
Ou and Li Boundary Value Problems  (2015) 2015:195 
DOI 10.1186/s13661-015-0455-9

R E S E A R C H Open Access

Existence of weak solutions for a class of
quasilinear elliptic systems
Zeng-Qi Ou* and Chun Li

*Correspondence:
ouzengq707@sina.com
School of Mathematics and
Statistics, Southwest University,
Chongqing, 400715, People’s
Republic of China

Abstract
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1 Introduction and main results
In this paper, we consider the existence of weak solutions for the following gradient elliptic
systems:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = λa(x)|u|p–u + λ
b(x)
β+ |u|α|v|βv + Fu(x, u, v) – h(x) in �,

–�pv = λc(x)|v|p–v + λ
b(x)
α+ |u|α|v|βu + Fv(x, u, v) – h(x) in �,

u = v =  on ∂�,

()

where � ⊂ RN (N ≥ ) is a bounded smooth domain, �pu = div(|∇u|p–∇u) denotes the
p-Laplacian,  ≤ p < N and α ≥ , β ≥  satisfy

α + β +  = p.

F ∈ C(� × R, R) and Fs(x, s, t) designates the partial derivative of F with respect to s and
h, h ∈ Lq(�) (q = p/(p – )). The coefficient functions a, b, c ∈ C(�) ∩ L∞(�) satisfy one
of the following conditions:

(A) a+ 
= , where a+(x) := max{a(x), };
(A) c+ 
= ;
(A) a = c =  and b+ 
= .
Let W be the product space W ,p

 (�) × W ,p
 (�) equipped with the norm ‖(u, v)‖ =

(‖u‖p + ‖v‖p)/p for all (u, v) ∈ W , where ‖u‖ = (
∫

�
|∇u|p dx)/p for any u ∈ W ,p

 (�). The
embedding W ,p

 (�) ↪→ Lp(�) is continuous and there exists a positive constant C such
that

‖u‖Lp ≤ C‖u‖ for all u ∈ W ,p
 (�), ()

where ‖ · ‖Lp denotes the norm of Lp(�).
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Consider the following nonlinear eigenvalue problem with weights:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = λa(x)|u|p–u + λ b(x)
β+ |u|α|v|βv in �,

–�pv = λc(x)|v|p–v + λ b(x)
α+ |u|α|v|βu in �,

u = v =  on ∂�.

()

If one of the conditions (A)-(A) holds, the first eigenvalue λ of () is simple, isolated and
positive, and has a unique associated eigenfunction (μ,ν) with ‖(μ,ν)‖ =  and μ > ,
ν >  in � (the proof is found in [, ]).

The Landesman-Lazer-type conditions were introduced by Landesman and Lazer in [],
where they considered the existence of weak solutions for the resonant elliptic problems,
and then were widely used and extended (see [–] and their references). For nonlinear
elliptic systems, let Fs(x, s, t) = g(s), Ft(x, s, t) = g(t) and by using the some Landesman-
Lazer-type conditions, Zographopoulos in [] proved the existence of weak solutions for
problem () at resonance with the first eigenvalue λ, and by using the Landesman-Lazer-
type conditions due to Tang and the G-linking theorem, Ou and Tang in [] proved the
existence of weak solutions for problem () at resonance with the higher eigenvalues of
problem (). When p = , Silva in [] introduced the new Landesman-Lazer-type con-
ditions and proved the existence of weak solutions for problem () by using variational
methods, Morse theory and critical groups.

Motivated by [], we consider the existence of weak solutions for problem () under the
certain Landesman-Lazer-type conditions. We now give some auxiliary conditions.

(F) There is h ∈ C(�, R+) such that

∣
∣Fs(x, s, t)

∣
∣ ≤ h(x) and

∣
∣Ft(x, s, t)

∣
∣ ≤ h(x), ∀(x, s, t) ∈ � × R.

(F) There exist functions f ++, f –– ∈ C(�, R) such that

f ++(x) = lim
s→+∞
t→+∞

Fs(x, s, t), f ––(x) = lim
s→–∞
t→–∞

Fs(x, s, t).

