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Abstract
In this paper, we consider a class of fractional differential equations with integral
boundary conditions which involve two disturbance parameters. By using the
Guo-Krasnoselskii fixed point theorem, new results on the existence and
nonexistence of positive solutions for the boundary value problem are obtained. And
the impact of the disturbance parameters on the existence of positive solutions is
also investigated. Finally, we give some examples to illustrate our main results.
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1 Introduction
The theory of boundary value problems for ordinary differential equations and functional
differential equations plays an important role in many research fields of science and engi-
neering; for details, see [–] and the references therein. Meanwhile, fractional differential
equations have also widely appeared in various fields such as physics, mechanics, electric-
ity, biology, control theory, etc. Therefore, the study of fractional differential equations
has gained prominence and has been growing rapidly, see[–]. Last but not least, as an
important part of fractional differential equations, the integral boundary value problems
have also been extensively researched, see [–].

In [], Jia and Liu investigated the existence and nonexistence of positive solutions for
the following integral boundary value problem of fractional differential equations with
a disturbance parameter in the boundary conditions and the impact of the disturbance
parameter on the existence of positive solutions

⎧
⎪⎨

⎪⎩

–CDδu(t) = f (t, u(t)), t ∈ (, ),
mu() – nu′() = ,
mu() + nu′() =

∫ 
 g(s)u(s) ds + a,
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where CDδ is the Caputo fractional derivative,  < δ ≤ , f ∈ C([, ] × R
+,R+) and g ∈

C([, ],R+).
In this paper, we are concerned with the Riemann-Liouville fractional differential equa-

tion

Dα
+x(t) = f

(
t, x(t)

)
, t ∈ (, ), (.)

with the integral boundary conditions
⎧
⎪⎨

⎪⎩

x() = x′() = ,
x() =

∫ 
 g(s)x(s) ds + a,

x′() =
∫ 

 g(s)x(s) ds – b,
(.)

where Dα
+ is the standard Riemann-Liouville fractional derivative of order α,  < α ≤ ,

f : [, ] × [, +∞) → [, +∞) is a continuous function, g, g ∈ L[, ], and a, b ≥ . The
existence and nonexistence of positive solutions for the integral boundary value problem
(.)-(.) and the impact of the disturbance parameters a, b on the existence of positive
solutions is also investigated. Finally, we give two examples to illustrate our results.

2 Preliminaries
In this section, we present some useful definitions and related lemmas.

Definition . (See []) Let α > . The fractional integral operator of a function y :
(, +∞) → R is given by

Iαy(t) =


�(α)

∫ t


(t – s)α–y(s) ds

provided the integral exists.

Definition . (See []) Let α > . The Riemann-Liouville fractional derivative of a func-
tion y : (, +∞) →R is given by

Dα
+y(t) = DzIz–α

+ y(t) =


�(z – α)

(
d
dt

)z ∫ t



y(s)
(t – s)α–z+ ds,

where z ∈ N, z –  < α < z, provided the right-hand side is pointwise defined on (,∞).

Lemma . (See []) For α > , z ∈ N and z– < α < z, if x ∈ L[, ] and Iz–α
+ x ∈ ACz[, ],

we have the equation

Iα
+Dα

+x(t) = x(t) + ctα– + ctα– + ctα– + · · · + cztα–z,

where ci ∈R, i = , , , . . . , z.

Lemma . The boundary value problem (.)-(.) is equivalent to the following integral
equation:

x(t) =
∫ 


G(t, s)f

(
s, x(s)

)
ds +

∫ 


H(t, s)x(s) ds

+
(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–, (.)
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where

G(t, s) =


�(α)

⎧
⎪⎪⎨

⎪⎪⎩

(t – s)α– + ( – s)α–tα–

× ((s – t) + (α – )( – t)s),  ≤ s < t ≤ ,

( – s)α–tα–((s – t) + (α – )( – t)s),  ≤ t < s ≤ 

(.)

and

H(t, s) = tα–(t – αt + α – )g(s) + tα–(t – )g(s). (.)

