p ≤  and c ≥  are constants, F(t, u) ∈ C(R × R
n,R). When p =  and c = ,

(FHS) reduces to the following second-order Hamiltonian system:

ü(t) + ∇F(t, u) = . (HS)

Suppose that F is of the form

F(t, u) = –


(

L(t)u, u
)

+ W (t, u), (.)

where L(t) ∈ C(R,Rn ) is a symmetric matrix for all t ∈ R, W (t, u) ∈ C(R × R
n,R). The

existence of homoclinic solutions of (HS) has been studied by many authors, we refer the
reader to [–] and the references therein. In recent years, there have been a few papers
[–] discussing homoclinic solutions and periodic solutions for second-order systems
with a p-Laplacian. However, as far as the authors know, there are fewer results of fast
homoclinic solutions for (FHS). In the present paper, by using critical point theory, we
will obtain some existence results of fast homoclinic solutions for (FHS). Now, we consider
two scenarios on L as follows.
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(I) L(t) ∈ C(R,Rn ) is a symmetric matrix for all t ∈ R and there is a continuous function
α : R → R such that α(t) >  for all t ∈ R and (L(t)q, q) ≥ α(t)|q|p and α(t) → +∞ as
|t| → +∞.

Here and subsequently, (·, ·) denotes the standard inner product and | · | is the induced
norm in R

n.

Remark . Since the p-Laplacian operator d
dt (|u̇(t)|p–u̇(t)) has stronger nonlinearity, so

system (FHS) is more complicated than the corresponding ones of [, ]. In order to over-
come these difficulties, we may develop some new techniques in this paper.

We say that a solution u(t) of (FHS) is homoclinic (to ) if u ∈ C(R,Rn), u(t) →  and
u̇(t) →  as |t| → ∞. If u(t) 	= , u(t) is called one nontrivial homoclinic solution. In order
to introduce the concept of the fast homoclinic solutions of (FHS), we described some
properties of the weighted Sobolev space Ec,p on which the certain variational associated
with (FHS) is defined and the fast homoclinic solutions are minimizers of the certain func-
tional. For c ≥ , we define the weighted Sobolev space Ec,p as follows:

Ec,p =
{

u ∈ H,p(
R,Rn) :

∫

R

ect
[


p
∣
∣u̇(t)

∣
∣
p +



(

L(t)u(t), u(t)
)
]

dt < +∞
}

.

Then, for the case that L satisfies (I), Ec,p (c ≥ ) is a Hilbert space with the inner product

(x, y) =
∫

R

ect
[


p
(

ẋ(t), ẏ(t)
) p

 +


(

L(t)x(t), y(t)
)
]

dt

and the corresponding norm ‖x‖
Ec,p = (x, x). On the other hand, for any u ∈ H,p(R,Rn),

c > , satisfying

∫

R

ect[∣∣q̇(t)
∣
∣
p +

∣
∣q(t)

∣
∣
p]dt < +∞.

Here, H,p(R,Rn) is a Banach space of functions on R with values in R
n and the norm

‖u‖H,p =
(‖u‖p

p + ‖u̇‖p
p
) 

 .

We also denote by Lp(ect) ( < p ≤ ) a Banach space of functions on R with values in R
n

and the norm

‖u‖p =
(∫

R

ect∣∣u(t)
∣
∣
p dt

) 
p

.

For c ≥ , it is obvious that Ec,p ⊂ Lp(ect) with the embedding being continuous.

Remark . If L satisfies (I), then there exists a constant β >  such that

.β‖x‖p
p ≤ ‖x‖

Ec,p , (.)

where β = min{α(t), t ∈ R}.
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Now we can give the definition of fast homoclinic solution of (FHS).

Definition . For c > , a homoclinic solution u of (FHS) is called one fast homoclinic
solution if u ∈ Ec,p.

In this paper we are mainly interested in the case where W (t, q) is of the form W (t, q) =
a(t)V (q). Now we present the basic hypothesis on W .

