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Abstract
This paper investigates the existence of solutions for nonlinear fractional differential
equations withm-point Erdélyi-Kober fractional integral boundary conditions on an
infinite interval via the Leray-Schauder nonlinear alternative and the Banach
contraction principle. Some examples illustrating the main results are also presented.
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1 Introduction
Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical models of systems and processes in the fields of physics, chemistry, aerody-
namics, electrodynamics of complex medium, polymer rheology, electrical circuits, biol-
ogy, control theory, fitting of experimental data, and so on, and involves derivatives of frac-
tional order. Fractional derivatives provide an excellent tool for the description of memory
and hereditary properties of various materials and processes. This is the main advantage
of fractional differential equations in comparison with classical integer-order models. The
monographs [–] are commonly cited for the theory of fractional derivatives and inte-
grals and applications to differential equations of fractional order. For more details and
examples, see [–] and the references therein.

However, it has been observed that most of the work on the topic involves either
Riemann-Liouville or Caputo type fractional derivative. Besides these derivatives, the so-
called Erdélyi-Kober fractional derivative, as a generalization of the Riemann-Liouville
fractional derivative, is often used, too. An Erdélyi-Kober operator is a fractional integra-
tion operation introduced by Arthur Erdélyi and Hermann Kober in . These operators
have been used by many authors, in particular, to obtain solutions of the single, dual and
triple integral equations possessing special functions of mathematical physics as their ker-
nels. For the theory and applications of the Erdélyi-Kober fractional integrals, see, e.g., [,
, –] and the references cited therein.
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The fractional anomalous diffusion equations have been studied by many researchers
[, ]. In fact, the mathematical models of nonlinear fractional diffusion equations have
been successfully applied to several phenomena, see [–] and the references cited
therein. In [] Pagnini investigated the generalized grey Brownian motion (ggBm) which
is an anomalous diffusion process derived by the Erdélyi-Kober fractional integral opera-
tor. Some relationships between parameters of the Erdélyi-Kober fractional operators and
the valuable family of stochastic processes generated by the ggBm were also shown. For
more details on fractional diffusion processes in stochastic models, we refer the reader
to []. In [], the author gave a theorem about the series representation of the Erdélyi-
Kober fractional integral operator which was used to find approximate solutions of linear
and nonlinear fractional anomalous diffusions. Numerical analysis and applications to the
real experimental data were also discussed.

Boundary value problems on infinite intervals arise naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and various physical phenomena [].
For boundary value problems of fractional order on infinite intervals, we refer to [–].

Zhao and Ge [] studied the existence of unbounded solutions for the following bound-
ary value problem on the infinite interval:

Dα
u(t) + f

(
t, u(t)

)
= ,  < α ≤ , t ∈ [,∞), (.)

u() = , lim
t→∞ Dα–

 u(t) = βu(ξ ), (.)

where Dα
 denotes the Riemann-Liouville fractional derivative of order α, and  < β , ξ < ∞.

Zhang et al. [] studied the existence of nonnegative solutions for the following bound-
ary value problem for fractional differential equations with nonlocal boundary conditions
on unbounded domains:

Dα
u(t) + f

(
t, u(t)

)
= ,  < α ≤ , t ∈ [,∞), (.)

Iα–
 u() = , lim

t→∞ Dα–
 u(t) = βIα–

 u(η), (.)

where Dα
 denotes the Riemann-Liouville fractional derivative of order α, f ∈ C([,∞) ×

R,R+) and  < β ,η < ∞. The Leray-Schauder nonlinear alternative is used.
Liang and Zhang [] used a fixed point theorem for operators on a cone and proved

the existence of positive solutions to the following fractional boundary value prob-
lem:

Dα
u(t) + f

(
t, u(t)

)
= ,  < α ≤ , t ∈ [,∞), (.)

u() = u′() = , lim
t→∞ Dα–

 u(t) =
m–∑

i=

βiu(ξi), (.)

where Dα
 denotes the Riemann-Liouville fractional derivative of order α, f ∈ C([,∞) ×