Proof Assume that x = x(t) is a solution of (.), it follows from Lemma . that

x(t) =


�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds + ctα– + ctα– + ctα– + ctα–,

where ci ∈R, i = , , , .
From the boundary conditions x() = x′() = , we get c = c = .
And from the boundary conditions x() =

∫ 
 g(s)x(s) ds + a and x′() =

∫ 
 g(s)x(s) ds – b,

we can get

c = ( – α)
∫ 


g(s)x(s) ds +

∫ 


g(s)x(s) ds

–


�(α)

∫ 


( – s)α–(αs – s + )f

(
s, x(s)

)
ds – b – (α – )a,

c = (α – )
∫ 


g(s)x(s) ds –

∫ 


g(s)x(s) ds

+


�(α – )

∫ 


( – s)α–sf

(
s, x(s)

)
ds + b + (α – )a.

Then

x(t) =


�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds + tα–( – α)

∫ 


g(s)x(s) ds + tα–

∫ 


g(s)x(s) ds

–
tα–

�(α)

∫ 


( – s)α–(αs – s + )f

(
s, x(s)

)
ds

+ tα–(α – )
∫ 


g(s)x(s) ds – tα–

∫ 


g(s)x(s) ds

+
tα–

�(α – )

∫ 


( – s)α–sf

(
s, x(s)

)
ds +

(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–

=


�(α)

∫ t



(
(t – s)α– + ( – s)α–tα–((s – t) + (α – )( – t)s

))
f
(
s, x(s)

)
ds

+


�(α)

∫ 

t
( – s)α–tα–((s – t) + (α – )( – t)s

)
f
(
s, x(s)

)
ds

+ tα–(t – αt + α – )
∫ 


g(s)x(s) ds + tα–(t – )

∫ 


g(s)x(s) ds

+
(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–
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=
∫ 


G(t, s)f

(
s, x(s)

)
ds +

∫ 


H(t, s)x(s) ds

+
(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–.

Hence, x = x(t) is a solution of the integral equation (.) if it is the solution of the bound-
ary value problem (.)-(.), and vice versa.

The proof is completed. �

Lemma . Let G be defined by (.), then
() G(t, s) ∈ C[, ] × [, ], and G(t, s) >  for any t, s ∈ (, ),
() (α – )q(t)k(s) 

�(α) ≤ G(t, s) ≤ Mk(s) 
�(α) ≤ M


�(α) for any t, s ∈ [, ], where

M = max
{
α – , (α – )}, q(t) = tα–( – t), k(s) = s( – s)α–.

Proof () It is easy to show that the result holds.
() For s ≤ t, we could use the mean value theorem of differential calculus and get

G(t, s) =


�(α)
(
(t – s)

(
(t – s)α– – (t – ts)α–) + (α – )( – t)s(t – ts)α–)

≥ 
�(α)

(
–(t – s)(α – )(t – ts)α–s( – t) + (α – )( – t)s(t – ts)α–)

≥ 
�(α)

(α – )tα–( – s)α–s( – t)

and

G(t, s) ≤ 
�(α)

(
–(t – s)(α – )(t – s)α–s( – t) + (α – )( – t)s(t – ts)α–)

=


�(α)
(α – )s( – t)

(
(t – ts)α– – (t – s)α–)

≤ 
�(α)

(α – )s( – t)tα–( – s)α–

≤ 
�(α)

(α – )s( – s)α–

≤ M

�(α)
.

For s ≥ t, we have that

G(t, s) ≥ 
�(α)

(α – )tα–( – s)α–s( – t) ≥ 
�(α)

(α – )tα–( – s)α–s( – t),

G(t, s) ≤ 
�(α)

sα–( – s)α–(s + (α – )s
)

=


�(α)
sα–( – s)α–(α – ) ≤ M

�(α)
.

