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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical models of systems and processes in the fields of physics, chemistry, aerody-
namics, electrodynamics of complex medium, polymer rheology, electrical circuits, biol-
ogy, control theory, fitting of experimental data, and so on, and involves derivatives of frac-
tional order. Fractional derivatives provide an excellent tool for the description of memory
and hereditary properties of various materials and processes. This is the main advantage
of fractional differential equations in comparison with classical integer-order models. The
monographs [1-3] are commonly cited for the theory of fractional derivatives and inte-
grals and applications to differential equations of fractional order. For more details and
examples, see [4—9] and the references therein.

However, it has been observed that most of the work on the topic involves either
Riemann-Liouville or Caputo type fractional derivative. Besides these derivatives, the so-
called Erdélyi-Kober fractional derivative, as a generalization of the Riemann-Liouville
fractional derivative, is often used, too. An Erdélyi-Kober operator is a fractional integra-
tion operation introduced by Arthur Erdélyi and Hermann Kober in 194.0. These operators
have been used by many authors, in particular, to obtain solutions of the single, dual and
triple integral equations possessing special functions of mathematical physics as their ker-
nels. For the theory and applications of the Erdélyi-Kober fractional integrals, see, e.g., [1,
2,10-14] and the references cited therein.
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The fractional anomalous diffusion equations have been studied by many researchers
[15, 16]. In fact, the mathematical models of nonlinear fractional diffusion equations have
been successfully applied to several phenomena, see [17-19] and the references cited
therein. In [20] Pagnini investigated the generalized grey Brownian motion (ggBm) which
is an anomalous diffusion process derived by the Erdélyi-Kober fractional integral opera-
tor. Some relationships between parameters of the Erdélyi-Kober fractional operators and
the valuable family of stochastic processes generated by the ggBm were also shown. For
more details on fractional diffusion processes in stochastic models, we refer the reader
to [21]. In [22], the author gave a theorem about the series representation of the Erdélyi-
Kober fractional integral operator which was used to find approximate solutions of linear
and nonlinear fractional anomalous diffusions. Numerical analysis and applications to the
real experimental data were also discussed.

Boundary value problems on infinite intervals arise naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and various physical phenomena [23].
For boundary value problems of fractional order on infinite intervals, we refer to [24—28].

Zhao and Ge [28] studied the existence of unbounded solutions for the following bound-

ary value problem on the infinite interval:

Dju(t) +f(t, u(t)) =0, l<a<2,t€l0,00), (1.1)
u(0) =0, Jim Dyl u(t) = Bul), (1.2)

where D§ denotes the Riemann-Liouville fractional derivative of order «,and 0 < 8, & < co.
Zhang et al. [27] studied the existence of nonnegative solutions for the following bound-
ary value problem for fractional differential equations with nonlocal boundary conditions

on unbounded domains:

Dyu(t) +f(t,u(t)) =0, l<a<2,t€[0,00), (1.3)

I7uw(0)=0,  lim Dglu(t) = BIg " u(n), (1.4)

where D§ denotes the Riemann-Liouville fractional derivative of order «, f € C([0,00) x
R,R*) and 0 < 8,1 < co. The Leray-Schauder nonlinear alternative is used.
Liang and Zhang [25] used a fixed point theorem for operators on a cone and proved

the existence of positive solutions to the following fractional boundary value prob-

lem:
Dyu(t) +f(t,u(t)) =0, 2<a <3,t€[0,00), (1.5)
m-2
u(0) = u'(0) =0, Jim Dy u(e) = Zﬁiu(si), (1.6)

i=1

where Dj denotes the Riemann-Liouville fractional derivative of order «, f € C([0, 00) x
RR*), 0<& <& < <pg<oo, fi >0,i=12,...,m-2, with 0< Y7 ?BEr <
().

Motivated by the above papers, in this article, we study a new class of boundary value

problems on fractional differential equations with m-point Erdélyi-Kober fractional inte-
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gral boundary conditions on an infinite interval of the form

Diu(t) +f(t,u(t)) =0, l<a<2,te(0,00), 1.7)
m-2
w0)=0, D u(oo) = Bllu(), (18)

i=1

where D¢ denotes the Riemann-Liouville fractional derivative of order a, I} is the
Erdélyi-Kober fractional integral of order §; > O withn; >0,y, € R,i=1,2,...,m-2, 8, € R,
and & € (0,00),i=1,2,...,m— 2, are given constants. We prove the existence and unique-
ness of an unbounded solution of the boundary value problem (1.7)-(1.8) by using the
Leray-Schauder nonlinear alternative and the Banach contraction principle.