R,R+),  < ξ < ξ < · · · < ξm– < ∞, βi ≥ , i = , , . . . , m – , with  <
∑m–

i= βiξ
α–
i <

�(α).
Motivated by the above papers, in this article, we study a new class of boundary value

problems on fractional differential equations with m-point Erdélyi-Kober fractional inte-
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gral boundary conditions on an infinite interval of the form

Dα
u(t) + f

(
t, u(t)

)
= ,  < α ≤ , t ∈ (,∞), (.)

u() = , Dα–
 u(∞) =

m–∑

i=

βiIγi ,δi
ηi

u(ξi), (.)

where Dα
 denotes the Riemann-Liouville fractional derivative of order α, Iγi ,δi

ηi is the
Erdélyi-Kober fractional integral of order δi >  with ηi > , γi ∈R, i = , , . . . , m–, βi ∈R,
and ξi ∈ (,∞), i = , , . . . , m – , are given constants. We prove the existence and unique-
ness of an unbounded solution of the boundary value problem (.)-(.) by using the
Leray-Schauder nonlinear alternative and the Banach contraction principle.

This paper is organized as follows. In Section , we prepare some material needed to
prove our main results. In Section , we obtain the existence and uniqueness results, while
in Section  we give some examples to illustrate our results.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [] and
present preliminary results needed in our proofs later.

Definition . The Riemann-Liouville fractional derivative of order q for a function f :
(,∞) →R is defined by

Dq
f (t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–f (s) ds, q > , n = [q] + ,

where [q] denotes the integer part of the real number q, provided the right-hand side is
pointwise defined on (,∞).

Definition . The Riemann-Liouville fractional integral of order q for a function f :
(,∞) →R is defined by

Iqf (t) =


�(q)

∫ t


(t – s)q–f (s) ds, q > ,

provided the right-hand side is pointwise defined on (,∞).

Definition . The Erdélyi-Kober fractional integral of order δ >  with η >  and γ ∈ R

of a continuous function f : (,∞) →R is defined by

Iγ ,δ
η f (t) =

ηt–η(δ+γ )

�(δ)

∫ t



sηγ +η–f (s)
(tη – sη)–δ

ds

provided the right-hand side is pointwise defined on R+.

Remark . For η = , the above operator is reduced to the Kober operator

Iγ ,δ
 f (t) =

t–(δ+γ )

�(δ)

∫ t



sγ f (s)
(t – s)–δ

ds, γ , δ > ,
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that was introduced for the first time by Kober in []. For γ = , the Kober operator is
reduced to the Riemann-Liouville fractional integral with a power weight

I,δ
 f (t) =

t–δ

�(δ)

∫ t



f (s)
(t – s)–δ

ds, δ > .

From the definition of the Riemann-Liouville fractional derivative and integral, we can
obtain the following lemmas.

Lemma . (See []) Let q >  and y ∈ C(, T) ∩ L(, T). Then the fractional differential
equation Dq

y(t) =  has a unique solution

y(t) = ctq– + ctq– + · · · + cntq–n,

where ci ∈R, i = , , . . . , n, and n –  < q < n.

Lemma . (See []) Let q > . Then, for y ∈ C(, T) ∩ L(, T), it holds

IqDq
y(t) = y(t) + ctq– + ctq– + · · · + cntq–n,

where ci ∈R, i = , , . . . , n, and n –  < q < n.

The following lemmas will be used in the proof of our main results.

Lemma . Let δ,η >  and γ , q ∈R. Then we have

Iγ ,δ
η tq =

tq�(γ + (q/η) + )
�(γ + (q/η) + δ + )

. (.)

Proof Recall the beta function and its property

B(x, y) =
∫ 


ux–( – u)y– du and B(x, y) =

�(x)�(y)
�(x + y)

for x, y > . From Definition ., we have

Iγ ,δ
η tq =

ηt–η(δ+γ )

�(δ)

∫ t



sηγ +η– · sq

(tη – sη)–δ
ds

=
tq

�(δ)

∫ 


uγ + q

η ( – u)δ– du

=
tq

�(δ)
B
(

γ +
q
η

+ , δ
)

=
tq�(γ + (q/η) + )

�(γ + (q/η) + δ + )
.