The proof is completed. �

Now we make the following assumption.
(B) g, g ∈ L[, ] such that  ≤ inft,s∈[,] H(t, s) < supt,s∈[,] H(t, s) := M < .
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Let the Banach space C[, ] be endowed with the norm ‖x‖ := maxt∈[,] |x(t)|, and let

P =
{

x ∈ C[, ] : x(t) ≥ , t ∈ [, ]
}

,

then P is a cone in C[, ].
We define an operator A : P → C[, ] by

(Ax)(t) =
∫ 


H(t, s)x(s) ds.

Lemma . Assume (B) holds, then the operator A satisfies the following properties:
() A is a bounded linear operator;
() A(P) ⊂ P;
() the operator A is reversible;
() ‖(I – A)–‖ ≤ 

–M .

Proof By (B), it is obvious that (), () hold.
() Since M < , we get that ‖Ax‖ ≤ M‖x‖ < ‖x‖, then ‖A‖ ≤ M < , so that I – A is

reversible.
() Let y(t) = x(t) – Ax(t), that is, x(t) = y(t) + Ax(t), x(t) = (I – A)–y(t), and y ∈ C[, ]

for t ∈ [, ]. From the definition of operator A, we have that

x(t) = y(t) +
∫ 


H(t, s)x(s) ds.

Let

x(t) = x(t), xm(t) = y(t) +
∫ 


H(t, s)xm–(s) ds, m = , , . . . .

We apply the method of iteration to solve the above equation.
According to this method, we can get that

x(t) = (I – A)–y(t) = y(t) +
∫ 


R(t, s)y(s) ds,

where

R(t, s) =
∞∑

j=

Hj(t, s), H(t, s) = H(t, s) and

Hj(t, s) =
∫ 


H(t, τ )Hj–(τ , s) dτ , j = , , . . . .

Because of  ≤ H(t, s) < M < , we have that

 ≤ R(t, s) =
∞∑

j=

Hj(t, s) < M + M + · · · + Mn + · · · =
M

 – M
. (.)

Since (I – A)–y(t) = x(t), we get

∣
∣(I – A)–y(t)

∣
∣ ≤ ∣

∣y(t)
∣
∣ +

M
 – M

∣
∣
∣
∣

∫ 


y(s) ds

∣
∣
∣
∣ ≤ ‖y‖ +

M
 – M

‖y‖ =
‖y‖

 – M
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and

∥
∥(I – A)–y

∥
∥ = max

t∈[,]

∣
∣(I – A)–y(t)

∣
∣ ≤ ‖y‖

 – M
.

So

∥
∥(I – A)–∥∥ ≤ 

 – M
.

The proof is completed. �

We define another operator T : P → C[, ],

(Tx)(t) =
∫ 


G(t, s)f

(
s, x(s)

)
ds +

(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–. (.)

It can be easily shown that T : P → P. x(t) is a solution of the boundary value problem
(.)-(.) if and only if it satisfies

x(t) = (Tx)(t) + (Ax)(t).

Hence,

x(t) = (I – A)–(Tx)(t) = (Tx)(t) +
∫ 


R(t, s)(Tx)(s) ds

and

(I – A)–(Tx)(t) =
∫ 


G(t, s)f

(
s, x(s)

)
ds +

∫ 


R(t, s)

∫ 


G(s, τ )f

(
τ , x(τ )

)
dτ ds

+
∫ 


R(t, s)

((
(α – )a + b

)
sα– –

(
(α – )a + b

)
sα–)ds

+
(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–. (.)

Let

P =
{

x ∈ P : x(t) ≥ q(t)( – M)
M

‖x‖, t ∈ [, ]
}

.

Lemma . Assume that condition (B) holds, then the operator (I – A)–T : P → P is
completely continuous.

Proof From the continuity and the non-negativeness of functions G, R and f , we have that
if x ∈ P, then (I – A)–(Tx)(t) ≥  and (I – A)–(Tx) ∈ P.