This paper is organized as follows. In Section 2, we prepare some material needed to
prove our main results. In Section 3, we obtain the existence and uniqueness results, while
in Section 4 we give some examples to illustrate our results.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [1] and
present preliminary results needed in our proofs later.

Definition 2.1 The Riemann-Liouville fractional derivative of order g for a function f :
(0,00) — R is defined by

Dif(6) = T (iy /t(t -s)" 17 f(s)ds, q>0,n=[q]+1,
0

[(n—gq)\dt
where [g] denotes the integer part of the real number g, provided the right-hand side is
pointwise defined on (0, 00).

Definition 2.2 The Riemann-Liouville fractional integral of order g for a function f :
(0,00) — R is defined by

1

If(t) = Tq)

/ (=T ()ds, q50,
0

provided the right-hand side is pointwise defined on (0, co).

Definition 2.3 The Erdélyi-Kober fractional integral of order § >0 with n >0 and y e R
of a continuous function f : (0,00) — R is defined by

£0HY) b gnyan-le(q)
o) =" f d
Oy ey ®

provided the right-hand side is pointwise defined on R,.
Remark 2.4 For n =1, the above operator is reduced to the Kober operator

t_(5+y) t SV s
/) ds, y,6>0,

2 _
BIO=F6y |y ey
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that was introduced for the first time by Kober in [12]. For y = 0, the Kober operator is

reduced to the Riemann-Liouville fractional integral with a power weight

-5 t
o=t [ 9 g

, 6>0.
re) Jy - 07

From the definition of the Riemann-Liouville fractional derivative and integral, we can

obtain the following lemmas.

Lemma 2.5 (See [1]) Let g >0 and y € C(0,T) N L(0, T). Then the fractional differential

equation D{y(t) = 0 has a unique solution
Y(E) = crtT et T4 4,1,
wherec; € R,i=1,2,...,m,andn-1<g<n.
Lemma 2.6 (See [1]) Let q > 0. Then, for y € C(0,T) N L(0, T), it holds
IDEy(t) = y() + crt™™ + T2 + - 4 ¢, 817",
wherec; €R,i=1,2,...,n,andn-1<g<n.
The following lemmas will be used in the proof of our main results.

Lemma 2.7 Let 8,1 >0 and y,q € R. Then we have

o LT +(g/m) +1)

T Ty +(g/n)+8+1) 1)

Proof Recall the beta function and its property

1 I'x)I"

for x,y > 0. From Definition 2.3, we have

VS 4q _
Int—

nt1@+y) et gny+n-l. o
/ ds
0

r'@) (7 — s
t1

1
y+1 -1
— | (1 -u)"du
F(5)fo

1 q )
—Bly+-=+1$6
r'@) ( n

_ 0 (y +(g/n) +1)
Ty +(g/n)+8+1)

The proof is complete. g
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Lemma 2.8 Let h € C[0,00) with 0 < fo h(s)ds < 00, and

C(y; + (@ —1)/n; +1)
C(y; +(@=1)/n; +68; +1)

m-2
A=T(a)- ) B (2:2)
i=1

Then the unique solution of the following linear Riemann-Liouville fractional differential
equation

Dyu(t) + h(t)=0, te(0,00),1<a <2, (2.3)

subject to the Erdélyi-Kober fractional integral boundary condition

u(0)=0, D ™'u(co Z Bl u(E), (2.4)
is given by
-1 oo - -1 m=2
=— /0 h(s) ds - Zﬂ[“ Th(E) - I (). (2.5)

Proof Applying the Riemann-Liouville fractional integral of order « to both sides of (2.3),
we have

u(t) = c1t® ™ + cot* 2 — I°h(2), (2.6)

where ¢, ¢y € R.
The first condition of (2.4) implies ¢, = 0. Therefore, we have

u(t) = %t = I°h(2). (2.7)

The second condition of (2.4) leads to

1 50 m-2
=— h(s)ds — L RE) ), 2.8
o A(/O 0ds =3 (s)) (28)

where A is defined by (2.2). Thus, the unique solution of fractional boundary value prob-
lem (2.3)-(2.4) is as the following integral equation:
o-1 m—2

ta—l 00 t s N
- /0 h(s)ds — - ;5,«1;; Th(E;) — I7h(E).