(U) W (t, q) = a(t)|q|γ , i.e., V (q) = |q|γ , where a : R →R is a continuous function such that
a(t) >  for some t ∈R and a ∈ L


–γ (ect) and a ∈ L

p
–p (ect) with the norm ‖a‖ 

–γ
and

‖a‖ p
–p

, respectively, where γ , p ∈ (, ).
(U′) W (t, q) = a(t)V (q), where a : R → R is a continuous function such that a(t) >  for

some t ∈R and a ∈ Lp(ect), V ∈ C(Rn,R), V () = . Moreover, there exist constants
A, A > ,  < θ <  and  < r ≤  such that

V (q) ≥ A|q|θ , q ∈R
n, |q| ≤ r

and

∣
∣Vq(q)

∣
∣ ≤ A, q ∈R

n.

Now we state our main results in this paper.

Theorem . If c >  and suppose that (I) and (U) are satisfied, then (FHS) has at least
one nontrivial fast homoclinic solution. If c = , (I) and (U) are satisfied, then (FHS) has
at least one nontrivial homoclinic solution. In addition, if there exist positive constants M

and ω such that

sup
t∈R

∣
∣a(t)

∣
∣ ≤ M,

∥
∥Vqq(q)

∥
∥

M ≤ ω for all q ∈R
n (.)

with Mω < , where ‖Vqq(·)‖M denotes matrix norm, then (FHS) has one and only one
nontrivial fast homoclinic solution.

Theorem . If c >  and suppose that (I) and (U′) are satisfied, then (FHS) has at least
one nontrivial fast homoclinic solution. If c = , (I) and (U′) are satisfied, then (FHS) has
at least one nontrivial homoclinic solution.

2 Preliminaries and main lemmas
In this section, we give some preliminary results to establish the proofs of our main results.
We firstly establish the following compact embedding lemma. Although the proof of the
lemma is similar to [] and [], for the reader’s convenience, we give the details of its
proof.

Lemma . Suppose that L satisfies (I), then the embedding of Ec,p in Lp(ect) is compact.

Proof Let {uk} ⊂ Ec,p be a sequence such that uk ⇀ u in Ec,p. We show that uk → u in
Lp(ect). Without loss of generality, assume that uk ⇀  in Ec,p. The Banach-Steinhaus the-
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orem implies that

A = sup
k

‖uk‖Ec,p < +∞.

From the properties of α(t), for any ε > , there is T <  such that 
α(t) ≤ ε for t < T. Sim-

ilarly, there is T >  such that 
α(t) ≤ ε for t > T. Furthermore, α(t) ≥ mint∈[T,T] α(t) > .

Let [T, T] = 	, the operator defined by S : Ec,p → H,p(	,Rn) is a linear continuous map.
So uk ⇀  in H,p(	,Rn). By the Sobolev theorem, uk →  uniformly on 	.

• Case :  < p < . From the above proof, there is k such that

∫

	

ect|uk|p dt ≤ ε for k > k. (.)

On the other hand, we have

∫ T

–∞
ect|uk|p dt ≤ ε

∫ T

–∞
α(t)ect|uk|p dt

≤ ε

∫ T

–∞



ect(L(t)uk(t), uk(t)
)

dt

≤ εA (.)

and
∫ +∞

T

ect|uk|p dt ≤ εA. (.)

Combining (.)-(.), we get uk →  in Lp(ect).
• Case : p = . The proof is similar to [], we omit it. �

Lemma . Suppose that I and U are satisfied. If uk ⇀ u in Ec,p, then ∇W (t, uk) →
∇W (t, u) in Lp(ect).

Proof • Case : p = . Assume that uk ⇀ u in Ec,. We have

∣
∣∇W (t, uk) – ∇W (t, u)

∣
∣ =

∣
∣γ a(t)|uk|γ –uk – γ a(t)|u|γ –u

∣
∣

≤ γ
∣
∣a(t)

∣
∣
(|uk|γ – + |u|γ –),

which yields that

∣
∣∇W (t, uk) – ∇W (t, u)

∣
∣
 ≤ γ ∣∣a(t)

∣
∣
(|uk|γ – + |u|γ –). (.)