It follows from (.) and Lemma ., for x ∈ P and t ∈ [, ],

∣
∣(I – A)–(Tx)(t)

∣
∣

≤ ∥
∥(I – A)–∥∥ · ∣∣Tx(t)

∣
∣
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≤ 
 – M

∣
∣
∣
∣

∫ 



M

�(α)
k(s)f

(
s, x(s)

)
ds +

(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–

∣
∣
∣
∣

≤ 
 – M

(∫ 



M

�(α)
k(s)f

(
s, x(s)

)
ds + tα–((α – )a( – t) + b( – t) + a

)
)

.

Hence,

∥
∥(I – A)–(Tx)

∥
∥ ≤ M

 – M

(


�(α)

∫ 


k(s)f

(
s, x(s)

)
ds + (α – )a + b

)

. (.)

By (.), (.) and (.), we have

(I – A)–(Tx)(t) ≥ (Tx)(t)

≥ (α – )q(t)
�(α)

∫ 


k(s)f

(
s, x(s)

)
ds

+
(
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–

=
(α – )q(t)

�(α)

∫ 


k(s)f

(
s, x(s)

)
ds +

(
(α – )a + b

)
tα–( – t)

≥ q(t)
�(α)

∫ 


k(s)f

(
s, x(s)

)
ds +

(
(α – )a + b

)
tα–( – t)

= q(t)
(


�(α)

∫ 


k(s)f

(
s, x(s)

)
ds + (α – )a + b

)

.

It follows from (.) that

(I – A)–(Tx)(t) ≥ q(t)( – M)
M

∥
∥(I – A)–Tx

∥
∥.

Hence (I – A)–T(P) ⊂ P.
Let {xn} ⊂ P, x ∈ P, and ‖xn – x‖ →  as n → +∞, there exists a constant r >  such that

‖xn‖ ≤ r and ‖x‖ ≤ r. We have

lim
n→∞ f

(
s, xn(s)

)
= f

(
s, x(s)

)
for a.e. s ∈ [, ].

By the Lebesgue dominated convergence theorem, we get

lim
n→∞(I – A)–(Txn)(t) = (I – A)–(Tx)(t).

So

lim
n→∞

∥
∥(I – A)–Txn – (I – A)–Tx

∥
∥ = .

Then the operator (I – A)–T is continuous.
Let � ⊂ P be bounded. Then there exists a positive constant l >  such that ‖x‖ ≤ l for

all x ∈ �. Let N = max≤t≤,≤x≤l |f (t, x)| + . By (.), for all x ∈ �, we have

∥
∥(I – A)–(Tx)(t)

∥
∥ ≤ M

( – M)

(
N

�(α)
+ (α – )a + b

)

,

which means (I – A)–T(�) is bounded in P.
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In addition, for any given x ∈ �, because G(t, s) is continuous for (t, s) ∈ [, ] × [, ],
then it must be uniformly continuous. So, for any ε > , there exists a constant δ >  such
that for all s ∈ [, ], as |t – t| < δ, we have that

∣
∣G(t, s) – G(t, s)

∣
∣ < ε,

∣
∣tα–

 – tα–


∣
∣ < ε,

∣
∣tα–

 – tα–


∣
∣ < ε.

For each x ∈ �,

∣
∣(I – A)–(Tx)(t) – (I – A)–(Tx)(t)

∣
∣

≤ ∥
∥(I – A)–∥∥ · ∣∣(Tx)(t) – (Tx)(t)

∣
∣

≤ 
 – M

∫ 



∣
∣G(t, s) – G(t, s)

∣
∣
∣
∣f

(
s, x(s)

)∣
∣ds

+
(α – )a + b

 – M
∣
∣tα–

 – tα–


∣
∣ +

(α – )a + b
 – M

∣
∣tα–

 – tα–


∣
∣

<
N + (α – )a + b

 – M
ε.