Now, by uniqueness of constants cj, ¢z, we conclude that (2.5) is the unique solution of the

boundary value problem (2.3)-(2.4). The proof is completed. O

In this paper, we will use the following space E, which is defined by

E= {ueC[O 00) : ()] <oo}

te[O 00) 1 +pot
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and is equipped with the norm

hullg = sup 42!
te[0,00) 1+

It is known from [24] that E with the above norm is a Banach space.
Using Lemma 2.8 with 4(t) = f (¢, u(¢)), we define the operator T : E — E by

a-1 o-1 M=2

t o t
Tu(t) = — Ju(s))ds — —— > " Bl TS (&, u(E;
u(t) = — /0 flsus)ds - — i§=lﬁ OIS (&, u(:))
= I°f (£, u(?)). (2.9)

Notice that problem (1.7)-(1.8) has a solution if and only if the operator equation u = Tu
has a fixed point, where T is given by (2.9).
We recall the following well-known fixed point theorem which we use in the next sec-

tion.

Theorem 2.9 (Nonlinear alternative for single-valued maps) ([29]) Let E be a Banach
space, C be a closed, convex subset of E, U be an open subset of C and 0 € U. Suppose that
F: U — C is a continuous, compact (that is, F(U) is a relatively compact subset of C) map.
Then either

(i) Fhas a fixed point in U, or

(ii) thereis u € U (the boundary of U in C) and A € (0,1) with u = AF ().

Lemma 2.10 ([26]) Let V ={u € E: ullg<LI>0}, Vi={u@®)/Q+t* V) :uec V}.IfVis
equicontinuous on any compact intervals of [0,00) and equiconvergent at infinity, then V

is relatively compact on E.

Remark 2.11 V; is called equiconvergent at infinity if and only if for all € > 0 there exists
v(€) > 0 such that for all u € V1, #1,£, > v, it holds

u(t) u(ty)
a-1 a-1 <€.
1+4 1+

Throughout this paper, we assume that the following conditions hold:

(A1) Let |f(¢, (1 +t* V)| < ¢1(t)n(|u]) on [0,00) x R with w; € C([0, 00), [0, 00)) nonde-
creasing and ¢, € L0, 00).
(Ay) There exists a positive function g, (£) with ¢, € L}[0, 00) such that

(& L+ ) u) = (6 1+ E27W) | < (@) u—v] (2.10)
for each t € [0,00) and u,v € E.

Remark 2.12 Condition (A;) means a kind of sublinearity. Such a condition is known as

Krasnosel’ski’s condition.
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For convenience, we set

1 1 R
Q- (W . @) /0 on(s)ds

m-2 i(8i+vi) & + a1
Bl O (67 (e g
+ m Z lF ! %.m = ——————(s)dsdr. (2.11)

Lemma 2.13 Let (A;) hold. Then the operator T : E — E is completely continuous.

Proof We divide the proof into four steps.

Step 1: We show that T is uniformly bounded on E.

Let ® be any bounded subset of E, then there exists a constant L; > 0 such that ||u|g < L;
for all u € ®. It follows that

I el £
= tesggo AT 1) / s, u(s)
o1 ﬂ s—m‘(&'ﬂﬁ & Y-l )a -1
A+l 4 Z T(@)T(5) / / & _rn,)l e s (s u() dsdr
1 (t S)a -1

- —— | ———f(suls))ds

F(ot) 0 1+t0tl

- 1 w}j(s, 1 +s“1)u(s)> ’ s
Al Jo 1+s271
LR B /fl / Pl () IP(S (1 +s“-1)u(s)>
|A| i1 F(G)F(S ) Snl r’?z)l =3; ’ 14 s21
1 ®© (1 +s*Vu(s)
+ m‘/o P(S, 71+S"‘_1 >’ds
1 1 °° |u(s)]
= <W i m) /(; (pl(s)a)1<1 +s°‘1) ds
m— zg n;i(8;+v;) & FiViti= 1(r S)a -1 |u(s)|
; f / Sﬂl _ r'h 1-5; gpl(s)a)l(l +Sa_1) dsdr
1
wl(L1)<|A| e ))/ @1(s)ds

CUI(LI) m=2 |ﬂ,|77,$ '715+J/L /Sz‘/ r’th”h )O{ -1
+ |A| ; ()T (6; é"‘ ey )1 5 — i —p1(s)dsdr

dsdr

=wi(L1)21 <00 forue .

