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1 Introduction
This paper is devoted to the study of the existence of nonconstant periodic solutions for
non-autonomous singular second order differential equations,

u′′(t) + f (t, u) = e(t), for a.e. t ∈ [, T], T > , (.)

under impulse conditions

�u′(tj) = Ij
(
u(tj)

)
, j = , , . . . , p – , (.)

where f is a singular negative function and �u′(tj) = u′(t+
j ) – u′(t–

j ), with u′(t±
j ) =

limt→t±j
u′(t); tj for j = , , . . . , p – , are the instants where the impulses occur with

 = t < t < · · · < tp– < tp = T , tj+p = tj + T . The functions Ij : R → R; j = , , . . . , p – ,
are continuous and represent the jump discontinuities of u′ at the impulse moments, and
Ij+p ≡ Ij. Applications of impulsive differential equations with or without delays occur in
medicine, population dynamics, and chaos theory; see [, ]. For the general aspects of im-
pulsive differential equations, we refer the reader to the classical monographs [, ]. Due
to its significance, a great deal of work has been done in the theory of impulsive differ-
ential equations; see for example [–]. It was pointed out in [] that singular differential
equations of the form (.) appear in the description of many phenomena in the applied
sciences, such as nonlinear elasticity. Singular problems without impulse effects have been
investigated extensively in the literature (see [, –] and the references therein). Some
classical tools have been used to study such problems. These classical techniques include
the coincidence degree theory of Mawhin and Willem [], the method of upper and lower
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solutions [], some fixed point theorems [], and variational methods [, ]. For exam-
ple, the authors in [] obtained multiple periodic solutions for second-order perturbed
Hamiltonian systems with impulse effects via variational methods. We believe that singu-
lar problems with impulsive effects have not been sufficiently studied; for some work on
the subject, see [, ]. Inspired by the above facts, and the following important result
(see []): if e is an integrable T-periodic function, then (.) has a positive T-periodic weak
solution if and only if

∫ T
 e(t) dt < , the aim of this paper is to prove a new existence result

on a weak nonconstant T-periodic solutions generated by impulses (.) for the singular
equation (.). Here, we say that a solution is generated by impulses if this solution exists
when Ij �= , for some  < j < p – , and if it disappears when Ij ≡  for all  < j < p – .

The paper is organized as follows. Section  contains the basic preliminaries. An exis-
tence result of periodic solutions is given in Section . We conclude with an example.

2 Preliminaries
In this section we introduce some basic notions that will be used in the rest of the paper. PT

denotes the set of T-periodic functions u : R → R satisfying u(t + T) = u(t) for all t ∈ R;
CT = {u ∈ PT ; u is continuous}. For u ∈ CT we denote its norm by ‖u‖∞ = sup{|u(t)|; t ∈
[, T]}. Then (CT ,‖ · ‖∞) is a Banach space. For p ≥ , Lp := Lp(, T ;R) is the classical
Lebesgue space of measurable functions u : [; T] → R such that |u(·)|p is integrable, and
for u ∈ Lp we define its norm by

‖u‖Lp =
(∫ T



∣∣u(t)
∣∣p dt

) 
p

.

We consider the Sobolev space H
T = {u : R → R; u is absolutely continuous, u′ ∈ L, and

u(t) = u(t + T) for t ∈ R}. H
T , equipped with the inner product

(u, v) =
∫ T


u′(t)v′(t) dt +

∫ T


u(t)v(t) dt

and the norm

‖u‖H
T

:=
(‖u‖

L +
∥∥u′∥∥

L
) 



is a reflexive Banach space. Also, H
T admits the orthogonal decomposition, H

T = E + F ,
where F is the subspace of constant functions in H

T and E denotes the subspace of func-
tions in H

T with zero mean value. E is a weakly closed subspace of H
T . If u ∈ E, then the

Wirtinger inequality

∫ T



∣∣u(t)
∣∣ dt ≤ T

π

∫ T



∣∣u′(t)
∣∣ dt (.)

implies that, on E, we can obtain the equivalent norm

‖u‖ :=
∥
∥u′∥∥

L .

Also, for u ∈ E we have

‖u‖∞ ≤ √
T‖u‖. (.)
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It is easy to see that a T-periodic solution of (.), (.) with zero mean value must be a
nonconstant T-periodic solution of (.), (.).

Definition  u ∈ H
T is solution of (.), (.) if u ∈ CT such that for every j, uj = u|[tj ,tj+] ∈

H(tj, tj+), and it satisfies (.) for a.e. t ∈ [, T], t �= tj, the limits u′(t–
j ), u′(t+

j ) exist and the
impulsive conditions (.) are satisfied.