(F) There exist functions g++, g–– ∈ C(�, R) such that

g++(x) = lim
s→+∞
t→+∞

Ft(x, s, t), g––(x) = lim
s→+∞
t→+∞

Ft(x, s, t),

where the above limits of conditions (F) and (F) are taken uniformly for all x ∈ �.
The Landesman-Lazer-type conditions for problem () will be assumed either

(LL)+


∫

�

f ––μ + g––ν dx <
∫

�

hμ + hν dx <
∫

�

f ++μ + g++ν dx

or

(LL)–


∫

�

f ––μ + g––ν dx >
∫

�

hμ + hν dx >
∫

�

f ++μ + g++ν dx.

We are ready to introduce the main results of this paper.
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Theorem  Assume that h, h ∈ Lq(�) (q = p/(p – )) and one of the conditions (A)-(A)
holds. If F satisfies (F), (F), (F) and (LL)+

 , then problem () has at least one solution.

Theorem  Assume that h, h ∈ Lq(�) (q = p/(p – )) and one of the conditions (A)-(A)
holds. If F satisfies (F), (F), (F) and (LL)–

 , then problem () has at least one solution.

2 Proofs of theorems
Let J : W → R be the functional defined by

J(u, v) = φ(u, v) – λψ(u, v) –
∫

�

F(x, u, v) dx +
∫

�

h(x)u dx +
∫

�

h(x)v dx, ()

where

φ(u, v) =

p

∫

�

|∇u|p dx +

p

∫

�

|∇v|p dx, and

ψ(u, v) =

p

∫

�

a(x)|u|p dx +

p

∫

�

c(x)|v|p dx +


(α + )(β + )

∫

�

b(x)|u|α|v|βuv dx.

If one of the conditions (A)-(A) holds, by (F) and h, h ∈ Lq(�), it is not difficult to
verify that J ∈ C(W , R), and it is well known that a critical point of the functional J in
W corresponds to a weak solution of problem (). We will prove Theorem  by the sad-
dle point theorem due to Rabinowitz (see []) and Theorem  by Ekeland’s variational
principle (see []).

Proof of Theorem  We divide the proof into two steps.
(i) We claim that the functional J satisfies the (PS) condition. Let (un, vn) ∈ W be a (PS)

sequence for the functional J , that is,

J(un, vn) → c ∈ R and J ′(un, vn) →  as n → ∞. ()

We first verify that (un, vn) is bounded in W , and then prove that (un, vn) has a convergent
subsequence. Suppose, by contradiction, that Kn := ‖(un, vn)‖ = (‖un‖p + ‖vn‖p)/p → ∞ as
n → ∞. Let ũn = un \ Kn, ṽn = vn \ Kn, then (ũn, ṽn) is bounded in W , that is,

‖ũn‖p + ‖ṽn‖p =  for all n.

Hence there is a subsequence of (ũn, ṽn), still denoted by (ũn, ṽn), and (ũ, ṽ) ∈ W such
that (ũn, ṽn) ⇀ (ũ, ṽ) weakly in W , (ũn, ṽn) → (ũ, ṽ) strongly in Lp(�) × Lp(�) and
(ũn(x), ṽn(x)) → (ũ(x), ṽ(x)) for a.e. x ∈ �. From (F), () and Hölder’s inequality, we ob-
tain

∣
∣
∣
∣

∫

�

F(x, u, v) dx
∣
∣
∣
∣ ≤

∫

�

∣
∣F(x, u, v)

∣
∣dx

=
∫

�

∣
∣F(x, u, v) – F(x, , ) + F(x, , )

∣
∣dx

≤
∫

�

∣
∣
∣
∣

∫ 



(
Fs(x, τu, τv)u + Ft(x, τu, τv)v

)
dτ

∣
∣
∣
∣dx +

∫

�

∣
∣F(x, , )

∣
∣dx
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≤
∫

�

h(x)
(|u| + |v|)dx + C

≤ C‖h‖Lq
(‖u‖ + ‖v‖) + C ()

for all (u, v) ∈ W , where C =
∫

�
|F(x, , )|dx, hence we get


‖un‖p + ‖vn‖p

∫

�

F(x, un, vn) dx →  as n → ∞, ()

and from h, h ∈ Lq(�) (q = p/(p – )) and Hölder’s inequality, it follows that


‖un‖p + ‖vn‖p

∫

�

(hun + hvn) dx →  as n → ∞. ()

From (ũn, ṽn) → (ũ, ṽ) strongly in Lp(�) × Lp(�), we have |ũn|p → |ũ|p and |ṽn|p → |ṽ|p
strongly in L(�) × L(�). Hence, it follows that

