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Abstract
By considering the Dirichlet boundary condition x(0) = x(1) = 0, we say that
q ∈ L1[0, 1] is a non-degenerate potential if the ordinary differential equation
x′′ + q(t)x = 0 has only the trivial solution x(t) ≡ 0 which verifies the boundary
condition. Starting with a non-degenerate positive constant potential B, in this paper,
we will apply the Pontryagin maximum principle (PMP) in optimal control theory to
find the optimal bound r = r(A,B) for any A ∈ [–∞,B) such that any potential
q ∈ L1[0, 1] satisfying A ≤ q≤ B and

∫
[0,1] q(t)dt > r(A,B) is necessarily non-degenerate.

Such a non-degeneracy problem can be considered as the dual problem in a series of
papers by Li et al.

Keywords: non-degenerate potential; eigenvalue; optimal control; Pontryagin
maximum principle; boundary value problem

1 Introduction
Let us introduce the notion of non-degenerate potentials by considering the Dirichlet
boundary condition.

Definition  Let q ∈ L[, ] be an integrable potential. If the following problem

x′′ + q(t)x = , t ∈ [, ], ()

x() = x() = , ()

has only the trivial solution x ≡ , we say that q(t) is a non-degenerate potential, or problem
()-() is non-degenerate.

If problem ()-() is non-degenerate, then, for any h ∈ L[, ], by the Fredholm alterna-
tive principle, the inhomogeneous equation

x′′ + q(t)x = h(t), t ∈ [, ],

has a unique solution x(t) verifying boundary condition (). Thus one can also say that
problem ()-() is non-resonant or invertible, as seen from different literature sources.
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Non-degenerate potentials are very important in many problems. For example, it is well
known that non-degenerate potentials play an important role in the solvability of bound-
ary value problems of semilinear differential equations [–]. The maximum and anti-
maximum principles for various boundary value problems are also related with non-
degenerate potentials [–]. More importantly, in recent years, it was found that the
solvability, the exact multiplicity and the stability of solutions of several interesting classes
of superlinear differential equations of the Landesman-Lazer type or of the Ambrosetti-
Prodi type can be obtained from the characterization of non-degenerate potentials [, ,
–].

All of these applications are based on explicit construction of non-degenerate potentials.
To describe some known classes of non-degenerate potentials, let us use

λ(q) < λ(q) < · · · < λm(q) < · · ·

to denote all eigenvalues of

ẍ +
(
λ + q(t)

)
x =  ()

with boundary condition (). Then the non-degeneracy can be explained using eigenvalues
as follows.

Lemma  For q ∈ L[, ], problem ()-() is non-degenerate if and only if λm(q) �=  for all
m ∈ N.

Throughout this paper, denote

μm := λm() = (mπ ), m ∈ N,

the eigenvalues of problem ()-() with zero potential q = . Then a constant potential q =
c ∈ R is non-degenerate if and only if c �= μm for all m ∈ N. Moreover, by the comparison
results for eigenvalues, it is well known that if q satisfies

μn– ≺ q ≺ μn ()

for some n ∈ N, then q is non-degenerate. This is a trivial, but frequently used, class of non-
degenerate potentials. Here μ is understood as –∞, and q ≺ q means that q(t) ≤ q(t)
for all t ∈ [, ] and q(t) < q(t) on some subset of [, ] of positive measure.

Because of Lemma , it is not an easy task to explicitly characterize non-trivial classes of
non-degenerate potentials. However, in the study of semilinear ordinary differential equa-
tions, Li and his collaborators have applied the Pontryagin maximum principle (PMP) in
the optimal control theory to construct several useful classes of non-degenerate potentials
of () with respect to various boundary conditions like the Dirichlet, the Neumann, and the
periodic boundary conditions. See [, , , ]. Their main results, by taking the Dirichlet
boundary condition as an example, are as follows. For –∞ ≤ A < B ≤ +∞, denote

�A,B :=
{

q ∈ L[, ] : A ≤ q(t) ≤ B a.e. t ∈ [, ]
}

.
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Starting with a non-degenerate constant potential q ≡ A ∈ (μn,μn+) for some n ∈ N, for
any B ∈ [μn+, +∞), the optimal bound R(A, B) has been found so that any q ∈ �A,B satis-
fying

∫ 


q(t) dt < R(A, B)

is a non-degenerate potential of problem ()-(). In fact, the bound R := R(A, B) ∈ (A,μn+]
is uniquely determined by the following equation:

√
B

cot

√
B

n
R – A
B – A

=
√
A

tan

√
A

n
B – R
B – A

. ()

Moreover, by letting

R(A, +∞) := lim
B→+∞ R(A, B) = A + n tan

√
A

n
,

R(A, +∞) is the corresponding optimal bound so that potentials q ∈ �A,+∞ satisfying

∫ 


q(t) dt < R(A, +∞)

are also non-degenerate.
In [], the second author of this paper has used some Sobolev inequalities to char-

acterize another important class of non-constant non-degenerate potentials for problem
()-() and its p-Laplacian counterpart. This class of non-degenerate potentials is used in
[, ]. It is worth mentioning that papers [–] on the Lyapunov-type inequalities are
also related with non-degenerate potentials.