3 Main result
We consider the impulsive second-order periodic boundary value problem,

⎧
⎪⎨

⎪⎩

u′′(t) + f (t, u) = e(t), for t ∈ (, T), t �= tj,
�u′(tj) = Ij(u(tj)), j = , , . . . , p – ,
u() – u(T) = , u′() – u′(T) = ,

(.)

under the following assumptions:
(H) (i) f : R× (, +∞) →R, is a negative Carathéodory function which is T-periodic

in its first argument,
(ii) limu→+ f (t, u) = –∞, for a.e. t ∈ [, T],

(iii) limu→+∞ f (t, u) = , for a.e. t ∈ [, T],
(H) (i) e is a locally integrable T-periodic function and ē := 

T
∫ T

 e(t) dt > ,
(ii) Ij : R →R, is a continuous bounded function for all j = , . . . , p – , such that

m = inf Ij < sup Ij = M < – T
p– ē.

Remark  (H)(iii) implies that limu→+∞ F(t,u)
u = , for a.e. t ∈ [, T] where F(t, u) :=

∫ u
 f (t, s) ds.

Remark  Consider (.) and suppose that Ij ≡  for all  < j < p – . In this case f verifies
the conditions of the second result in []. Then (.) has a positive T-periodic solution if
and only if ē < . This means that (.) under (H) and (H)(i) does not have a T-periodic
weak solution. However, if the impulses happen, i.e. if (H)(ii) is fulfilled for this singular
equation (.), there may exist a positive T-periodic weak solution. Such a solution is called
a periodic solution generated by impulses as pointed out in [].

Theorem  Suppose (H) and (H) hold. Then (.) admits at least one weak nonconstant
T-periodic solution.

Proof To prove this result, we rely on a variational method. In order to study problem
(.), we consider the following modified problem:

⎧
⎪⎨

⎪⎩

u′′(t) + fr(t, u(t)) = e(t), for a.e. t ∈ (, T), t �= tj,
�u′(tj) = Ij(u(tj)), j = , , . . . , p – ,
u() – u(T) = , u′() – u′(T) = ,

(.)

where fr : [, T] ×R →R is the truncation function defined for r ∈ (, ] by

fr(t, u) =

{
f (t, r), u ≤ r,
f (t, u), u > r.
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fr is a negative, continuous, and T-periodic function in t, which satisfies (H)(iii). Let
Fr(t, u) :=

∫ u
 fr(t, s) ds.

Take v ∈ H
T and multiply the two sides of the equality –u′′ – fr(t; u) + e(t) =  by v and

integrate from  to T

∫ T



[
–u′′(t) – fr

(
t; u(t)

)
+ e(t)

]
v(t) dt = . (.)

Due to the jump discontinuities of u′ at each tj, j = , , . . . , p – , and since v is T-periodic
and u′() – u′(T) = , the first term of (.) becomes

∫ T


u′′(t)v(t) dt =

p∑

j=

∫ tj+

tj

u′′(t)v(t) dt

= u′(T)v(T) – u′()v() –
p–∑

j=

�u′(tj)v(tj) –
∫ T


u′(t)v′(t) dt

= –
p–∑

j=

�u′(tj)v(tj) –
∫ T


u′(t)v′(t) dt.

Combining the above with (.) we obtain

p–∑

j=

�u′(tj)v(tj) +
∫ T


u′(t)v′(t) dt –

∫ T


fr
(
t; u(t)

)
dt +

∫ T


e(t)]v(t) dt = . (.)

As a result, we introduce the concept of a weak solution for problem (.). We say that
a function u is a weak solution of problem (.) if (.) holds for any v ∈ H

T .
Hence, we define the energy functional �r : H

T →R, associated to (.) by

�r(u) :=



∫ T



∣∣u′(t)
∣∣ dt +

p–∑

j=

∫ u(tj)


Ij(s) ds –

∫ T


Fr

(
t, u(t)

)
dt +

∫ T


e(t)u(t) dt. (.)

Clearly, �r is well defined on H
T . Combining the weak lower semicontinuity of the L-

norm and Fatou’s lemma we infer that �r is weakly lower semi continuous, by means of
the assumptions (H)(i), (H). Also, it is a differentiable functional whose derivative is the
functional �′

r(u), given by

�′
r(u)v =

∫ T


u′(t)v′(t) dt +

p–∑

j=

Ij
(
u(tj)

)
v(tj) –

∫ T


fr
(
t, u(t)

)
v(t) dt +

∫ T


e(t)v(t) dt.