Multiplying ect on the both sides of (.) and integrating them on R, by (.) we have

∫

R

ect∣∣∇W (t, uk) – ∇W (t, u)
∣
∣
 dt

≤ γ 
∫

R

ect∣∣a(t)
∣
∣
(|uk|γ – + |u|γ –)dt
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≤ γ 
(∫

R

ect|uk| dt
)γ –

‖a‖


–γ

+ γ 
(∫

R

ect|u| dt
)γ –

‖a‖


–γ

≤ γ γ β–γ ‖uk‖γ –
c, ‖a‖


–γ

+ γ γ β–γ ‖a‖


–γ

≤ γ γ β–γ ‖a‖


–γ

(‖uk‖γ –
Ec,

+ ‖u‖γ –
Ec,

)

. (.)

From uk ⇀ u in Ec, and the Banach-Steinhaus theorem, there is a constant M >  such
that

‖uk‖Ec, ≤ M, ‖u‖Ec, ≤ M. (.)

From (.) and (.), we have
∫

R

ect∣∣∇W (t, uk) – ∇W (t, u)
∣
∣
 dt ≤ γ +γ β–γ ‖a‖


–γ

Mγ –
 .

From Lemma ., we have

ectuk(t) → ectu(t) for almost t ∈R,

which yields that uk(t) → u(t) for almost t ∈ R. Then, using Lebesgue’s convergence the-
orem, ∇W (t, uk) → ∇W (t, u) in L(ect).

• Case :  < p < . Similar to the above proof, we have
∫

R

ect∣∣∇W (t, uk) – ∇W (t, u)
∣
∣
p dt

≤ γ p
∫

R

ect∣∣a(t)
∣
∣
p(|uk|γ – + |u|γ –)p dt

≤ γ p‖a‖–p
p

–p

(∫

R

ect(|uk|γ – + |u|γ –) dt
) p



≤ γ p‖a‖–p
p

–p

(∫

R

ect∣∣a(t)
∣
∣
(|uk|γ – + |u|γ –)dt

) p


.

From the proof of Case , there exists a constant M >  such that
∫

R

ect∣∣∇W (t, uk) – ∇W (t, u)
∣
∣
p dt ≤ M‖a‖–p

p
–p

,

since a ∈ ‖a‖ p
–p

. Thus ∇W (t, uk) → ∇W (t, u) in Lp(ect). Hence, combining the proof of
Case  and Case , the proof is completed. �

From the proofs of Lemmas . and ., it is clear that if uk → u in Ec,p, then ∇W (t, uk) →
∇W (t, u) in Lp(ect). In the following we will establish the corresponding variational frame-
work to obtain the existence of homoclinic solutions of (FHS). Define the functional
I : Ec,p →R by

I(u) =
∫

R

ect
[


p
∣
∣u̇(t)

∣
∣
p +



(

L(t)u(t), u(t)
)

– W
(

t, u(t)
)
]

dt

= ‖u‖
Ec,p –

∫

R

ectW
(

t, u(t)
)

dt. (.)
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Lemma . Under the conditions of Theorem ., we have

I ′(u)v =
∫

R

ect[(∣∣u̇(t)
∣
∣
p–u̇(t), v̇(t)

)

+
(

L(t)u(t), v(t)
)

–
(∇W

(

t, u(t)
)

, v(t)
)]

dt, u, v ∈ Ec,p. (.)

Moreover, I ∈ C(Ec,p,R), i.e., I is a continuously Fréchet-differentiable functional defined
on Ec,p and any critical point of I on Ec,p is a classic solution of (FHS).