In this paper, we study the following problem which can be considered as a dual problem
to that in [, , , ]. Given an upper bound

B ∈ (μn,μn+) for some n ∈ N, i.e., n = [
√

B/π ] ∈ N. ()

In case A ∈ (μn, B), any q ∈ �A,B is always non-degenerate. See condition (). In the fol-
lowing we assume that

A ∈ [–∞,μn] ()

and consider potentials in �A,B. We aim at finding the optimal value r = r(A, B) such that
any q ∈ �A,B satisfying

∫ 


q(t) dt > r(A, B) ()

is necessarily non-degenerate. The final results are as follows.

Theorem  Let B and A be as in () and ().
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• For A ∈ (,μn], let

r := r(A, B) ∈ [
μn, A + nπ (B – A)/

√
B
] ⊂ [μn, B) ()

be the unique solution of the following equation:

√
Bcot

√
B

n
r – A
B – A

=
√

Atan

√
A

n
B – r
B – A

. ()

• For A ∈ [–∞, ], let

r(A, B) := nπ
√

B = π
√

B[
√

B/π ]. ()

Then, for any q ∈ �A,B satisfying condition (), we have

λn(q) <  < λn+(q), ()

which implies that problem ()-() is non-degenerate. Moreover, the bound r(A, B) is opti-
mal in the sense that there exists q̂ ∈ �A,B such that

∫ 


q̂(t) dt = r(A, B)

and q̂ is degenerate.

One may compare equation () with (). The results of Theorem  are obtained mainly
using the PMP. However, different from the arguments in [, , , ], we will extensively
apply the eigenvalue theory for problem (). In fact, the non-degeneracy of potentials is
a consequence of the estimates () on eigenvalues which are also optimal in a certain
sense. Moreover, in order to prove the existence of the optimal control potentials for the
optimal control problems deduced from the non-degenerate potential problems, we find
that the (strong) continuous dependence of solutions and eigenvalues of () in potentials
(with weak topology) in [] can simplify the arguments significantly. In these senses, the
present paper has given some simpler approach to the non-degeneracy problem.

The paper is organized as follows. At first, we introduce the Pontryagin maximum prin-
ciple in optimal control theory and establish the connection between non-degeneracy
problems and optimal control problems. Secondly, Theorem  is proved by solving equa-
tions in the PMP. Finally, we briefly consider non-degenerate potentials of () with the
Neumann boundary condition and point out that the class of potentials in Theorem  is
also non-degenerate with respect to the Neumann problem. As seen from applications
of non-degenerate potentials to nonlinear differential equations mentioned above, it can
be expected that the new class of non-degenerate potentials in Theorem  can lead to
interesting applications to semilinear and superlinear differential equations.

2 Control systems and the Pontryagin maximum principle
For our purpose, let us introduce the following class of optimal control problems [].
A control system consists of four elements: state-control trajectory, final state, set of ad-
missible controls and cost functional.
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• the state-control trajectory (x, u) is characterized by a first-order ordinary differential
system

ẋ = f
(
x, u(t), t

)
, t ∈ [t, tf ], ()

with a known initial state

x(t) = x, ()

where x, x ∈ Rn, u ∈ Rm;
• the final state is usually described by

g
(
x(tf )

)
= , ()

where g : Rn → Rk is a known function;
• the set of admissible controls is described by

U[t,tf ] :=
{

u(t) : u(·) is a piecewise continuous function on [t, tf ]

such that u(t) ∈ Um for all t ∈ [t, tf ] and

problem ()-()-() has solutions x(t)
}

, ()

where Um ⊂ Rm is a known domain; and
• the cost functional is a functional of u(·) ∈ U[t,tf ] taking the following form:

J
[
u(·)] =

∫ tf

t

L
(
x(t), u(t), t

)
dt, ()

where L(x, u, t) is a known function.
The optimal control problem is to find an admissible control u(·) ∈ U[t,tf ] that max-

imizes the cost functional J[u(·)]. Suppose that the optimal control problem is solvable
and (x∗, u∗) is the optimal state-control trajectory . Then u∗ and x∗ can be characterized
by the Pontryagin maximum principle [].