Obviously, from (.), if u ∈ H
T is a critical point of the functional �r , then u is a weak

solution of problem (.). So, to obtain nonconstant weak solutions, it is sufficient to prove
the existence of critical points of �r , on the weakly closed subspace E of H

T .
Now, we claim that �r is coercive on E. Indeed, the assumption (H)(iii), implies that,

for all ε ∈ (, min(, π

T )), there exists δε >  such that, for almost every t ∈ [, T], we have

∣∣fr(t, u)
∣∣ ≤ εu (.)
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whenever |u| > δε . Using (.), (.), and (H)(iii) we obtain for all u ∈R and a.e t ∈ [, T]

∣∣Fr(t, u)
∣∣ ≤ εu + max

|u|≤δε

∣∣Fr(t; u)
∣∣ – ε, (.)

so that

∫ T


Fr

(
t, u(t)

)
dt ≤ ε

∫ T



∣∣u(t)
∣∣ dt + Cε , (.)

where Cε =
∫ T

 max|u|≤δ |Fr(t; u)|dt – Tε < +∞. Also, one can easily see that

∫ T


e(t)u(t) dt +

p–∑

j=

∫ u(tj)


Ij(s) ds ≥ (

m(p – ) – ‖e‖L
)‖u‖∞.

Thus, for u ∈ E, by (H) and the previous inequalities we obtain

�r(u) =



∫ T



∣∣u′(t)
∣∣ dt –

∫ T


Fr

(
t, u(t)

)
dt +

∫ T


e(t)u(t) dt +

p–∑

j=

∫ u(tj)


Ij(s) ds

≥ 


∫ T



∣
∣u′(t)

∣
∣ dt – ε

∫ T


u(t) dt – CεT +

(
m(p – ) – ‖e‖L

)‖u‖∞

≥ 


(
 –

T

π ε

)
‖u‖ +

√
T

(
m(p – ) – ‖e‖L

)‖u‖ – CεT .

So, �r(u) → +∞ as ‖u‖ → +∞, which shows that �r is coercive on E. Since E is a weakly
closed subspace of H

T , using the direct method of the calculus of variations, we see that
there exists u∗ ∈ E such that

�r
(
u∗) = inf

E
�r .

Notice that by (H)(i) and (H)(i), we have
∫ T

 fr(t, ) dt =
∫ T

 f (t, r) dt ≤  <
∫ T

 e(t) dt, so
that the function u ≡  cannot be a solution of (.). Hence u∗ is a nontrivial solution of
(.). �

In the following, we shall show that u∗ is a solution of (.). For this purpose we introduce
the following auxiliary result.

Lemma  There exist r ∈ (, ) and a constant β >  such that each solution u of (.)
satisfies r ≤ u(t) ≤ β, for all t. In particular, any T-periodic solution of (.) is a solution
of (.).

Proof Here, we shall use some ideas from [].
We proceed by contradiction. Suppose, on the contrary, that, for each r ∈ (, ) and for

each constant β > , there exists a T-periodic solution u of (.) which satisfies

u(t) < r or u(t) > β for some t ∈ [, T]. (.)
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In particular, if for each integer n >  we consider rn = 
n and β = n, the above assumption

implies that there exists a solution un of (.) for r = rn such that

{
un(t); t ∈R

}
� [rn, n]. (.)

We will show that this assumption leads to a contradiction.
First, we claim that for every n >  there must exist τn ∈ [, T] such that

un(τn) ∈
[


n

, n
]

.

Indeed, suppose on the contrary that there exists a subsequence of (un)n, which we label
the same, for which min un(t) > n. It follows from (H)(iii) and the Fatou lemma that

(p – )M ≥ lim inf
n→+∞

p–∑

j=

Ij
(
un(tj)

)
= lim inf

n→+∞

∫ T



(
frn

(
t, un(t)

)
– e(t)

)
dt

≥
∫ T


lim inf
n→+∞

(
frn

(
t, un(t)

)
– e(t)

)
dt

and

∫ T


lim inf
n→+∞

(
frn

(
t, un(t)

)
– e(t)

)
dt =

∫ T


lim inf
x→+∞

(
f (t, x) – e(t)

)
dt

=
∫ T


lim

x→+∞
(
f (t, x) – e(t)

)
dt = –Tē,

which leads to

(p – )M ≥ –Tē.

This is a contradiction to (H)(ii). Similarly, we will arrive at a contradiction with (H), if
we assume that max un < 

n . In fact, by the Fatou lemma we have

lim sup
n→+∞

p–∑

j=

Ij
(
un(tj)

)
= lim sup

n→+∞

∫ T



(
frn

(
t, un(t)

)
– e(t)

)
dt

≤
∫ T


lim sup
n→+∞

(
frn

(
t, un(t)

)
– e(t)

)
dt

≤
∫ T


lim sup

x→+

[
f (t, x) – e(t)

]
dt.