Proof Firstly we show that I : Ec,p →R. From (.) and Hölder’s inequality, we have

 ≤
∫

R

ect∣∣W
(

t, u(t)
)∣
∣dt =

∫

R

ect∣∣a(t)
∣
∣
∣
∣u(t)

∣
∣
γ dt

≤
(∫

R

(

e(– γ
 )ct∣∣a(t)

∣
∣
) 

–γ dt
) –γ


(∫

R

(

e
γ
 ct∣∣u(t)

∣
∣
γ ) 

γ dt
) γ



= ‖a‖ 
–γ

(∫

R

ect∣∣u(t)
∣
∣
 dt

) γ


≤ .γ β–.γ ‖a‖ 
–γ

(∫

R

ect∣∣u(t)
∣
∣
 dt

) γ


≤ .γ β–.γ ‖a‖ 
–γ

‖u‖γ
c,p.

Hence, one has I : Ec,p →R. Next, we prove that I ∈ C(Ec,p,R). Rewrite I as follows:

I = I – I,

where

I =
∫

R

ect
[


p
∣
∣u̇(t)

∣
∣
p +



(

L(t)u(t), u(t)
)
]

dt,

I =
∫

R

ectW
(

t, u(t)
)

dt.

Obviously, I ∈ C(Ec,R) and

I ′
(u)v =

∫

R

ect[(∣∣u̇(t)
∣
∣
p–u̇(t), v̇(t)

)

+
(

L(t)u(t), v(t)
)]

dt.

Now, we will show

I ′
(u)v =

∫

R

ect(∇W
(

t, u(t)
)

, v(t)
)

dt. (.)

Let us define J(u) : Ec,p →R as follows:

J(u)v =
∫

R

ect(∇W
(

t, u(t)
)

, v(t)
)

dt, v ∈ Ec,p.
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Obviously, J(u) is linear. Now we show that J(u) is bounded. For each u ∈ Ec,p, by (.) and
Hölder’s inequality, we have

∣
∣J(u)v

∣
∣ =

∣
∣
∣
∣

∫

R

ect(∇W
(

t, u(t)
)

, v(t)
)

dt
∣
∣
∣
∣
≤

∫

R

ect∣∣a(t)
∣
∣
∣
∣u(t)

∣
∣
γ –∣

∣v(t)
∣
∣dt

≤
(∫

R

ect∣∣u(t)
∣
∣
γ –∣

∣a(t)
∣
∣
 dt

) 

(∫

R

ect∣∣v(t)
∣
∣
 dt

) 


≤
(∫

R

(

e(–γ )ct∣∣a(t)
∣
∣
) 

–γ dt
) –γ


(∫

R

(

e(γ –)ct∣∣u(t)
∣
∣
γ –) 

γ – dt
) γ –



×
(∫

R

ect∣∣v(t)
∣
∣
 dt

) 


=
(∫

R

ect∣∣a(t)
∣
∣


–γ dt

) –γ


(∫

R

ect∣∣u(t)
∣
∣
 dt

) γ –


(∫

R

ect∣∣v(t)
∣
∣
 dt

) 


≤ ‖a‖ 
–γ

.γ (γ –)β–.γ (γ –)‖u‖γ –
Ec,p .γ β–.γ ‖v‖Ec,p

= ‖a‖ 
–γ

.γ 
β–.γ ‖u‖γ –

Ec,p ‖v‖Ec,p < +∞.

Moreover, for u and v ∈ Ec,p, by the mean value theorem, we have

∫

R

ectW
(

t, u(t) + v(t)
)

dt –
∫

R

ectW
(

t, u(t)
)

dt

=
∫

R

ect(∇W
(

t, u(t) + h(t)v(t)
)

, v(t)
)

dt,

where h(t) ∈ (, ). Hence, by Lemma . and Hölder’s inequality, we have
∫

R

ect(∇W
(

t, u(t) + h(t)v(t)
)

, v(t)
)

dt –
∫

R

ect(∇W
(

t, u(t)
)

, v(t)
)

dt

→  as ‖v‖Ec,p → .

From Lemma ., we see that (.) holds. It remains to prove that I ′
 is continuous. Suppose

that u → u in Ec,p and note that

I ′
(u)v – I ′

(u)v =
∫

R

ect(∇W
(

t, u(t)
)

– ∇W
(

t, u(t)
)

, v(t)
)

dt.