Theorem  (Pontryagin maximum principle) Consider the optimal control problem ()-
(), where Um ⊂ Rm is a closed bounded set. Suppose that

• f(x, u, t), fx(x, u, t), L(x, u, t), g(x), gx(x) are continuous; and
• f(x, u, t), fx(x, u, t), Lx(x, u, t) are bounded.
Let us introduce the Hamiltonian H by

H(x, u,ψ , t) = L(x, u, t) + ψT f(x, u, t), ()

where ψ ∈ Rn. If (u∗, x∗) is the optimal solution of the problem, then there exist a vector-
valued function ψ : [t, tf ] → Rn and a constant vector μ ∈ Rn such that (x∗(t),ψ(t)) satis-
fies the following Hamiltonian system:

{
ẋ∗(t) = ∂H

∂ψT (x∗(t), u∗(t),ψ(t), t),
ψ̇T (t) = – ∂H

∂x (x∗(t), u∗(t),ψ(t), t),
()
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and boundary conditions

x∗(t) = x, g
(
x∗(tf )

)
= , ()

ψT (tf ) = –μT ∂g(x∗(tf ))
∂x

. ()

Moreover, one has

H
(
x∗(t), u∗(t),ψ(t)

) ≡ const. ∀t ∈ [t, tf ], ()

and, at any t ∈ [t, tf ] such that u∗(·) is continuous at t, there holds

H
(
x∗(t), u∗(t),ψ(t)

)
= max

û∈Um
H

(
x∗(t), û,ψ(t)

)
. ()

For problem ()-(), the construction of non-degenerate potentials q ∈ �A,B can be
stated as the following optimal control problem. By setting (x, x) = (x, ẋ), equation ()
is equivalent to the following system:

ẋ = x, ẋ = –q(t)x, ()

the initial condition can be taken as

(
x(), x()

)
= (, ). ()

The final state is

x() = . ()

The set of admissible controls is

�̂A,B :=
{

q ∈ �A,B : problem ()-() has nontrivial solutions
}

.

Finally, the cost functional on �̂A,B is

J[q] =
∫ 


q(t) dt, q ∈ �̂A,B. ()

In the following we consider the case that A ∈ (–∞,μn] is finite.

Lemma  The optimal control problem ()-() associated with problem ()-() has an
optimal control potential q∗ ∈ �A,B.

Proof As q ≡ μn ∈ �̂A,B, �̂A,B �= ∅. Define

r := sup
q∈�̂A,B

J[q] ∈ [A, B].
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One has qk ∈ �̂A,B such that limk→∞ J[qk] = r. It is well known that the order-interval �A,B

is a compact subset of L[, ] when the weak topology w is considered. Since {qk} ⊂
�̂A,B ⊂ �A,B, without loss of generality, let us assume that qk → q∗ in (L[, ], w). Thus
q∗ ∈ �A,B.

Let xk(t), k ∈ N, be solutions of

ẍk + qk(t)xk =  in [, ],

satisfying (xk(), ẋk()) = (, ). By the continuity dependence results of solutions on po-
tentials in [], as k → ∞, xk converges in (C[, ],‖ ·‖C ) to x which is the unique solution
of

ẍ + q∗(t)x =  in [, ],

satisfying (x(), ẋ()) = (, ). Since xk() ≡  for all k, one has x() = . Since x �= , we see
that q∗ ∈ �̂A,B. Finally, qk → q∗ in (L[, ], w) implies that J[qk] → J[q∗]. Hence J[q∗] = r,
i.e., q∗ is an optimal control. �

Lemma  Let q∗ ∈ �̂A,B be the optimal control in Lemma . Define

r(A, B) :=
∫

[,]
q∗(t) dt ∈ [μn, B). ()

Then any potential q ∈ �A,B satisfying () is non-degenerate with respect to problem ()-().

Proof Suppose that q ∈ �A,B satisfies (). If problem ()-() has non-trivial solutions, one
would have q ∈ �̂A,B and J[q∗] = supq̂∈�̂A,B

J[q̂] ≥ J[q], a contradiction with ().
Since q ≡ B ∈ �A,B is non-degenerate, one has q∗ ≺ B and r(A, B) < B. On the other hand,

as q ≡ μn ∈ �A,B is degenerate, one has r(A, B) ≥ J[μn] = μn. These have given the bounds
() for r(A, B). �

3 Construction of non-degenerate potentials for the Dirichlet problem
In this section, we apply the PMP to find the optimal control q∗ and complete the proof of
Theorem . To this end, we need only to take n = , m = k = . From the settings ()-(),
let us take

f(x, q, t) =

(
x

–qx

)

,

x =

(



)

,

g(x) = x,

L(x, q, t) = q,

U = [A, B] ⊂ R.