We have

∥
∥(I – A)–(Tx)(t) – (I – A)–(Tx)(t)

∥
∥ <

N + (α – )a + b
 – M

ε,

and (I – A)–T(�) is equicontinuous in P.
Now, according to the Arzela-Ascoli theorem, we conclude that (I – A)–T(�) is rela-

tively compact.
Therefore, (I – A)–T : P → P is a completely continuous operator.
The proof is completed. �

By Lemma ., we can easily deduce that the following lemma holds.

Lemma . Assume x ∈ C[, ], Dα
+ x ∈ L[, ]. Then the boundary value problem (.)-

(.) has a positive solution if and only if the operator (I – A)–T has a fixed point in P.
Furthermore, if x is a positive solution of the fractional boundary value problem (.)-(.),
then x ∈ P.

To prove the existence of positive solution for the boundary value problem (.)-(.),
we state the following Guo-Krasnoselskii fixed point theorem, see [].

Lemma . Let E be a Banach space and P ⊂ E be a cone. Assume that �, � are bounded
open subsets of E with θ ∈ � ⊂ � ⊂ �, and let T : P ∩ (� \ �) → P be a completely
continuous operator such that either

() ‖T(x)‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�; and ‖T(x)‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�, or
() ‖T(x)‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�; and ‖T(x)‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�.

Then the operator T has at least one fixed point in P ∩ (� \ �).
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3 Existence and nonexistence of positive solutions
Denote

f = lim inf
x→+

inf
t∈[ 

 , 
 ]

f (t, x)
x

, f  = lim sup
x→+

sup
t∈[,]

f (t, x)
x

,

f∞ = lim inf
x→∞ inf

t∈[ 
 , 

 ]

f (t, x)
x

, f ∞ = lim sup
x→∞

sup
t∈[,]

f (t, x)
x

,

σ = min
t∈[ 

 , 
 ]

q(t)( – M)
M

=
( – M)α–

Mα
, ρ =

( – M)�(α)
M + α�(α)

, ρ =
,�(α)α

σ (α – )
.

Theorem . Suppose (B) holds, f  < ρ and f∞ > ρ. Then there exist small enough a

and b such that the boundary value problem (.)-(.) has at least one positive solution
for  ≤ a ≤ a and  ≤ b ≤ b.

Proof Since f  < ρ, there exists a constant r >  such that

f (t, x) < ρx ≤ ρr

for all t ∈ [, ] and x ∈ [, r].
Let � = {x ∈ P : ‖x‖ < r},  ≤ a ≤ a,  ≤ b ≤ b and max{a, b} ≤ ρr.
By Lemma ., for x ∈ ∂�, we have ‖x‖ = r and

 ≤ (I – A)–(Tx)(t) ≤ ∥
∥(I – A)–∥∥ · ∣∣(Tx)(t)

∣
∣ ≤ 

 – M
∣
∣(Tx)(t)

∣
∣

≤ 
 – M

(
M

�(α)

∫ 


f
(
s, x(s)

)
ds + (α – )a + b

)

≤ 
 – M

(
M

�(α)

∫ 


f
(
s, x(s)

)
ds + (α – )a + b

)

≤ M

( – M)�(α)
ρ‖x‖ +


 – M

(
(α – )ρ‖x‖ + ρ‖x‖)

=
M + α�(α)
( – M)�(α)

ρ‖x‖ = ‖x‖.

So we get ‖(I – A)–Tx‖ ≤ ‖x‖, x ∈ ∂�.
Since f∞ > ρ, there exists a constant R >  such that

f (t, x) > ρx

for all t ∈ [ 
 , 

 ] and x ∈ [R, +∞).
Let r > max{r, R

σ
} and � = {x ∈ P : ‖x‖ < r}.