∣
∣
∣
∣

∫

�

a(x)|ũn|p dx –
∫

�

a(x)|ũ|p dx
∣
∣
∣
∣ ≤ ‖a‖L∞

∫

�

∣
∣|ũn|p – |ũ|p∣∣dx →  ()

as n → ∞.
From (ũn(x), ṽn(x)) → (ũ(x), ṽ(x)) for a.e. x ∈ � and

∫

�

∣
∣|ũn|αũn

∣
∣

p
α+ dx = ‖ũn‖p

Lp → ‖ũ‖p
Lp =

∫

�

∣
∣|ũ|αũ

∣
∣

p
α+ dx,

∫

�

∣
∣|ṽn|β ṽn

∣
∣

p
β+ dx = ‖ṽn‖p

Lp → ‖ṽ‖p
Lp =

∫

�

∣
∣|ṽ|β ṽ

∣
∣

p
β+ dx

as n → ∞, it follows that |ũn|αũn → |ũ|αũ strongly in L
p

α+ (�) and |ṽn|β ṽn → |ṽ|β ṽ strongly
in L

p
β+ (�). Hence from Hölder’s inequality we obtain
∣
∣
∣
∣

∫

�

b(x)
(|ũn|α|ṽn|β ũnṽn – |ũ|α|ṽ|β ũṽ

)
dx

∣
∣
∣
∣

≤ ‖b‖L∞
∫

�

∣
∣|ũn|α|ṽn|β ũnṽn – |ũn|α|ṽ|β ũnṽ

∣
∣dx

+ ‖b‖L∞
∫

�

∣
∣|ũn|α|ṽ|β ũnṽ – |ũ|α|ṽ|β ũṽ

∣
∣dx

≤ ‖b‖L∞
∫

�

|ũn|α+ · ∣∣|ṽn|β ṽn – |ṽ|β ṽ
∣
∣dx

+ ‖b‖L∞
∫

�

∣
∣|ũn|αũn – |ũ|αũ

∣
∣ · |ṽ|β+ dx

≤ ‖b‖L∞‖ũn‖α+
Lp

∥
∥|ṽn|β ṽn – |ṽ|β ṽ

∥
∥

L
p

β+

+ ‖b‖L∞‖ṽn‖β+
Lp

∥
∥|ũn|αũn – |ũ|αũ

∥
∥

L
p

α+

→  as n → ∞. ()

From () it follows that

lim sup
n→∞

J(un, vn)
Kp

n
≤ .
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Combining the above inequality with (), (), () () and α + β +  = p, we have

lim sup
n→∞

(∫

�

|∇ũn|p dx +
∫

�

|∇ ṽn|p dx
)

≤ λ

(∫

�

a(x)|ũ|p dx +
∫

�

c(x)|ṽ|p dx +
p

(α + )(β + )

∫

�

b(x)|ũ|α|ṽ|β ũṽ dx
)

.

Hence, using the weak lower semicontinuity of the norm and the Poincaré inequality, we
obtain

λ

(∫

�

a(x)|ũ|p dx +
∫

�

c(x)|ṽ|p dx +
p

(α + )(β + )

∫

�

b(x)|ũ|α|ṽ|β ũṽ dx
)

≤
∫

�

|∇ũ|p dx +
∫

�

|∇ ṽ|p dx

≤ lim inf
n→∞

(∫

�

|∇ũn|p dx +
∫

�

|∇ ṽn|p dx
)

≤ lim sup
n→∞

(∫

�

|∇ũn|p dx +
∫

�

|∇ ṽn|p dx
)

≤ λ

(∫

�

a(x)|ũ|p dx +
∫

�

c(x)|ṽ|p dx +
p

(α + )(β + )

∫

�

b(x)|ũ|α|ṽ|β ũṽ dx
)

,

which implies that the following equality holds:

∫

�

|∇ũ|p dx +
∫

�

|∇ ṽ|p dx

= λ

(∫

�

a(x)|ũ|p dx +
∫

�

c(x)|ṽ|p dx +
p

(α + )(β + )

∫

�

b(x)|ũ|α|ṽ|β ũṽ dx
)

.

By the uniform convexity of W , we have that (ũn, ṽn) converges strongly to (ũ, ṽ) in W , and
from the definition of (μ,ν), it follows that (ũ, ṽ) = ±(μ,ν).