Then the Hamiltonian () in the PMP is

H = q + ψT f(x, q, t) = q + ψx – ψqx, where ψ ∈ R. ()
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Let q∗ ∈ �A,B and (x∗
 , x∗

) be the optimal solutions. Then ()-() in the PMP read as

ẋ∗
 = x∗

, ẋ∗
 = –q∗(t)x∗

 , ()

ψ̇ = q∗(t)ψ, ψ̇ = –ψ, ()

x∗() =

(



)

, x∗() =

(

ν

)

, ()

ψ() =

(
–μ



)

, ()

where μ,ν ∈ R are some constants.
Note that system () is essentially the same as (). In fact, both x∗

 (t) and ψ(t) are
solutions of the following equation:

ÿ + q∗(t)y = , t ∈ [, ]. ()

Moreover, from () and (), one has

(
x∗

 (), ẋ∗
 ()

)
= (,ν) and

(
ψ(), ψ̇()

)
= (,μ).

Thus there exists a constant c such that

ψ(t) ≡ cx∗
 (t) and ψ(t) ≡ –cx∗

(t), t ∈ [, ]. ()

Recall that eigenvalues λm(q) of problem ()-() have the following comparison proper-
ties:

qi ∈ L[, ], q ≤ q �⇒ λm(q) ≥ λm(q) for all m ∈ N,

and

qi ∈ L[, ], q ≺ q �⇒ λm(q) > λm(q) for all m ∈ N,

where q ≺ q means that q ≤ q and q(t) < q(t) on some subset of [, ] of positive
measure. It is trivial that

λm(q + γ ) = λm(q) – γ

for any constant γ , we see that condition B ∈ (μn,μn+) is equivalent to

λn(B) <  < λn+(B). ()

As for the optimal potential q∗ in Lemma , one has the following results.

Lemma  The optimal control potential q∗ in Lemma  must satisfy λn(q∗) = . Conse-
quently, as an eigenfunction, x∗

 (t) has precisely (n + ) zeros in [, ], say  = t < t < · · · <
tn = .
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Proof Since q∗ ∈ �̂A,B, one has λm(q∗) =  for some m ∈ N. As q∗ ≤ B, by the comparison
results for eigenvalues, one has λn+(q∗) ≥ λn+(B) > . Thus m ≤ n.

We assert that m = n and hence one has λn(q∗) = . Otherwise, assume that m ≤ n – .
Denote

qτ := ( – τ )q∗ + τB ∈ �A,B, τ ∈ [, ].

One has λn(q) = λn(q∗) > λm(q∗) =  and λn(q) = λn(B) < . By the continuity of λn(qτ )
in τ , there exists τ ∈ (, ) such that λn(qτ ) = . Since qτ ∈ �̂A,B and

∫

[,]
qτ (t) dt >

∫

[,]
q∗(t) dt,

it is a contradiction with the optimality of q∗. �

In order to deduce the optimal potential q∗, we will use properties () and () in the
PMP. For simplicity, we write

y(t) := x∗
 (t), t ∈ [, ],

which is a solution of problem ()-() and satisfies (y(), ẏ()) = (, ).
By () and (), H takes the following form:

H
(
x∗(t), q,ψ(t)

)
= q + ψ(t)x∗

(t) – qψ(t)x∗
 (t) ≡ (

 – cy(t)
)
q – cẏ(t) =: G(t, q),

where q ∈ [A, B]. When t is fixed, as a function of q ∈ [A, B], G(t, q) attains its maximum
at

q =

⎧
⎪⎨

⎪⎩

B if  – cy(t) > ,
A if  – cy(t) < ,
∈ [A, B] if  – cy(t) = .

From (), we conclude that, at any t ∈ [, ] such that q∗(·) is continuous at t, there holds

q∗(t) =

⎧
⎪⎨

⎪⎩

B if  – cy(t) > ,
A if  – cy(t) < ,
∈ [A, B] if  – cy(t) = .

If c ≤ , we would have q∗ = B, which is impossible. Hence c > . Let us denote
c∗ := /

√
c > . Then, at any t ∈ [, ] such that q∗(·) is continuous at t, one has

q∗(t) =

⎧
⎪⎨

⎪⎩

B if |y(t)| < c∗,
A if |y(t)| > c∗,
∈ [A, B] if |y(t)| = c∗.

()

Moreover, from (), one has

H =
(
 – y(t)/c

∗
)
q∗(t) – ẏ(t)/c

∗ ≡ const. ()
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For each i = , , . . . , n, as y(ti) = , one has |y(t)| < c∗ on some (maximal) interval Ii con-
taining ti. By (), q∗(t) = B on Ii. Thus () implies that B – ẏ(ti)/c∗ ≡ const. Hence
ẏ(ti+) = –ẏ(ti). Since ẏ(t) is assumed to be , we conclude

(
y(ti), ẏ(ti)

)
=

(
, (–)i), i = , , . . . , n. ()

Moreover, on Ii, y(t) satisfies

ÿ + By = .