For all x ∈ ∂�, we have that ‖x‖ = r and x(t) ≥ q(t)(–M)
M

‖x‖ ≥ σ‖x‖ = σ r > R for t ∈
[ 

 , 
 ]. Then

(I – A)–(Tx)
(




)

≥ (Tx)
(




)

≥
∫ 


G

(



, s
)

f
(
s, x(s)

)
ds

≥ (α – )q( 
 )

�(α)

∫ 


k(s)f

(
s, x(s)

)
ds
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≥ (α – )q( 
 )

�(α)

∫ 





k(s)f
(
s, x(s)

)
ds

≥ (α – )σρ

α�(α)

∫ 





k(s) ds‖x‖

≥ (α – )σρ

α�(α)

∫ 





( – s)s ds‖x‖

=
σ (α – )
,�(α)α

ρ‖x‖.

So ‖(I – A)–Tx‖ ≥ ‖x‖, x ∈ ∂�.
By Lemma ., we conclude that the operator (I – A)–T has at least one fixed point in

P ∩ (� \ �), which implies that the boundary value problem (.)-(.) has a positive
solution.

The proof is completed. �

Theorem . Assume (B) holds, f ∞ < ρ and f > ρ. Then there exist small enough a

and b such that the boundary value problem (.)-(.) has at least one positive solution
for  ≤ a ≤ a and  ≤ b ≤ b.

Proof Since f ∞ < ρ, for ε = ρ–f ∞
 > , there exists a constant R >  such that f (t, x) <

(ρ – ε)x for t ∈ [, ] and x ∈ [R, +∞).
Let L = max(t,x)∈[,]×[,R] f (t, x), so

f (t.x) ≤ L + (ρ – ε)x for t ∈ [, ] and x ∈ [, +∞).

Let r > max{R, L
ε
}, � = {x ∈ P : ‖x‖ < r},  ≤ a ≤ a,  ≤ b ≤ b and max{a, b} ≤

ρr.
For all x ∈ ∂�, we have ‖x‖ = r and

∣
∣(I – A)–(Tx)(t)

∣
∣ ≤ ∥

∥(I – A)–∥∥ · ∣∣(Tx)(t)
∣
∣ ≤ 

 – M
∣
∣(Tx)(t)

∣
∣

≤ 
 – M

(∫ 



M

�(α)
f
(
s, x(s)

)
ds + (α – )a + b

)

≤ 
 – M

(∫ 



M

�(α)
f
(
s, x(s)

)
ds + (α – )a + b

)

≤ M

( – M)�(α)

∫ 



(
L + (ρ – ε)‖x‖)ds +

α

 – M
ρ‖x‖

≤ M + α�(α)
( – M)�(α)

ρ‖x‖ = ‖x‖.

So ‖(I – A)–Tx‖ ≤ ‖x‖, x ∈ ∂�.
Since f > ρ, there exists a constant  < r < R such that f (t, x) > ρx for t ∈ [ 

 , 
 ] and

x ∈ [, r].
Let � = {x ∈ P : ‖x‖ < r}. Similar to the proof of Theorem ., we show ‖(I –A)–Tx‖ ≥

‖x‖, x ∈ ∂�.
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By Lemma ., we conclude that the operator (I – A)–T has at least one fixed point in
P ∩ (� \ �), which implies that the boundary value problem (.)-(.) has at least one
positive solution.

The proof is completed. �

Theorem . Suppose (B) holds, f∞ > ρ. Then there exist large enough positive constants
a and b such that the boundary value problem (.)-(.) has no positive solution for a > a

and b > b.

Proof Assume that for any large enough a >  and b > , the boundary value problem
(.)-(.) has a positive solution x(t).

Since f∞ > ρ, there exists a large enough constant R >  such that

f (t, x) > ρx for x ∈ [σR, +∞) and t ∈
[




,



]

.

Let min{a, b} > α–R, a > a and b > b. So αa + b > αa + b > (α + )α–R > α–R.
By (.), Lemma . and (B), we have

x(t) ≥ (
(α – )a + b

)
tα– –

(
(α – )a + b

)
tα–.