In the following, we assume that (ũ, ṽ) = (μ,ν), and the case where (ũ, ṽ) = –(μ,ν) may
be treated similarly. Noting that α + β +  = p, it follows that

p
Kn(α + )(β + )

∫

�

b(x)|un|α|vn|βunvn dx

=


β + 

∫

�

b(x)|un|α|vn|β ũnvn dx +


α + 

∫

�

b(x)|un|α|vn|βunṽn dx.

Hence from () and the above equality, we have

pJ(un, vn)
Kn

–
〈
J ′(un, vn), (ũn, ṽn)

〉

=
∫

�

(
Fs(x, un, vn)ũn + Ft(x, un, vn)ṽn

)
dx –

p
Kn

∫

�

F(x, un, vn) dx

+ (p – )
∫

�

(hũn + hṽn) dx. ()
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From h, h ∈ Lq(�), we observe

∫

�

hũn + hṽn dx →
∫

�

hμ + hν dx as n → ∞. ()

From (F) and (F), we have

∫

�

Fs(x, un, vn)ũn + Ft(x, un, vn)ṽn dx →
∫

�

(
f ++μ + g++ν

)
dx as n → ∞. ()

Finally, from the Lebesgue dominated convergence theorem, (F) and (F), we have


Kn

∫

�

F(x, un, vn) dx

=


Kn

∫

�

∫ 



(
Fs(x, τun, τvn)un + Ft(x, τun, τvn)vn

)
dτ dx +

C

Kn

=
∫

�

∫ 



(
Fs(x, τun, τvn)ũn + Ft(x, τun, τvn)ṽn

)
dτ dx +

C

Kn

→
∫

�

(
f ++μ + g++ν

)
dx as n → ∞. ()

Therefore, taking the limit in () and from (), (), () and (), we get

∫

�

(hμ + hν) dx =
∫

�

(
f ++μ + g++ν

)
dx,

which is a contradiction with the condition (LL)+
 . Hence, (un, vn) is bounded in W , and

there is a subsequence of (un, vn) without any loss of generality still denoted by (un, vn),
and (u, v) ∈ W such that (un, vn) ⇀ (u, v) weakly in W , (un, vn) → (u, v) strongly in Lp(�)×
Lp(�). Consequently, from (), one has

lim
n→∞

〈
J ′(un, vn), (un – u, )

〉
= . ()

From (F) and Hölder’s inequality, it follows that

∣
∣
∣
∣

∫

�

Fs(x, un, vn)(un – u) dx
∣
∣
∣
∣ ≤ ‖h‖Lq‖un – u‖Lp → 

as n → ∞. Similarly, we obtain

∣
∣
∣
∣

∫

�

h(x)(un – u) dx
∣
∣
∣
∣ ≤ ‖h‖Lq‖un – u‖Lp → 

and
∣
∣
∣
∣

∫

�

a(x)|un|p–un(un – u) dx
∣
∣
∣
∣ ≤ ‖a‖L∞‖un‖p–

Lp ‖un – u‖Lp

≤ Cp–‖a‖L∞‖un‖p–‖un – u‖Lp

→ 
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as n → ∞. Combining the above three inequalities and (), we get

∫

�

(|∇un|p–∇un,∇(un – u)
)

dx → 

as n → ∞. Similarly, we also obtain

lim
n→∞

∫

�

(|∇u|p–∇u,∇(un – u)
)

dx = ,

hence

lim
n→∞

∫

�

((|∇un|p–∇un – |∇u|p–∇u
)
,∇(un – u)

)
dx = .

From Clarkson’s inequality, that is, there is Cp >  such that for all μ,ν ∈ RN and p ≥ ,

|μ – ν|p ≤ Cp
(|μ|p–μ – |ν|p–ν

)
(μ – ν),

it follows that

lim
n→∞

∫

�

|∇un – ∇u|p dx = ,

this is, un → u in W ,p
 (�). Similarly, we have vn → v in W ,p

 (�), hence (un, vn) → (u, v)
strongly in W .