By Lemma ., we have

I ′
(u)v – I ′

(u)v →  as u → u

and I ∈ C(Ec,p,R). On the other hand, if u is a critical point of I , by (.), we know that
ect[L(t)u – ∇W (t, u)] is the weak derivative ect|u̇(t)|p–u̇(t), and u̇ and ü are continuous. It
is easy to check that critical points of I on Ec,p are classic solutions satisfying u(t) →  and
u̇(t) →  as |t| → ∞. �

Lemma . Under the conditions of Theorem ., we have that (.) holds and I ∈
C(Ec,p,R). Moreover, any critical point of I on Ec,p is a classic homoclinic solution of (FHS).
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Proof Since the proofs are similar to the proofs of Lemma . and Lemma ., so we omit
the details of their proofs. �

Lemma . Suppose that (I) and (U′) are satisfied. If uk ⇀ u in Ec,p, then ∇W (t, uk) →
∇W (t, u) in Lp(ect).

Proof By (U′), we have

∣
∣∇W (t, uk) – ∇W (t, u)

∣
∣ ≤ A

∣
∣a(t)

∣
∣,

which yields that

ect∣∣∇W (t, uk) – ∇W (t, u)
∣
∣
p ≤ pAp

ect∣∣a(t)
∣
∣
p.

Integrating the above inequality on R and by Hölder’s inequality, we obtain that
∫

R

ect∣∣∇W (t, uk) – ∇W (t, u)
∣
∣
p dt ≤

∫

R

pAp
ect∣∣a(t)

∣
∣
p dt

≤ pAp
‖a‖p

p,

since a ∈ Lp(ect). On the other hand, by Lemma ., we have uk(t) → u(t) for almost each
t ∈R. Consequently, using the Lebesgue’s convergence theorem, we finish the proof of this
lemma. �

Lemma . Under the conditions of Theorem ., we have that (.) holds and I ∈
C(Ec,p,R). Moreover, any critical point of I on Ec,p is a classical homoclinic solution of
(FHS).

Proof From (U′) and V () = , we have

V (u) =
∣
∣
∣
∣

∫ 


Vu(μu)u dμ

∣
∣
∣
∣
≤ A|u|. (.)

By (.) and (.), we have

 ≤
∫

R

ect∣∣W
(

t, u(t)
)∣
∣dt ≤ A

∫

R

ect∣∣a(t)
∣
∣
∣
∣u(t)

∣
∣dt

≤ A‖a‖q‖u‖p ≤ A/pβ–/p‖a‖q‖u‖/p
Ec,p ,

where /p + /q = , which together with (.) implies that I : Ec,p → R. Moreover, ac-
cording to the proof of Lemma ., it is sufficient to show that for any given u ∈ Ec,p, the
operator J(u) : Ec,p →R defined as follows:

J(u)v =
∫

R

ect(∇W (t, u), v
)

dt, ∀v ∈ Ec,p

is linear and bounded. It is obvious that J(u) is linear. By (U′), we have

∣
∣J(u)v

∣
∣ ≤ A

∫

R

ect∣∣a(t)
∣
∣
∣
∣u(t)

∣
∣dt ≤ A‖a‖q‖u‖p ≤ A/pβ–/p‖a‖q‖u‖/p

Ec,p ,
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which implies that J(u) is bounded. The remainder is similar to the proof of Lemma .,
so we omit the details of its proof. �

In the following, we introduce some necessary definitions and some well-known results
in the variational methods and critical point theory (see [] and []). Let E be a real
Banach space.

Definition . ([]) I : E →R is coercive if I(u) → +∞ for ‖u‖ → +∞.

Definition . ([]) I ∈ C(E,R) is said to satisfy the (PS) condition if any sequence
{uj}j∈N ⊂ E, for which {uj}j∈N is bounded and I ′(uj) →  as j → +∞, possesses a convergent
subsequence in E.

Lemma . ([]) Let E be a real Banach space and I ∈ C(E,R) satisfying the (PS) con-
dition. If I is bounded from below, then c = infE I is a critical point of I .

Lemma . ([]) If I : E →R is differentiable, every local minimum (maximum) point u
satisfies the Euler equation I ′(u) = .