Using conditions (), we know that, on Ii, y(t) is given by

y(t) = (–)i sin(
√

B(t – ti))√
B

. ()

Let us introduce

J :=
{

t ∈ (, ) :
∣
∣y(t)

∣
∣ ≥ c∗

}
.

Then J is a closed set contained in (, ). Note that q∗(t) = B on [, ]\J and q∗ �= B. Thus
J �= ∅ and J consists of closed intervals

J =
⋃

Jj, ()

where Jj = [ξj,ηj] ⊂ (, ) may shrink into a single point. However, as q∗ �= B, at least one of
Jj ’s is a non-trivial closed interval.

Lemma  The number of intervals Jj’s in (), including the degenerate ones, is precisely n.
Moreover, by labeling Ji according to the order in R, one has Ji ⊂ (ti–, ti) for i = , , . . . , n,
where ti’s are as in Lemma .

Proof Note that ti /∈ J for all i = , , . . . , n. Thus

J ⊂
n⋃

i=

(ti–, ti).

Step . For each i = , , . . . , n, we assert that (ti–, ti) contains at most one interval Jj from
().

Otherwise, we would have two neighboring intervals [ξ ,η] and [ξ̂ , η̂] from Jj ’s such
that ti– < ξ ≤ η < ξ̂ ≤ η̂ < ti and |y(t)| < c∗ on (η, ξ̂ ). Since y(t) does not change sign in
(ti–, ti), let us assume that y(η) = y(ξ̂ ) = c∗ and  < y(t) < c∗ on (η, ξ̂ ). Then, on (η, ξ̂ ),
ÿ(t) = –q∗(t)y(t) = –By(t) <  and y(t) is strictly concave. Hence we would have y(t) > c∗
on (η, ξ̂ ), a contradiction.

Step . Let Jj = [ξ ,η] be any interval from () such that Jj = [ξ ,η] ⊂ (ti–, ti). For t ∈ [η, ti],
y(t) is given by (). Thus c∗ = |y(η)| ≤ /

√
B.

Step . For each i = , , . . . , n, we assert that (ti–, ti) contains precisely one interval Jj

from ().
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Otherwise, from Step , let us assume that (ti–, ti) contains no Jj from (). Thus |y(t)| <
c∗ on (ti–, ti). On [ti–, ti], y(t) is given by (). As y(ti–) = , we have from () that ti –
ti– = π/

√
B. Thus c∗ > |y((ti– + ti)/)| = /

√
B, a contradiction with the result on c∗ in

Step . �

For i = , , . . . , n, denote Ji = [ξi,ηi] ⊂ (ti–, ti). We have obtained the following formulas:

q∗(t) = B for t ∈ [ti–, ξi] ∪ [ηi, ti], ()

y(t) =

⎧
⎨

⎩

(–)i– sin(
√

B(t–ti–))√
B

for t ∈ [ti–, ξi],

(–)i sin(
√

B(t–ti))√
B

for t ∈ [ηi, ti].
()

These give q∗(t) and y(t) on [, ]\J . Moreover, as |y(ξi)| = |y(ηi)| = c∗, we have from ()

ξi – ti– = ti – ηi ≡ τ , i = , , . . . , n, ()

where τ = arcsin(c∗
√

B)/
√

B >  is a constant. Note that τ ≤ π/
√

B.
In order to construct q∗(t) and y(t) on J , we need to distinguish two cases.
Case  < A ≤ μn. Let us first consider a non-trivial interval from Ji’s, say J = [ξ,η],

where ξ < η. Since q∗ ≥ A > , equation () implies that y(t) is strictly concave on [t, t].
Thus y(t) > c∗ = y(ξ) = y(η) on (ξ,η). By (), one has

q∗(t) = A, t ∈ (ξ,η). ()

Since y(t) satisfies

ÿ + Ay = 

on (ξ,η), y(t) is symmetric with respect to t = (ξ + η)/ and

y(t) = C cos
(√

A
(
t – (ξ + η)/

))
, t ∈ (ξ,η), ()

where C �=  is some constant. In order for y(t) to be C on [t, t], it is necessary and
sufficient that

(
y(ξ+), ẏ(ξ+)

)
=

(
y(ξ–), ẏ(ξ–)

)
.

By formulas () and (), this is

√
Bcot(

√
Bτ ) =

√
A tan

(√
A

|J|


)

, ()

where τ is as in (). Hence the length |J| = η – ξ is uniquely determined by the param-
eter τ .