Therefore T® is uniformly bounded.

Step 2: We show that T is equicontinuous on any compact interval of [0, 00).
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Forany $>0, t;,t; € [0,S] and u € @, without loss of generality, we assume that #; < ;.

It follows that

’ Tlxl(tz) Tu(tl)
L+ 1+

ta—l _1
AQ+£ Jo louto)ds- 1t A(l 1571 £

1°f (£, u(t,)) o1 ~
Ca+g AQ+gY /0 f(s,uls)) ds

Z ﬁllyl allaf Et’ u(&;) )

BN g e If (b, (1))
+W2ﬁ11% Tf (€ u&) + %
ta_l ” - Virdi 7o
= m o f(S;M(S))dS—mZﬁJ If El,u(gl)

P g [
_ (1+t°‘_1) _A(1+t“_1)A f(S,M(S))ds

-1
tl

I f(tl’ u(tl))
+ — RN S e Y
A( tot 1

Z/szlyl l]“f &iu él ) (1 N tg_l)

tal

s, u(s) A(l e Ty

m-2
07 T
A(1+tg 1)/ ;ﬁlly 1f (&, u(&))

I“f (t1, u(t)) gl o
Coa+s)  AQ+gY /(; f(s,uls))ds

a-1 m-2 L
L S B (6 ) + %
4 1

TAQET) &
[z
o 1+s271
& PIivini—1 )&= 1‘/( 1 +s"“1)u(5))
/ / (&" —r’h)1 i T W
1 a1 1 a—1
< [ (s BERD  a [P gy (s L Yo
570 (% A+ uls)
<|A| NG I
tiy _1 m=2 \Bilni&; ni@i+vi)  pg PR T (e o (1 +5* u(s)
+ — A ZX: T(@)I(5) / / (Sl’m — pmi)i=b; P(sx 1+ so-1 )‘der
1 [ wat| (. A+ uls)
@, @9 P(liﬂd)

Dt 1_ ta -1 00
A(l t ) / ¢1(S)ds

1i(8i+v:)

— |Biln&
2 T

gt — gt
“laaeg™

tdl tozl

dsdr +

1 1
4| — — —
T+£570 14t

<oi(L)|——=
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a -1 -1 m=2 ni8i+vi) g + a-1
tix |ﬁz|nz$ /'/ phivithi— )
dsd
A(l ta_l) 12:1: F(O{)F é_—’h i )1 Si (pl(s) sar

wi(Ly) / " ffz o )
(&2 — (t — )% )d ty —s)* d

(l+t°‘1< |(t2=5)" = (t1 = )" gu(s) ds + g (2 =9)* qi(s)ds
tot—l )
(ﬁ/ @i(s)ds

0
o1 7 1Bi] zé ni@i+tvi)  pg pr piviEni= (p _ gyo-l
IT Z / / %—771 i )1 -5 (S)der

1 i a-1
o /0 (6 -9 i(s) ds),

which is independent of u and tends to zero as #; — £;. Thus T® is equicontinuous on
[0, c0).
Step 3: We show that T is equiconvergent at o0.

+ w1 (L)

a-1 a-1
t2 - tl

I ey

For any u € ®, we have

[ reu)ds <o [Cawds<o,
0 0

and

" (Tu)(2)
1m
t—>oo|] + o1

t—00

ta—l 00
m Tta—l |:T /(; f(s, u(s)) ds

tOtl

Zﬁ,ﬁ” O (& ulE; )—I“f(t»u(f))]‘-

We now consider

1 tot—l

tliTo T T/o f(s,uls))ds = X/o S (s,uls))ds

and

I“f(t u(t)) = lim 1 tﬁf(s, u(s)) ds

lim
t—00 F(O{) 0 1+l

t—oo ] + ¢

1 o0
<t]Loo F(ot)/f u(s) ds = m/o f(s,u(s))ds

Then we have

" (Tu)(2)
m
t—>o0|] + o1

1 1 o
=< ‘(X_W>/o f(s,u(s))ds

m-2 i(8i+vi) £ +n;—1 a-1
1 BT // pivieni= (r s)
—————f(s,u(s)) dsdr
P F(a sﬂz 1 8; ( )

< Q.