(ii) We claim that the functional J satisfies the geometries of the saddle point the-
orem with respect to (E, E), where E = span{(μ,ν)}, E = {(φ,ψ) ∈ W :

∫

�
(μp–

 φ +
ν

p–
 ψ) dx = } and W = E ⊕ E .
By the definition of (μ,ν), for all t ∈ R, we have

λ

(∫

�

a(x)|tμ|p dx +
∫

�

c(x)|tν|p dx

+
p

(α + )(β + )

∫

�

b(x)|tμ|α|tν|β tμtν dx
)

=
∫

�

∣
∣∇(tμ)

∣
∣p dx +

∫

�

∣
∣∇(tν)

∣
∣p dx. ()

Moreover, we have

∫

�

F(x, tμ, tν) dx

=
∫

�

(
F(x, tμ, tν) – F(x, , )

)
dx +

∫

�

F(x, , ) dx

=
∫

�

∫ 



(
Fs(x, τ tμ, τ tν)tμ + Ft(x, τ tμ, τ tν)tν

)
dτ dx +

∫

�

F(x, , ) dx

= t
∫

�

∫ 



(
Fs(x, τ tμ, τ tν)μ + Ft(x, τ tμ, τ tν)ν

)
dτ dx +

∫

�

F(x, , ) dx. ()
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From the Lebesgue dominated convergence theorem, (F), (F) and (F), we obtain

lim
t→+∞

∫

�

∫ 



(
Fs(x, τ tμ, τ tν)μ + Ft(x, τ tμ, τ tν)ν

)
dτ dx

=
∫

�

(
f ++μ + g++ν

)
dx. ()

Hence, from (), (LL)+
 , (), () and (), it follows that

J(tμ, tν) = t
∫

�

(hμ + hν) dx –
∫

�

F(x, tμ, tν) dx

→ –∞ as t → ∞.

Similarly, if t tends to –∞, the same result is obtained with f ++ and g++ exchanged with
f –– and g–– respectively. Hence, in both cases we have

lim|t|→∞ J(tμ, tν) = –∞. ()

On the other hand, from the definition of λ, there is λ̄ > λ such that

∫

�

|∇u|p dx +
∫

�

|∇v|p dx

≥ λ̄

(∫

�

a(x)|u|p dx +
∫

�

c(x)|v|p dx +
p

(α + )(β + )

∫

�

b(x)|u|α|v|βuv dx
)

for all (u, v) ∈ E. From (), (), (), the above inequality and Hölder’s inequality, we obtain

J(u, v) ≥ λ̄ – λ

pλ̄

(‖u‖p + ‖v‖p) – C‖h‖Lq
(‖u‖ + ‖v‖)

–
(‖h‖Lq‖u‖Lp + ‖h‖Lq‖v‖Lp

)
– C

≥ λ̄ – λ

pλ̄

(‖u‖p + ‖v‖p) – C
(‖u‖ + ‖v‖) – C ()

for all (u, v) ∈ E, where C = C(‖h‖Lq + min{‖h‖Lq ,‖h‖Lq}).
Thus, from () and (), there is δ ∈ R and R >  such that if |t| = R we obtain

J(tμ, tν) < δ < min
(u,v)∈E

J(u, v).

From the saddle point theorem, Theorem  is proved. �

Proof of Theorem  (i) Similar to (i) of the proof of Theorem , we can prove that from
(LL)–

 , the functional J satisfies the (PS) condition.
(ii) Now we will prove that the functional J is coercive, that is,

J(u, v) → +∞ as
∥
∥(u, v)

∥
∥ → ∞.
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If the claim does not hold, there is a constant c and a sequence (un, vn) with ‖(un, vn)‖ → ∞
as n → ∞ such that J(un, vn) ≤ c. Let Kn := (‖un‖p + ‖vn‖p)/p, hence we have Kn → ∞ as
n → ∞ and

lim sup
n→∞

J(un, vn)
Kn

≤ .

Define ũn = un \ Kn, ṽn = vn \ Kn, similar to the proof of the (PS) condition of Theorem 
again, we obtain that (ũn, ṽn) converges strongly to ±(μ,ν) as n → ∞.

Assume that (ũn, ṽn) converges strongly to (μ,ν) as n → ∞ (the case (ũn, ṽn) converges
strongly to –(μ,ν) as n → ∞ may be treated similarly), from () we have

 ≥ lim sup
n→∞

J(un, vn)
Kn

≥ lim
n→∞

(∫

�

hũn + hṽn dx –


Kn

∫

�

F(x, un, vn) dx
)

=
∫

�

(hμ + hν) dx –
∫

�

(
f ++μ + g++ν

)
dx,

which is a contradiction with (LL)–
 . By Ekeland’s variational principle, Theorem  is

proved. �
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