Next, for any i, it follows from () and () that Ji = [ξi,ηi] has the same length with
|J|. Hence ti – ti– = /n for all i, i.e., ti = i/n for i = , , . . . , n. By using the parameter τ in
(), one has then |Ji| = /n – τ .
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Finally, let us introduce the following parameter:

α := nτ ∈ (, nπ/
√

B] ⊂ (, ). ()

Then |Ji| = /n – τ = ( – α)/n and equation () reads as

√
Bcot

α
√

B
n

=
√

Atan
( – α)

√
A

n
. ()

When A and B are fixed, it is easy to verify that equation () has a unique solution
α = α(A, B) in the interval () for α. In fact, one has  < α(A, B) < nπ/

√
B in this case.

Moreover, q∗(t) is determined by () and ().

Lemma  Suppose that B is as in () and A ∈ (,μn]. Then the optimal control potential
q∗ ∈ �A,B is unique. Moreover, one has q∗(t) ≡ q∗(t – (i – )/n) for all t ∈ [(i – )/n, i/n],
where i = , , . . . , n, and q∗|[,/n] is given by

q∗(t) =

{
B for t ∈ [,α/n] ∪ [/n – α/n, /n],
A for t ∈ (α/n, /n – α/n),

()

where α = α(A, B) ∈ (, nπ/
√

B) is the unique solution of equation ().

Case A ≤ . Denote Ji = [ξi,ηi] ⊂ (ti–, ti). At first, we assert that y(t) ≡ (–)i+c∗ on Ji.
This is trivial when ξi = ηi. In the following, we assume that ξi < ηi. If y(t) is not constant
on Ji, one would have a non-trivial subinterval (ξ ,η) ⊂ [ξi,ηi] such that

(–)i+y(t) > c∗ on (ξ ,η), and (–)i+y(ξ ) = (–)i+y(η) = c∗. ()

Then, on (ξ ,η), it follows from () that q∗(t) = A ≤  and from equation () that
(–)i+ÿ(t) = –A(–)i+y(t) ≥ . Thus (–)i+ẏ(t) is non-decreasing. However, () implies
that (–)i+ẏ(ξ ) ≥  and (–)i+ẏ(η) ≤ . Therefore (–)i+ẏ(t) ≡  and y(t) is constant on
(ξi,ηi), a contradiction with assumption ().

Next we assert that

ẏ(t) =  ∀t ∈ Ji = [ξi,ηi]. ()

In fact, for any t ∈ Ji, one has (–)i+y(t) = maxs∈(ti–,ti)(–)i+y(s). Hence one has ().
Finally, from (), () and (), one knows that τ satisfies cos(

√
Bτ ) = . Hence

τ = π/
√

B. ()

Moreover, as (–)i+y(t) ≡ c∗ on (ξi,ηi), we obtain from equation () that

q∗(t) = , t ∈ (ξi,ηi), i = , , . . . , n. ()

Lemma  Suppose that B is as in () and A ∈ (–∞, ]. Then the optimal control potential
q∗ ∈ �A,B is not unique. By letting

α = α(A, B) := nτ = nπ/
√

B ∈ (, ), ()
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one optimal control potential q∗ can be chosen so that q∗(t) ≡ q∗(t – (i – )/n) for all t ∈
[(i – )/n, i/n], where i = , , . . . , n, and q∗|[,/n] is given by

q∗(t) =

{
B for t ∈ [,α/n] ∪ [/n – α/n, /n],
 for t ∈ (α/n, /n – α/n).

()

Here formulas () and () are deduced from () and from (), (), respectively.

Proof of Theorem  Case : A ∈ (,μn]. From Lemma  and formula (), one has

r(A, B) =
∫ 


q∗(t) dt = n

∫ /n


q∗(t) dt = ( – α)A + αB, ()

where α = α(A, B) is the solution of equation (). By letting r = r(A, B), one has from ()
that α = (r – A)/(B – A) and  – α = (B – r)/(B – A). Substituting into (), we know that
r = r(A, B) satisfies equation (). Moreover, one has from Lemma  that r ≥ μn and from
() that r = A + α(B – A) < A + nπ (B – A)/

√
B. Hence r is inside the interval () in this

case.
Case : A ∈ (–∞, ]. From () and (), one has

r(A, B) = n
∫ /n


q∗(t) dt = nB(α/n) = nπ

√
B.

This is ().
In these two cases, denote

�̌A,B :=
{

q ∈ L[, ] : A ≤ q(t) ≤ B a.e. t ∈ [, ], and
∫ 


q(t) dt > r(A, B)

}

.