Hence, T® is equiconvergent at infinity.
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Step 4: We show that T is continuous.
Taking u,, u € E such that || u, ||z < 0o, ||#||g < 00 and u, — u as n — oo, then by (A;) we

have

o0

/f(s,un(s))ds§w1(||u,,||g)/ @1(s) ds < 00,
0 0

and
& pliYitni— 1(7" S)Ol -1
f / CRPT=s f(s, u,,(s)) dsdr
& piYitni— 1(}" )05—1
< o(|lunle f / @ - ———————————i(s)dsdr<oo fori=1,2,...,m-2.

Hence the Lebesgue dominated convergence and the continuity of f guarantee that

ffsun ds—>/ s, ds, as n — 09,
0

and

& NiVitni— -1 &i NiVitii— a-1
/ / r (Em o )11 f(s,un(s) del’—>/ / r sfh - )12 f(s,u(s))dsdl”,

asn— oo, fori=1,2,...,m-2.
Therefore, we get

1 1
Ty — Tullp < ( — + —
I Ton — Tullg < (IAI +F(a))

m-2 (8;
|Bilmi&; ™ 0y

oo

f(s, u,,(s)) ds — /Oof(s, u(s)) ds
0 0

& privitn=l(p _ gyl
/ / é"’ i f(s, un(s)) dsdr

TiAl |A| 2 R @)L )
§i pHiYitni=l(p _ gyo-l
f / & — )i, ———————f(s,u(s)) dsdr| — 0, asn— oco.

So, T is continuous.
Using Lemma 2.10, we obtain that T : E — E is completely continuous. The proof is

completed. d

3 Main results
Theorem 3.1 Assume that (A;) holds. If there exists k > 0 such that

K

7501(/()521 >1, (3.1)

where Q is defined in (2.11), then the boundary value problem (1.7)-(1.8) has at least one
solution on [0, 00).

Proof Consider the operator T : E — E defined by (2.9). This operator is continuous and
completely continuous by Lemma 2.13. We will show that there exists an open set I C E
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with u # AT (u) for A € (0,1) and u € dU. Let u = AT (u) for A € (0,1). Then we have

_ ‘)\(Tu)(t)
llullg = tes[ggo) R
- 1 ta—l 00 ( ) d
_tes[ggo) el T/o f(s,uls))ds
a-1 M
L Zﬂzl” f (& u(E) —I“f(t,u(t))”
1 1 o0
o ||E)(|A| F(a)>/0 01(5)ds
o1(lullg) <2 1 Bilnig] " & el (gt
Al Zl (@)r() / / @ o OB
= wl(”u”E)QL
This implies that
_ e
or(llullg) —

In view of (3.1), there exists k¥ such that ||u||g # x. We define U = {u € E : ||u|g < k}.
Note that the operator T : U — E is continuous and completely continuous. From the
choice of U, there is no u € dU such that u = ATu for some A € (0,1). Consequently, by
Lemma 2.9, the boundary value problem (1.7)-(1.8) has at least one solution on [0, 00).
The proof is completed. d

In the next theorem we prove an existence and uniqueness result for the boundary value

problem (1.7)-(1.8) by using the Banach fixed point theorem. To simplify its proof, we set

1 1 0o
e (W ' m) / [f(s,0)| ds < o0, (3.2)

m-2 (8i+

_ |/3l|771'§ Gy g pNiYithi— 1(,« )% -1

& IAI P " T(@r@) / / e = If s,0)| dsdr, (3.3)

1 1
£, = (m @)/0 @2(s)ds

m-2 (8;i+
|l3;|7h$ ~nlbry) &i r’hl/zﬂh }" S)al
TiAl |A| — T@r©) / / 7 — )i — e Y2(s)dsdr. (3.4)

Theorem 3.2 Assume that (A,) holds. If

Qz < 1, (3.5)

then the boundary value problem (1.7)-(1.8) has a unique solution on [0, 00).
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Proof We define the operator T as in (2.9). Then we obtain

|(Tw)(2)]
1+t

<o [ s e
P [ e (s ) s
+ﬁffws;—‘ii“;i’i““‘))!ds

= (a1 1) ) (w075

—2 (8t
LS B i0i)
Al <= T@r(s)

& rntyl*'rh
// (g”' rn,)ls < +lf(s,0)|>dsdr

RS & 1Bl O
< ||u||E|:(m + m)/o ¢a(s)ds + m ; S T@r©)