Hence

lim sup
n→+∞

p–∑

j=

Ij
(
un(tj)

) ≤
∫ T


lim

x→+

[
f (t, x) – e(t)

]
dt = –∞.

This contradicts the assumption that Ij is bounded.
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Next, we show that un is bounded from above. Since for all n > , un is a T-periodic
solution of (.), �′

r(un) = . Hence for all v ∈ H
T and for all n >  we have, for all ε,  < ε < ,

∣∣∣
∣∣

∫ T



[
u′

n(t)v′(t) – frn

(
t, un(t)

)
v(t) + e(t)v(t)

]
+

p–∑

j=

Ij
(
un(tj+sp)

)
v(tj+sp)

∣∣∣
∣∣
≤ ε‖v‖. (.)

Taking v(t) ≡ – in the above inequality, we obtain

∣
∣∣
∣

∫ T



[
frn

(
t, un(t)

)
– e(t)

]
dt

∣
∣∣
∣ –

∣∣
∣∣
∣

p–∑

j=

Ij(un(tj)

∣∣
∣∣
∣

≤
∣∣∣
∣

∫ T



[
frn

(
t, un(t)

)
– e(t)

]
dt –

p–∑

j=

Ij(un(tj)
∣∣∣
∣ ≤ ε

√
T .

Then

∣
∣∣
∣

∫ T



[
frn

(
t, un(t)

)
– e(t)

]
dt

∣
∣∣
∣ ≤

∣∣∣
∣∣

p–∑

j=

Ij(un(tj)

∣∣∣
∣∣

+ ε
√

T

≤ (p – )|m| + ε
√

T .

Now, from the above inequality, we get for all n > 

∫ T



∣
∣frn

(
t, un(t)

)∣∣dt ≤
∫ T



∣
∣frn

(
t, un(t)

)
– e(t)

∣
∣dt +

∫ T


e(t) dt

=
∣
∣∣
∣

∫ T



[
frn

(
t, un(t)

)
– e(t)

]
dt

∣
∣∣
∣ + ēT

≤ (p – )|m| + ε
√

T + Tē. (.)

Also, taking v = un in (.), we obtain

ε‖un‖ ≥ ∥∥u′∥∥
L

–
∫ T



[
frn

(
t, un(t)

)
– e(t)

]
un(t) dt +

p–∑

j=

Ij
(
un(tj)

)
un(tj). (.)

Using (.) we get for all n > 

∣
∣∣
∣

∫ T



[
frn

(
t, un(t)

)
– e(t)

]
un(t) dt

∣
∣∣
∣ ≤ ‖un‖∞

(∫ T



∣∣frn

(
t, un(t)

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

)

≤ ‖un‖∞
(
ε
√

T + Tē + (p – )|m| + ‖e‖L
)
.

Thus (.) implies that

ε‖un‖ ≥ ‖un‖ – ‖un‖∞
(
ε
√

T + Tē + ‖e‖L + (p – )|m|). (.)

Wirtinger’s inequality (.) combined with (.) gives, for all n > ,

ε‖un‖ ≥ ‖un‖ –
√

T


‖un‖
(
ε
√

T + Tē + ‖e‖L + (p – )|m|).
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We deduce that, for n > ,

‖un‖ ≤ β,

where

β =
(

 +
T


√



)
+

√
T


(‖e‖L + Tē + (p – )|m|).

Notice that β is independent of n. Hence (un)n is bounded in H
T . Since ‖un‖∞ ≤ √

T‖un‖,
we deduce that

un(t) ≤ β := β
√

T .

Consequently, for n sufficiently large (n > β), for all t ∈ [, T], we have un(t) ≤ n. Further-
more, we cannot have un(t) ≥ 

n for all t ∈ [, T]; otherwise we would get 
n ≤ un(t) ≤ n for

all t ∈ [, T] and this contradicts the assumption (.). Therefore, for n sufficiently large
(n > β), there must exist a t∗

n ∈ [, T] such that un(t∗
n) < 

n . This means that t∗
n ∈ I 

n
, where

I 
n

is the set defined by

I 
n

=
{

t ∈ [, T]; un(t) < rn
}

. (.)

Hence the set I 
n

is not empty. The continuity of the solution un at t = t∗
n implies that

meas(I 
n

) > , which implies

∫

I 
n

[
frn

(
t, un(t)

)
– e(t)

]
dt �= .

Now, consider the sets

I,β =
{

t ∈ [, T];  ≤ un(t) ≤ β
}

, (.)