The proof is complete. �
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Lemma . Let h ∈ C[,∞) with  <
∫ ∞

 h(s) ds < ∞, and

	 = �(α) –
m–∑

i=

βiξ
α–
i

�(γi + (α – )/ηi + )
�(γi + (α – )/ηi + δi + )

	= . (.)

Then the unique solution of the following linear Riemann-Liouville fractional differential
equation

Dα
u(t) + h(t) = , t ∈ (,∞),  < α ≤ , (.)

subject to the Erdélyi-Kober fractional integral boundary condition

u() = , Dα–
 u(∞) =

m–∑

i=

βiIγi ,δi
ηi

u(ξi), (.)

is given by

u(t) =
tα–

	

∫ ∞


h(s) ds –

tα–

	

m–∑

i=

βiIγi ,δi
ηi

Iαh(ξi) – Iαh(t). (.)

Proof Applying the Riemann-Liouville fractional integral of order α to both sides of (.),
we have

u(t) = ctα– + ctα– – Iαh(t), (.)

where c, c ∈R.
The first condition of (.) implies c = . Therefore, we have

u(t) = ctα– – Iαh(t). (.)

The second condition of (.) leads to

c =

	

(∫ ∞


h(s) ds –

m–∑

i=

βiIγi ,δi
ηi

Iαh(ξi)

)

, (.)

where 	 is defined by (.). Thus, the unique solution of fractional boundary value prob-
lem (.)-(.) is as the following integral equation:

u(t) =
tα–

	

∫ ∞


h(s) ds –

tα–

	

m–∑

i=

βiIγi ,δi
ηi

Iαh(ξi) – Iαh(t).

Now, by uniqueness of constants c, c, we conclude that (.) is the unique solution of the
boundary value problem (.)-(.). The proof is completed. �

In this paper, we will use the following space E, which is defined by

E =
{

u ∈ C[,∞) : sup
t∈[,∞)

|u(t)|
 + tα– < ∞

}
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and is equipped with the norm

‖u‖E = sup
t∈[,∞)

|u(t)|
 + tα– .

It is known from [] that E with the above norm is a Banach space.
Using Lemma . with h(t) = f (t, u(t)), we define the operator T : E → E by

Tu(t) =
tα–

	

∫ ∞


f
(
s, u(s)

)
ds –

tα–

	

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)

– Iαf
(
t, u(t)

)
. (.)

Notice that problem (.)-(.) has a solution if and only if the operator equation u = Tu
has a fixed point, where T is given by (.).

We recall the following well-known fixed point theorem which we use in the next sec-
tion.

Theorem . (Nonlinear alternative for single-valued maps) ([]) Let E be a Banach
space, C be a closed, convex subset of E, U be an open subset of C and  ∈ U . Suppose that
F : U → C is a continuous, compact (that is, F(U) is a relatively compact subset of C) map.
Then either

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Lemma . ([]) Let V = {u ∈ E : ‖u‖E < l, l > }, V = {u(t)/( + tα–) : u ∈ V }. If V is
equicontinuous on any compact intervals of [,∞) and equiconvergent at infinity, then V
is relatively compact on E.

Remark . V is called equiconvergent at infinity if and only if for all ε >  there exists
ν(ε) >  such that for all u ∈ V, t, t ≥ ν , it holds

∣
∣∣
∣

u(t)
 + tα–


–

u(t)
 + tα–



∣
∣∣
∣ < ε.

Throughout this paper, we assume that the following conditions hold:

(A) Let |f (t, ( + tα–)u)| ≤ ϕ(t)ω(|u|) on [,∞) ×R with ω ∈ C([,∞), [,∞)) nonde-
creasing and ϕ ∈ L[,∞).