+ V(s, 0)’) ds

1

& pliYitni— 1(}" S)Ol -1 1 1 00
/ / (th PIYI5: ¢2(5)d5dr] + (m + TM)/(‘) V(S,O)’ds

m-2 |,31|771$ n;(8;+vi) /é,/ piYitni— I(V—S)a -1
|A| () CET

[f(s, ‘dsdr
= Qlullg + p1 + p2,
which leads to

1 Tulle < Qullulle + o1+ p2 <+oo foru ek,

where p1, 02, 5 are defined by (3.2), (3.3) and (3.4), respectively. This shows that 7" maps
E into itself.
On the other hand, for any u,v € E and any ¢ € [0, 00), we get

|(Tw)(2) - (TV) (@)

1421

1 1 = (1+5Nu(s) 1 +s*u(s)
= (W ' W)/o P(S W) "f(s’ W)‘ds
A A L L D
Al |A| " T()r() / / iy

(1 + 8% 1)u(s) @ +s* u(s)

1,1t v(s)
S(m F(Ol)) (p2( )‘1+ 0‘1_1+Sa—1 ds
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—2 _ni(8:i+v:
&2 | Bilmg; )
+_ —_—
Al = T()r(s)

&i TopiYit i 1(7" S)D‘ -1 V(S)
%-’h rn,l& 2()1+Sa1 1+ 521
1 1 o
<flu- e d
< lu M{QANFWJA () ds

m— %- ni@i+vi)  pg PYiANi= l(r )a—l
Z f / Sn’ T — @y (s)dsdr

=1

dsdr

=Qlu—vlEg.
Therefore
|Tu—Tv||g < Q2 |lu—-v|g foru,veE.

As @ < 1, therefore T is a contraction. Hence, by the Banach fixed point theorem, we
get that T has a fixed point which is a unique solution of problem (1.7)-(1.8). The proof is
completed. O

4 Examples
In this section we present examples illustrating the obtained results.

Example 4.1 Consider the following nonlinear Riemann-Liouville fractional differential

equation with Erdélyi-Kober fractional integral condition:

2t
(t)+ m =O’ te(oioo))

M(O) =0, (4.1)
1 _3 2
D3 u(00) = 2124 u(3) - ﬁz;'eu(%) +e15°u(10) - ;1%””u(2).

Here @ =4/3, m=6, 1 =2, fo = -/, B3 =€, Ba=-9/7, 1 =2, y» = =3/4, y3 = 2/3,
)/423,51:4,8228,33:6,8427'[, 771:3, 17221/2, 773:5, 774:5/3,51:3,52:25/4,
€3 =10, &, =2 and f(t, u) = u?e”*/100(1 + t/3)2. Clearly,

e—2t|u|2

(e (1+£7°)u)| = 00

Choosing ¢;(t) = e, w;(Ju|) = |4|?/100, then ¢; € L1[0,00) and w; € C([0, 00), [0,00)) is

nondecreasing. We can show that
A ~1.780857113, Q1 ~ 0.9547223123,

and

K
)(0 9547223123)

100
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which implies that 0 < x < 104.7424981. Hence, by Theorem 3.1, the boundary value prob-
lem (4.1) has at least one solution on [0, 00).

Example 4.2 Consider the following nonlinear Riemann-Liouville fractional differential
equation with Erdélyi-Kober fractional integral condition:

9
Dg u(t) + t2e73 cos( 15‘?/5 )
u#(0) =0,

§ _ap-l4 2y, 3742 2,75% 9
Dgu(oo) =31, " u(3) + 2 I;""u(6) — 51> > u(3)

7
3
+ 1112%,(713) ~B12%%2).

0, te(0,00),

4.2)

Here o =9/5, m =7, 1 =3, By =3/5, B3 = =22/7, By =11, B5 = =13/2, y1 = -1, y, =4,
)/3:—2/3,]/422,)/523/2,8124,52=2,83=33/5,8426,8526,7]122,1’}2:1,7]3=7T,T)4,:
713,05 =4, & = 2/7, & =6, £ =9/7, &4 = w2, & = 12 and f(t, u) = t>e~>* cos(u/(1 + t*°)).
Since

V(t, (1 + t%)u) —f(t, (1+ t%)v)} <2 Bu—v|,
then (A,) is satisfied with ¢, (£) = t2e~3t. We can show that
A~ —2.978499743, Q, ~0.1989863061 < 1.

Hence, by Theorem 3.2, the boundary value problem (4.2) has a unique solution on [0, 00).
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