3 The proof of main results
In order to use Lemmas . and . for the proofs of Theorems . and ., we firstly show
that I satisfies the (PS) condition.

Lemma . Under the conditions of Theorem ., I satisfies the (PS) condition.

Proof Assume that {uj}j∈N ⊂ Ec,p is a sequence that {I(uj)}j∈N is bounded and I ′(uj) →  as
j → +∞. Then there exists a constant M >  such that

∣
∣I(uj)

∣
∣ ≤ M for each j ∈ N. (.)

We claim that {uj}j∈N is bounded in Ec,p. In fact, from (.), (.), (.) and (U), we have

‖uj‖
Ec,p = I(uj) +

∫

R

ectW
(

t, uj(t)
)

dt

≤ M +
∫

R

ect∣∣a(t)
∣
∣
∣
∣uj(t)

∣
∣
γ dt

≤ M + .γ β–.γ ‖a‖ 
–γ

(∫

R

ect∣∣uj(t)
∣
∣
 dt

) γ


≤ M + .γ β–.γ ‖a‖ 
–γ

‖uj‖γ

Ec,p . (.)

Since  < γ < , (.) implies that {uj}j∈N is bounded in Ec,p. By use of Lemma ., the
sequence {uj}j∈N has a subsequence, again denoted by {uj}j∈N, and there is u ∈ Ec,p such
that

uj ⇀ u weakly in Ec,p,

uj → u strongly in Lp(ect).
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Thus

(

I ′(uj) – I ′(u)
)

(uj – u) → 

and by Lemma . we have

∫

R

ect(∇W
(

t, uj(t)
)

– ∇W
(

t, u(t)
)

, uj(t) – u(t)
)

dt → , j → +∞.

On the other hand, from

‖uj –u‖
Ec,p =

(

I ′(uj)– I ′(u), (uj –u)
)

+
∫

R

ect(∇W
(

t, uj(t)
)

–∇W
(

t, u(t)
)

, uj(t)–u(t)
)

dt,

we have

‖uj – u‖
Ec,P

→  as j → +∞.

Thus {uj}j∈N converges strongly to u in Ec,p. �

Note that there is no difference between the proofs of the fast homoclinic solutions and
the usual homoclinic solutions. So, in the following proofs of our main results, we do not
consider them for c >  and c = , respectively.

Proof of Theorem . From (.), (.) and (U), for every m ∈R \ {} and u ∈ Ec,p \ {}, we
have

I(mu) = m‖u‖
Ec,p –

∫

R

ectW
(

t, mu(t)
)

dt

≥ m‖u‖
Ec,p – |m|γ

∫

R

ect∣∣a(t)
∣
∣
∣
∣u(t)

∣
∣
γ dt

≥ m‖u‖
Ec,p – |m|γ .γ β–.γ ‖a‖ 

–γ

(∫

R

ect∣∣u(t)
∣
∣
 dt

) γ


≥ m‖u‖
Ec,p – |m|γ .γ β–.γ ‖a‖ 

–γ
‖u‖γ

Ec,p . (.)

Since  < γ < , (.) implies that I(mu) → +∞ as |m| → +∞. Hence, I is bounded from
below. From Lemmas . and ., I possesses a critical value c = infu∈Ec,p I(u) and there
is a critical point u ∈ Ec,p such that I(u) = c and I ′(u) = . In the following, we show that
the critical point obtained above u 	= . By (U), there is δ >  such that a(t) >  for any
t ∈ [t – δ, t + δ]. Take c ∈R

n with |c| 	= , and let φ ∈ Ec,p be defined by

φ(t) =

{

c cos[ π
δ

(t – t)], t ∈ [t – δ, t + δ],
, t ∈R \ [t – δ, t + δ].