(A) There exists a positive function ϕ(t) with ϕ ∈ L[,∞) such that

∣
∣f

(
t,

(
 + tα–)u

)
– f

(
t,

(
 + tα–)v

)∣∣ ≤ ϕ(t)|u – v| (.)

for each t ∈ [,∞) and u, v ∈ E.

Remark . Condition (A) means a kind of sublinearity. Such a condition is known as
Krasnosel’ski’s condition.
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For convenience, we set

� =
(


|	| +


�(α)

)∫ ∞


ϕ(s) ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr. (.)

Lemma . Let (A) hold. Then the operator T : E → E is completely continuous.

Proof We divide the proof into four steps.
Step : We show that T is uniformly bounded on E.
Let � be any bounded subset of E, then there exists a constant L >  such that ‖u‖E ≤ L

for all u ∈ �. It follows that

‖Tu‖E

= sup
t∈[,∞)

∣∣
∣∣∣

tα–

	( + tα–)

∫ ∞


f
(
s, u(s)

)
ds

–
tα–

	( + tα–)

m–∑

i=

βiηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, u(s)

)
ds dr

–


�(α)

∫ t



(t – s)α–

 + tα– f
(
s, u(s)

)
ds

∣
∣∣
∣∣

≤ 
|	|

∫ ∞



∣∣∣
∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣∣
∣ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

∣
∣∣
∣f

(
s,

( + sα–)u(s)
 + sα–

)∣
∣∣
∣ds dr

+


�(α)

∫ ∞



∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣
∣∣ds

≤
(


|	| +


�(α)

)∫ ∞


ϕ(s)ω

( |u(s)|
 + sα–

)
ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s)ω

( |u(s)|
 + sα–

)
ds dr

≤ ω(L)
(


|	| +


�(α)

)∫ ∞


ϕ(s) ds

+
ω(L)
|	|

m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr

= ω(L)� < ∞ for u ∈ �.

Therefore T� is uniformly bounded.
Step : We show that T is equicontinuous on any compact interval of [,∞).
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For any S > , t, t ∈ [, S] and u ∈ �, without loss of generality, we assume that t < t.

It follows that

∣∣
∣∣

Tu(t)
 + tα–


–

Tu(t)
 + tα–



∣∣
∣∣

=

∣∣∣
∣∣

tα–


	( + tα–
 )

∫ ∞


f
(
s, u(s)

)
ds –

tα–


	( + tα–
 )

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)

–
Iαf (t, u(t))

( + tα–
 )

–
tα–


	( + tα–
 )

∫ ∞


f
(
s, u(s)

)
ds

+
tα–


	( + tα–
 )

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)
+

Iαf (t, u(t))
( + tα–

 )

∣∣
∣∣
∣

=

∣
∣∣
∣∣

tα–


	( + tα–
 )

∫ ∞


f
(
s, u(s)

)
ds –

tα–


	( + tα–
 )

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)

–
Iαf (t, u(t))

( + tα–
 )

–
tα–


	( + tα–
 )

∫ ∞


f
(
s, u(s)

)
ds

+
tα–


	( + tα–
 )

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)
+

Iαf (t, u(t))
( + tα–

 )

+
tα–


	( + tα–
 )

∫ ∞


f
(
s, u(s)

)
ds –

tα–


	( + tα–
 )

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)

–
Iαf (t, u(t))

( + tα–
 )

–
tα–


	( + tα–
 )

∫ ∞


f
(
s, u(s)

)
ds

+
tα–


	( + tα–
 )

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)
+

Iαf (t, u(t))
( + tα–

 )

∣∣
∣∣
∣

≤
∣∣
∣∣

tα–
 – tα–



	( + tα–
 )

∣∣
∣∣

∫ ∞



∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣
∣∣ds +

∣∣
∣∣

tα–
 – tα–



	( + tα–
 )

∣∣
∣∣

m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

×
∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

∣
∣∣
∣f

(
s,

( + sα–)u(s)
 + sα–

)∣
∣∣
∣ds dr +


�(α)( + tα–

 )