I 
n , =

{
t ∈ [, T]; rn ≤ un(t) < 

}
, (.)

so that we can write

[, T] = I 
n

∪ I 
n , ∪ I,β .

Then integrating the differential equation in (.) from  to T we obtain

ϒn :=
∫ T


–u′′

n(t) dt =
∫ T



(
frn

(
t, un(t)

)
– e(t)

)
dt

=
∫

I 
n

[
frn

(
t, un(t)

)
– e(t)

]
dt

+
∫

I 
n ,

[
frn

(
t, un(t)

)
– e(t)

]
dt +

∫

I,β

[
frn

(
t, un(t)

)
– e(t)

]
dt. (.)
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() Assume we are integrating positively on all subintervals of [, T].
If t ∈ I 

n
then un(t) < rn. It follows from (.) and (H)(ii) that

∫

I 
n

[
frn

(
t, un(t)

)
– e(t)

]
dt =

∫

I 
n

[
f (t, rn) – e(t)

]
dt < ,

which yields

ϒn <
∫

I 
n ,

[
frn

(
t, un(t)

)
– e(t)

]
dt +

∫

I,β

[
frn

(
t, un(t)

)
– e(t)

]
dt. (.)

If t ∈ I,β then un(t) ∈ [,β]. This means that un(t) is bounded on I,β , since frn is continuous
in u, then frn is bounded almost everywhere in I,β . Let

C = C(β) = max
{∣∣frn (t, x)

∣∣; t ∈ [, T],  ≤ x ≤ β
}

. (.)

Then
∣∣
∣∣

∫

I,β

[
frn

(
t, un(t)

)
– e(t)

]
dt

∣∣
∣∣ ≤

∫

I,β

∣
∣frn

(
t, un(t)

)∣∣ +
∣
∣e(t)

∣
∣dt ≤ T

(
C + ‖e‖L

)
, (.)

and (.) leads to

ϒn ≤
∫

I 
n ,

[
frn

(
t, un(t)

)
– ē

]
dt + T(C + ē). (.)

By (H)(ii), we see that, for every σ > , there exists γσ >  such that f (t, x) – ē < –σ , for
all x ∈ Iγσ := (,γσ ) and for every t ∈ [, T]. Then, for n large enough (n > β), we have
J := I 

n , ∩ Iγσ �= ∅. Hence, (H)(i) implies

∫

I 
n ,

[
frn

(
t, un(t)

)
– ē

]
dt <

∫

J

[
frn

(
t, un(t)

)
– ē

]
dt < –σ meas(J). (.)

Thus, for σ = 
meas(J) nT(C + ē), we obtain

ϒn <
∫

I 
n ,

[
frn

(
t, un(t)

)
– ē

]
dt + T(C + ē)

< T(C + ē)
(
 – n) →

n→+∞ –∞. (.)

Then ϒn is not bounded.
() If we integrate negatively on all subintervals of [, T] then, instead of (.), we get

∫

I 
n ,

[
f
(

t, u +

n

)
– ē

]
dt > σ meas(IJ ).

This, together with (.), leads to

ϒn → +∞, as n → +∞. (.)
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On the other hand, integrating the differential equation in (.) from  to T and using
T-periodicity of u′

n, we obtain

ϒn = –
∫ T


u′′

n(t) dt = –
p∑

j=

∫ t–
j+

t+
j

u′′
n(t) dt

=
p–∑

j=

�u′
n(tj) =

p–∑

j=

Ij
(
un(tj)

) ≤ (p – )M.

Thus by (H)

for each n ∈N
∗,ϒn <  and ϒn is bounded. (.)

We see that (.) contradicts (.) and (.). This contradiction shows that Lemma  is
proved. In particular, Lemma  shows that there exists r ∈ (, ) such that every T-periodic
solution u of (.) is a solution of (.), since it satisfies u(t) ≥ r for all t ∈ R and fr(t, u(t)) =
f (t, u(t)), if u(t) ≥ r. Therefore u∗ is a nonconstant T-periodic solution of (.), (.). This
completes the proof of our main result. �

4 Example
Consider the impulsive singular problem

⎧
⎪⎨

⎪⎩

u′′(t) – et

uα = e(t), for t ∈ (, T), t �= tj,
�u′(tj) = Ij(u(tj)), j = ,
u() – u(T) = ,

(.)

where α >  and T > . Take Ij(s) = cos s – , and e ∈ L([; T],R) such that ē < 
T . In this

case m = – and M = –. Then (H)-(H) hold. Therefore, by Theorem , problem (.)
has at least one nonconstant T-periodic solution.
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