Hence,

x
(




)

≥ (
(α – )a + b

)
(




)α–

–
(
(α – )a + b

)
(




)α–

=
(




)α–

(αa + b) >
(




)α–

(αa + b) > R,

and we get ‖x‖ > R.
On the other hand, in view of Lemma ., x ∈ P. Then x(t) ≥ σ‖x‖ > σR for t ∈ [ 

 , 
 ].

Therefore,

x
(




)

= (I – A)–(Tx)
(




)

≥ (Tx)
(




)

=
∫ 


G

(



, s
)

f
(
s, x(s)

)
ds +

(
(α – )a + b

)
(




)α–

–
(
(α – )a + b

)
(




)α–

≥ (α – )σρ

α�(α)

∫ 





k(s) ds‖x‖ +
(




)α–(

(
(α – )a + b

)
–

(
(α – )a + b

))

≥ σ (α – )
,�(α)α

ρ‖x‖ +
(




)α–(
a(α –  – α + ) + b

)

≥ ‖x‖ +
(




)α–

(αa + b)

> ‖x‖ + R.

So ‖x‖ > ‖x‖ + R, which is a contradiction. Thus, there exist large enough positive con-
stants a and b such that the boundary value problem (.)-(.) has no positive solution
for a > a and b > b. �
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4 Examples
To illustrate our main results, we present the following examples.

Example . We consider the boundary value problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D



+x(t) = x 
 + x sin t,

x() = x′() = ,
x() = 


∫ 

 x(s) ds + a,
x′() = 


∫ 

 x(s) ds – b,

(.)

and we can establish the following results:
() The boundary value problem (.) has at least one positive solution if parameters

a ∈ [, .) and b ∈ [, .).
() The boundary value problem (.) has no positive solution if parameters

a ∈ (. × , +∞) and b ∈ (. × , +∞).

Proof The boundary value problem (.) can be regarded as the boundary value problem
(.)-(.), where α = 

 , g(s) = 
 , g(s) = 

 , f (t, x) = x 
 + x sin t.

Then M = 
 , M = 

 , σ = mint∈[ 
 , 

 ]
q(t)(–M)

M
= (–M)α–

Mα = ., ρ = (–M)�(α)
M+α�(α) = .,

ρ = ,�(α)α

σ (α–) = ,. and

f∞ = ∞ > ρ, f  =  < ρ.

() Let r = ., we choose max{a, b} < ρr = .. When x ∈ (, .], t ∈
[, ], we have f (t, x) ≤ ρr. Then, by Theorem ., when a ∈ [, .) and b ∈ [, .),
the boundary value problem (.) has a positive solution.

() Let R = . × , when x ∈ [. × , +∞) and t ∈ [ 
 , 

 ], so we choose
min{a, b} > α–R = . × . By Theorem ., for a ∈ (. × , +∞) and b ∈
(. × , +∞), the boundary value problem (.) has no positive solution. �

Example . We consider the boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D



+x(t) = (t
√

x+)x



+
√

x ,
x() = x′() = ,
x() = 


∫ 

 x(s) ds + a,
x′() = 


∫ 

 x(s) ds – b.

(.)

The boundary value problem (.) has a positive solution for parameters a ∈ [, .) and
b ∈ [, .).

Proof Where α = 
 , g(s) = 

 , g(s) = 
 , f (t, x) = (t

√
x+)x




+
√

x , we have that M = 
 , M = 

 , σ =

mint∈[ 
 , 

 ]
q(t)(–M)

M
= (–M)α–

Mα = ., ρ = (–M)�(α)
M+α�(α) = . and ρ = ,�(α)α

σ (α–) = ,.
We set r = ., when x ∈ (., +∞), t ∈ [, ], and we choose max{a, b} < ρr =

. for a ∈ [, .) and b ∈ [, .). So we have

f = ∞ > ρ, f ∞ =  < ρ.

By Theorem ., the boundary value problem (.) has a positive solution. �
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