×
∣∣∣
∣

∫ t


(t – s)α–f

(
s,

( + sα–)u(s)
 + sα–

)
ds –

∫ t


(t – s)α–f

(
s,

( + sα–)u(s)
 + sα–

)
ds

∣∣∣
∣

+
∣
∣∣
∣


 + tα–


–


 + tα–



∣
∣∣
∣

(
tα–

|	|

∫ ∞



∣
∣∣
∣f

(
s,

( + sα–)u(s)
 + sα–

)∣
∣∣
∣ds

+
tα–

|	|

m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣
∣∣ds dr

+


�(α)

∫ t


(t – s)α–

∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣
∣∣ds

)

≤ ω(L)
∣∣
∣∣

tα–
 – tα–



	( + tα–
 )

∣∣
∣∣

∫ ∞


ϕ(s) ds
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+ ω(L)
∣∣
∣∣

tα–
 – tα–



	( + tα–
 )

∣∣
∣∣

m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr

+
ω(L)

�(α)( + tα–
 )

(∫ t



∣
∣(t – s)α– – (t – s)α–∣∣ϕ(s) ds +

∫ t

t

(t – s)α–ϕ(s) ds
)

+ ω(L)
∣
∣∣
∣

tα–
 – tα–



( + tα–
 )( + tα–

 )

∣
∣∣
∣

(
tα–

|	|

∫ ∞


ϕ(s) ds

+
tα–

|	|

m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr

+


�(α)

∫ t


(t – s)α–ϕ(s) ds

)

,

which is independent of u and tends to zero as t → t. Thus T� is equicontinuous on
[,∞).

Step : We show that T is equiconvergent at ∞.
For any u ∈ �, we have

∫ ∞


f
(
s, u(s)

)
ds ≤ ω(L)

∫ ∞


ϕ(s) ds < ∞,

and

lim
t→∞

∣
∣∣∣

(Tu)(t)
 + tα–

∣
∣∣∣ = lim

t→∞

∣
∣∣
∣∣


 + tα–

[
tα–

	

∫ ∞


f
(
s, u(s)

)
ds

–
tα–

	

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)
– Iαf

(
t, u(t)

)
]∣
∣∣
∣∣
.

We now consider

lim
t→∞


 + tα– · tα–

	

∫ ∞


f
(
s, u(s)

)
ds =


	

∫ ∞


f
(
s, u(s)

)
ds

and

lim
t→∞


 + tα– Iαf

(
t, u(t)

)
= lim

t→∞


�(α)

∫ t



(t – s)α–

 + tα– f
(
s, u(s)

)
ds

≤ lim
t→∞


�(α)

∫ t


f
(
s, u(s)

)
ds =


�(α)

∫ ∞


f
(
s, u(s)

)
ds.

Then we have

lim
t→∞

∣
∣∣
∣

(Tu)(t)
 + tα–

∣
∣∣
∣ ≤

∣
∣∣
∣∣

(

	

–


�(α)

)∫ ∞


f
(
s, u(s)

)
ds

–

	

m–∑

i=

βiηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, u(s)

)
ds dr

∣
∣∣
∣∣

< ∞.

Hence, T� is equiconvergent at infinity.
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Step : We show that T is continuous.
Taking un, u ∈ E such that ‖un‖E < ∞, ‖u‖E < ∞ and un → u as n → ∞, then by (A) we

have
∫ ∞


f
(
s, un(s)

)
ds ≤ ω

(‖un‖E
)∫ ∞


ϕ(s) ds < ∞,

and

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, un(s)

)
ds dr

≤ ω
(‖un‖E

)∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr < ∞ for i = , , . . . , m – .

Hence the Lebesgue dominated convergence and the continuity of f guarantee that

∫ ∞


f
(
s, un(s)

)
ds →

∫ ∞


f
(
s, u(s)

)
ds, as n → ∞,

and

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, un(s)

)
ds dr →

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, u(s)

)
ds dr,

as n → ∞, for i = , , . . . , m – .