Lemma  asserts that any q ∈ �̌A,B is non-degenerate. In fact, as �̌A,B is a convex set con-
taining B, for any q ∈ �̌A,B, one has ( – s)q + sB ∈ �̌A,B for s ∈ [, ]. By Lemma ,

m(s) := λm
(
( – s)q + sB

) �=  ∀s ∈ [, ],∀m ∈ N.

As continuous functions of s, one has then

 < m()m() = λm(q)λm(B) ∀m ∈ N.

Thus λn(q) and λn+(q) have the same signs as those of λn(B) and λn+(B), respectively. Due
to (), we obtain ().

Moreover, the optimality of r(A, B) follows from Lemmas  and , by simply taking
q̂ = q∗.

Case : A = –∞. In this case, one has �–∞,B ⊃ �A,B for any A ∈ (–∞, ]. By the meaning
of r(–∞, B), one has r(–∞, B) ≥ r(, B) = nπ

√
B.

On the other hand, suppose that q ∈ �–∞,B satisfies

� :=
∫ 


q(t) dt > nπ

√
B. ()
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Since q ≤ B, one has

λn+(q) ≥ λn+(B) > . ()

For any A ∈ (–∞, ), define

EA :=
{

t ∈ [, ] : q(t) < A
}

,

qA(t) :=

{
q(t) for t ∈ [, ]\EA,
 for t ∈ EA.

Then qA ≥ q and qA ∈ �A,B. Let  < ε < � – nπ
√

B be a constant. See (). Then qA – ε ∈
�A–ε,B and

∫ 



(
qA(t) – ε

)
dt ≥

∫ 


q(t) dt – ε = � – ε > nπ

√
B.

Thus qA – ε ∈ �̌A–ε,B. From inequality (), for qA – ε, we know that

λn(qA – ε) = λn(qA) + ε < . ()

When A ↓ –∞, the measure of EA tends to  and ‖qA – q‖ → . Therefore

λn(q) = lim
A↓–∞

λn(qA) ≤ –ε < .

See (). Combining with (), we know that q also satisfies (). Thus r(–∞, B) ≤
nπ

√
B. �

Remark  Let B be as in (). For the case A = –∞, Theorem  means that any potential
in

�̌–∞,B :=
{

q ∈ L[, ] : q(t) ≤ B a.e. t ∈ [, ], and

∫ 


q(t) dt > r(–∞, B) = nπ

√
B
}

is non-degenerate. Note that these non-degenerate potentials q(t) may be unbounded from
below.

Let us fix B as in () and consider r(A, B) as a function of A ∈ (–∞,μn]. From equation
(), it is easy to prove that r = r(A, B) is continuous and non-increasing in A. Moreover,
one has r(μn, B) = μn = (nπ ). As a function of A, the graph of r(A, B) is as in Figures 
and .

4 Non-degenerate potentials for the Neumann problem
For equation () with the Neumann boundary condition

ẋ() = ẋ() = , ()
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Figure 1 The bound r(A, B) with the choice
B = 20 ∈ (μ1,μ2). Solid: r = r(A,B), dashed: r = B.

Figure 2 The bound r(A, B) with the choice
B = 70 ∈ (μ2,μ3). Solid: r = r(A,B), dashed: r = B.

the non-degenerate potentials can be defined similarly as in Definition . Given a potential
q ∈ L[, ]. The eigenvalues of problem ()-() are

λ̂(q) < λ̂(q) < · · · < λ̂m(q) < · · · , lim
m→+∞ λ̂m(q) = +∞. ()

Note that

μ̂m := λ̂m() = (mπ ), m ∈ Z+ := {} ∪ N. ()

One has μ̂m = μm for m ∈ N.
By the approach in the preceding sections, for the Neumann problem, the results are as

follows.

Theorem  Let B and A be as in () and (), where n ∈ N. By letting r(A, B) and �̌A,B

be as those for the Dirichlet problem, any q ∈ �̌A,B is also non-degenerate with respect to
problem ()-().

For the Neumann problem, one has the zeroth eigenvalue. See () and (). This leads
to the following problem. Suppose that B and A are such that

 < B < μ, A ≤ . ()

What is the optimal lower bound r(A, B) for
∫ 

 q(t) dt so that any q ∈ �A,B is non-
degenerate?
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Theorem  Let B and A be as in (). Then r(A, B) ≡ . That is, any q ∈ �A,B satisfying

∫ 


q(t) dt >  ()

is a non-degenerate potential of problem ()-(). Moreover, the lower bound  in () is
optimal.

Proof This theorem is simply a restatement of some classical results. In fact, for any q ∈
L[, ], it is well known that

λ̂(q) ≤ –
∫ 


q(t) dt.

See []. Under assumption (), one has λ̂(q) < . On the other hand, for any q ∈ �A,B, as
q ≤ B, one has λ̂(q) ≥ λ̂(B) = μ – B > . See assumption (). Thus q is a non-degenerate
potential of problem ()-().