Thus, by (.),

I(mφ) = m‖φ‖
Ec – |m|γ

∫ t+δ

t–δ

ecta(t)
∣
∣φ(t)

∣
∣
γ dt,
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which yields that I(mφ) <  for |m| small enough since  < γ < . Hence, the critical point
u ∈ Ec,p is nontrivial. Finally, we show that if (.) holds, then (FHS) has one and only one
nontrivial homoclinic solution. Suppose by contradiction that there would be at least two
different homoclinic solutions q and q. From Lemma . and (.), we have

 =
(

I ′(q) – I ′(q), q – q
)

= ‖q – q‖
Ec,p +

∫

R

ect(a(t)Vq(q) – a(t)Vq(q), q(t) – q(t)
)

dt

= ‖q – q‖
Ec,p +

∫

R

ect(a(t)Vqq(q)(q – q), q(t) – q(t)
)

dt

≥ ‖q – q‖
Ec,p – M

∥
∥Vqq(q)

∥
∥

M‖q – q‖
Ec,p

≥ ‖q – q‖
Ec,p – Mω‖q – q‖

Ec,p .

Since Mω < , we get ‖q – q‖Ec,p =  and q(t) ≡ q(t) for all t ∈ R. �

Lemma . Under the conditions of Theorem ., I satisfies the (PS) condition.

Proof It is sufficient to show that for any sequence {uj}j∈N ⊂ Ec,p such that {I(uj)}j∈N is
bounded, I ′(uj) →  as j → +∞, then {uj}j∈N is bounded in Ec,p. Since {I(uj)}j∈N is bounded,
there exists constant B >  such that

∣
∣I(uj)

∣
∣ ≤ B for each j ∈N. (.)

From (.) and (.), we have

‖uj‖
Ec,p = I(uj) +

∫

R

ectW
(

t, uj(t)
)

dt ≤ B + A‖a‖q‖uj‖p ≤ A/pβ–/p‖a‖q‖uj‖/p
Ec,p ,

which implies that {uj}j∈N is bounded in Ec,p.The remainder is similar to the proof of
Lemma ., so we omit the details of its proof. �

Proof of Theorem . From (.), (.) and (U′), for every m ∈ R \ {} and u ∈ Ec,p \ {},
we have

I(mu) = m‖u‖
Ec,p –

∫

R

ectW
(

t, mu(t)
)

dt

≥ m‖u‖
Ec,p – A/pβ–/p|m|‖a‖q‖u‖/p

Ec,p ,

which I(mu) → +∞ as |m| → +∞. Consequently, I is a functional bounded from below.
By Lemmas . and ., I possesses a critical value c = infu∈Ec,p I(u), i.e., there is a critical
point u ∈ Ec,p such that I(u) = c and I ′(u) = . In the following, we show that the critical
point obtained above u 	≡ . By (U′), there is δ >  such that a(t) >  for any t ∈ [t – δ, t +
δ]. Take c ∈R

n with |c| = r, where r is defined in (U′) and let φ ∈ Ec,p be defined by

φ(t) =

{

c cos[ π
δ

(t – t)], t ∈ [t – δ, t + δ],
, t ∈R \ [t – δ, t + δ].
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Then φ(t) ≤ r ≤  and

I(mφ) ≤ m‖φ‖
Ec,p – A|m|θ

∫ t

t

ecta(t)
∣
∣φ(t)

∣
∣
θ dt,

which yields that I(mφ) <  for |m| small enough since  < θ < . The critical point u ∈ Ec,p

obtained above is nontrivial. �

Remark . The proofs of Theorems . and . are similar to [], the main difference
is structure of the Hilbert space. Obviously, the Hilbert space Ec,p in the present paper is
more complicated than the corresponding ones of past works [, , –].

4 Conclusions and further discussion
In this paper, by using variational method, we have dealt with a kind of ordinary
p-Laplacian system and obtained the existence of fast homoclinic solutions to the above
system. However, we mainly consider the case that W (t, u) is subquadratic as |u| → +∞.
When W (t, u) is superquadratic as |u| → +∞, we only find Chen et al. [] obtained the
existence of fast homoclinic solutions for a class of second order systems. But, for the p-
Laplacian system, there are few results on the existence of fast homoclinic solutions. We
hope that the related results will appear in the near future.
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