Therefore, we get

‖Tun – Tu‖E ≤
(


|	| +


�(α)

)∣
∣∣∣

∫ ∞


f
(
s, un(s)

)
ds –

∫ ∞


f
(
s, u(s)

)
ds

∣
∣∣∣

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∣
∣∣
∣

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, un(s)

)
ds dr

–
∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

f
(
s, u(s)

)
ds dr

∣∣
∣∣ → , as n → ∞.

So, T is continuous.
Using Lemma ., we obtain that T : E → E is completely continuous. The proof is

completed. �

3 Main results
Theorem . Assume that (A) holds. If there exists κ >  such that

κ

ω(κ)�
> , (.)

where � is defined in (.), then the boundary value problem (.)-(.) has at least one
solution on [,∞).

Proof Consider the operator T : E → E defined by (.). This operator is continuous and
completely continuous by Lemma .. We will show that there exists an open set U ⊆ E
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with u 	= λT(u) for λ ∈ (, ) and u ∈ ∂U . Let u = λT(u) for λ ∈ (, ). Then we have

‖u‖E = sup
t∈[,∞)

∣
∣∣
∣
λ(Tu)(t)
 + tα–

∣
∣∣
∣

≤ sup
t∈[,∞)

∣
∣∣
∣∣


 + tα–

[
tα–

	

∫ ∞


f
(
s, u(s)

)
ds

–
tα–

	

m–∑

i=

βiIγi ,δi
ηi

Iαf
(
ξi, u(ξi)

)
– Iαf

(
t, u(t)

)
]∣
∣∣
∣∣

≤ ω
(‖u‖E

)( 
|	| +


�(α)

)∫ ∞


ϕ(s) ds

+
ω(‖u‖E)

|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr

= ω
(‖u‖E

)
�.

This implies that

‖u‖E

ω(‖u‖E)�
≤ .

In view of (.), there exists κ such that ‖u‖E 	= κ . We define U = {u ∈ E : ‖u‖E < κ}.
Note that the operator T : U → E is continuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u = λTu for some λ ∈ (, ). Consequently, by
Lemma ., the boundary value problem (.)-(.) has at least one solution on [,∞).
The proof is completed. �

In the next theorem we prove an existence and uniqueness result for the boundary value
problem (.)-(.) by using the Banach fixed point theorem. To simplify its proof, we set

ρ =
(


|	| +


�(α)

)∫ ∞



∣
∣f (s, )

∣
∣ds < ∞, (.)

ρ =


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

∣∣f (s, )
∣∣ds dr, (.)

� =
(


|	| +


�(α)

)∫ ∞


ϕ(s) ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr. (.)

Theorem . Assume that (A) holds. If

� < , (.)

then the boundary value problem (.)-(.) has a unique solution on [,∞).
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Proof We define the operator T as in (.). Then we obtain

|(Tu)(t)|
 + tα–

≤ 
|	|

∫ ∞



∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣
∣∣ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

∣
∣∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣
∣∣∣ds dr

+


�(α)

∫ ∞



∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)∣∣
∣∣ds

≤
(


|	| +


�(α)

)∫ ∞



(
ϕ(s)

∣∣
∣∣

u(s)
 + sα–

∣∣
∣∣ +

∣
∣f (s, )

∣
∣
)

ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

×
∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

(
ϕ(s)

∣∣
∣∣

u(s)
 + sα–

∣∣
∣∣ +

∣
∣f (s, )

∣
∣
)

ds dr

≤ ‖u‖E

[(


|	| +


�(α)

)∫ ∞


ϕ(s) ds +


|	|

m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

×
∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr

]

+
(


|	| +


�(α)

)∫ ∞



∣
∣f (s, )

∣
∣ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

∣
∣f (s, )

∣
∣ds dr

= �‖u‖E + ρ + ρ,

which leads to

‖Tu‖E ≤ �‖u‖E + ρ + ρ < +∞ for u ∈ E,

where ρ, ρ, � are defined by (.), (.) and (.), respectively. This shows that T maps
E into itself.