As for the optimality, one needs only to notice that the zero potential q =  ∈ �A,B is
degenerate with respect to problem ()-(). �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors have equally contributed to this article and also read and approved the final manuscript.

Acknowledgements
The authors would like to thank Zhiyuan Wen for helpful discussions. This work is supported by the National Natural
Science Foundation of China (Grant No. 11231001 and No. 11371213) and the National 111 Project of China (Station
No. 111-2-01).

Received: 19 March 2015 Accepted: 6 October 2015

References
1. Chen, H, Li, Y: Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities.

Proc. Am. Math. Soc. 135, 3925-3932 (2007)
2. Chen, H, Li, Y: Bifurcation and stability of periodic solutions of Duffing equations. Nonlinearity 21, 2485-2503 (2008)
3. Li, Y, Wang, H: Neumann problems for second order ordinary differential equations across resonance. Z. Angew.

Math. Phys. 46, 393-406 (1995)
4. Lin, Y, Li, Y, Zhou, Q: Second boundary value problems for nonlinear ordinary differential equations across resonance.

Nonlinear Anal. 28, 999-1009 (1997)
5. Meng, G, Yan, P, Lin, X, Zhang, M: Non-degeneracy and periodic solutions of semilinear differential equations with

deviation. Adv. Nonlinear Stud. 6, 563-590 (2006)
6. Wang, H, Li, Y: Two point boundary value problems for second order ODEs across many resonant points. J. Math.

Anal. Appl. 179, 61-75 (1993)
7. Wang, H, Li, Y: Existence and uniqueness of solutions to two point boundary value problems for ordinary differential

equations. Z. Angew. Math. Phys. 47, 373-384 (1996)
8. Yang, X: Sturm-Liouville problems for second order ordinary differential equations across resonance. J. Optim. Theory

Appl. 152, 814-822 (2012)
9. Cabada, A, Cid, JA: On comparison principles for the periodic Hill’s equation. J. Lond. Math. Soc. (2) 86, 272-290 (2012)
10. Cabada, A, Cid, JA, Tvrdy, M: A generalized anti-maximum principle for the periodic one dimensional p-Laplacian

with sign changing potential. Nonlinear Anal. 72, 3436-3446 (2010)
11. Torres, PJ, Zhang, M: A monotone iterative scheme for a nonlinear second order equation based on a generalized

anti-maximum principle. Math. Nachr. 251, 101-107 (2003)
12. Zhang, M: Optimal conditions for maximum and antimaximum principles of the periodic solution problem. Bound.

Value Probl. 2010, Article ID 410986 (2010)
13. Kunze, M, Ortega, R: On the number of solutions to semilinear boundary value problems. Adv. Nonlinear Stud. 4,

237-249 (2004)
14. Li, W, Zhang, M: Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations. Appl.

Math. Lett. 22, 314-319 (2009)
15. Ortega, R, Zhang, M: Optimal bounds for bifurcation values of a superlinear periodic problem. Proc. R. Soc. Edinb.,

Sect. A, Math. 135, 119-132 (2005)



Shen and Zhang Boundary Value Problems  (2015) 2015:189 Page 17 of 17

16. Torres, PJ, Cheng, Z, Ren, J: Non-degeneracy and uniqueness of periodic solutions for 2n-order differential equations.
Discrete Contin. Dyn. Syst., Ser. A 33, 2155-2168 (2013)

17. Zhang, M: Certain classes of potentials for p-Laplacian to be non-degenerate. Math. Nachr. 278, 1823-1836 (2005)
18. Cañada, A, Montero, JA, Villegas, S: Lyapunov-type inequalities and Neumann boundary value problems at

resonance. Math. Inequal. Appl. 8, 459-475 (2005)
19. Cañada, A, Montero, JA, Villegas, S: Lyapunov inequalities for partial differential equations. J. Funct. Anal. 237, 176-193

(2006)
20. Cañada, A, Villegas, S: Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues. J. Eur. Math.

Soc. 12, 163-178 (2010)
21. Zhang, M: Continuity in weak topology: higher order linear systems of ODE. Sci. China Ser. A 51, 1036-1058 (2008)
22. Athans, M, Falb, PL: Optimal Control: An Introduction to the Theory and Its Applications. McGraw-Hill, New York

(1966)


	An optimal class of non-degenerate potentials for second-order ordinary differential equations
	Abstract
	Keywords

	Introduction
	Control systems and the Pontryagin maximum principle
	Construction of non-degenerate potentials for the Dirichlet problem
	Non-degenerate potentials for the Neumann problem
	Competing interests
	Authors' contributions
	Acknowledgements
	References