On the other hand, for any u, v ∈ E and any t ∈ [,∞), we get

|(Tu)(t) – (Tv)(t)|
 + tα–

≤
(


|	| +


�(α)

)∫ ∞



∣∣
∣∣f

(
s,

( + sα–)u(s)
 + sα–

)
– f

(
s,

( + sα–)v(s)
 + sα–

)∣∣
∣∣ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

×
∣
∣∣
∣f

(
s,

( + sα–)u(s)
 + sα–

)
– f

(
s,

( + sα–)v(s)
 + sα–

)∣
∣∣
∣ds dr

≤
(


|	| +


�(α)

)∫ ∞


ϕ(s)

∣∣
∣∣

u(s)
 + sα– –

v(s)
 + sα–

∣∣
∣∣ds
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+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

×
∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s)
∣
∣∣
∣

u(s)
 + sα– –

v(s)
 + sα–

∣
∣∣
∣ds dr

≤ ‖u – v‖E

[(


|	| +


�(α)

)∫ ∞


ϕ(s) ds

+


|	|
m–∑

i=

|βi|ηiξ
–ηi(δi+γi)
i

�(α)�(δi)

∫ ξi



∫ r



rηiγi+ηi–(r – s)α–

(ξηi
i – rηi )–δi

ϕ(s) ds dr

]

= �‖u – v‖E .

Therefore

‖Tu – Tv‖E ≤ �‖u – v‖E for u, v ∈ E.

As � < , therefore T is a contraction. Hence, by the Banach fixed point theorem, we
get that T has a fixed point which is a unique solution of problem (.)-(.). The proof is
completed. �

4 Examples
In this section we present examples illustrating the obtained results.

Example . Consider the following nonlinear Riemann-Liouville fractional differential
equation with Erdélyi-Kober fractional integral condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D


 u(t) + u(t)e–t

(+t/) = , t ∈ (,∞),

u() = ,

D


 u(∞) = I,

 u() –
√

π I– 
 ,e




u( 
 ) + eI


 ,

 u() – 
 I,π




u().

(.)

Here α = /, m = , β = , β = –
√

π , β = e, β = –/, γ = , γ = –/, γ = /,
γ = , δ = , δ = e, δ = , δ = π , η = , η = /, η = , η = /, ξ = , ξ = /,
ξ = , ξ =  and f (t, u) = ue–t/( + t/). Clearly,

∣∣f
(
t,

(
 + t/)u

)∣∣ =
e–t|u|


.

Choosing ϕ(t) = e–t , ω(|u|) = |u|/, then ϕ ∈ L[,∞) and ω ∈ C([,∞), [,∞)) is
nondecreasing. We can show that

	 ≈ ., � ≈ .,

and

κ

( κ
 )(.)

> ,
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which implies that  < κ < .. Hence, by Theorem ., the boundary value prob-
lem (.) has at least one solution on [,∞).

Example . Consider the following nonlinear Riemann-Liouville fractional differential
equation with Erdélyi-Kober fractional integral condition:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D


 u(t) + te–t cos( u(t)

+t/ ) = , t ∈ (,∞),

u() = ,

D


 u(∞) = I–,

 u( 
 ) + 

 I,
 u() – 

 I– 
 , 


π u( 

 )

+ I,e



u(π) – 
 I


 ,

 u().

(.)

Here α = /, m = , β = , β = /, β = –/, β = , β = –/, γ = –, γ = ,
γ = –/, γ = , γ = /, δ = , δ = , δ = /, δ = e, δ = , η = , η = , η = π , η =
/, η = , ξ = /, ξ = , ξ = /, ξ = π, ξ =  and f (t, u) = te–t cos(u/( + t/)).
Since

∣
∣f

(
t,

(
 + t



)
u
)

– f
(
t,

(
 + t



)
v
)∣∣ ≤ te–t|u – v|,

then (A) is satisfied with ϕ(t) = te–t . We can show that

	 ≈ –., � ≈ . < .

Hence, by Theorem ., the boundary value problem (.) has a unique solution on [,∞).
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