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Abstract
In this paper, we study the existence of second order smooth solutions for the initial
boundary value problem of Euler equation satisfying the γ -law with damping and
axial symmetry. After a series of transformations, we can choose the γ in an
appropriate scope to make sure the estimates of the C2 norm of the solutions are
bounded when the damping is strong enough.
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1 Introduction
The Euler equation is one of the most important fundamental equations in inviscid fluid
dynamics, which describes the motion of a fluid in R

d . The existence, uniqueness, and
the regularity of solutions of Euler equations are three popular research topics. In the
case of periodic boundary conditions and for arbitrary dimension d ≥ , there exist in-
finitely many global weak solutions for the incompressible Euler equation with initial data
[]. Zhang and Zheng [] constructed a two parameter family of self-similar solutions to
both the compressible and the incompressible D Euler equations with axisymmetry. They
also provided the vortical and self-similar solutions for D compressible Euler equations
using a separation method []. The stationary classical solutions of the incompressible
Euler equation approximating singular stationary solutions of this equation have been
constructed in []. The global existence and uniqueness of the classical solutions to the
initial boundary value problem for the D damped compressible Euler equation have been
proved on a bounded domain with slip boundary condition when the initial data is near
its equilibrium []. A smooth solution of the D Euler equation on a bounded domain
exists and is unique in a natural class locally in time, but it blows up in finite time in the
sense of its vorticity losing continuity []. There are also some exact blowup solutions to
the pressureless Euler equations []. If the domain and the initial data are smooth, results
on the global smooth solutions of the D Euler equation go back to the s. Marin []
studied the temporal behavior of the solutions of some equations which are applied in our
daily life. The global existence of regular solutions for Cauchy and initial boundary value
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problem of one dimensional quasilinear hyperbolic systems has been extensively inves-
tigated (see [, , –]). There exist global smooth solutions for the D Euler equation
with symmetry []. The D inviscid model with an appropriate Neumann-Robin bound-
ary condition was developed with a finite time singularity in an axisymmetric domain and
this model has global smooth solutions for a class of a large smooth initial data with some
appropriate boundary condition [].

The contribution of our work is a study of the second order smooth solutions for the
D compressible isentropic Euler equation with axial symmetry and damping outside a
core region. We mainly use characteristic methods. Some appropriate conditions are given
which guarantee the existence of second order smooth solutions. The study is based on
the technical estimation of the C norm of the solution.

The rest of the paper is organized as follows. Section  introduces the D Euler equation
with axial symmetry and damping and gives the conclusion that there exists one order
smooth solutions for Euler equation with symmetry []. In Section , the boundedness
of C norm of solutions is obtained under some assumptions. In Section , we get the
existence of second order smooth solutions for D Euler equation with symmetry outside
a core region.

2 2D Euler equation with axial symmetry and damping
Consider the D compressible and polytropic Euler equation with damping

⎧
⎪⎪⎨

⎪⎪⎩

ρ̃t + (ρ̃u)x + (ρ̃v)y = ,

(ρ̃u)t + (ρ̃u + P)x + (ρ̃uv)y = –ρ̃αu,

(ρ̃v)t + (ρ̃uv)x + (ρ̃v + P)y = –ρ̃αv,

()

where P = Kρ̃γ and the friction α >  is a constant. Here ρ , (u, v), P(ρ) are the density,
velocity, and pressure, respectively. We consider () with axisymmetry, i.e., we look for the
solutions satisfying

ρ̃(r, θ ) = ρ̃(r, ),
(

u(r, θ )
v(r, θ )

)

=

(
cos θ – sin θ

sin θ cos θ

)(
u(r, )
v(r, )

)

,
()

where (r, θ ) are the polar coordinates. Under (), () can be written as

ρ̃t + (ρ̃u)r +
ρ̃u
r

= ,

ut + uur + hr = –αu +
v

r
, ()

vt + uvr = –αv –
uv
r

,

where hr = Kγ ρ̃γ –ρ̃r is the entropy.
In this section, we are going to study system () outside a core region, i.e.  ≤ r ≤ ∞,

with initial and boundary data given by

ρ̃(r, ) = ρ̃(r), (u, v)(r, ) = (u, v)(r), u(, t) = . ()
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According to a series of transformations (refer to []), we obtain

σt – ux = ,

ut +
(

K

σγ

)

x


rγ – = –αu +

Kγ σ –γ

rγ
+

v

r
, ()

vt = –αv –
uv
r

,

where r =  +
∫ x

 σ (s, t) ds and x ≥ . In order to symmetrize the system (), we introduce
the Riemann invariants

w = u +
k√

γ

γ – 
r– γ –

 σ – γ –
 ,

z = u –
k√

γ

γ – 
r– γ –

 σ – γ –
 ,

()

hence () can be written as

wt + μwx = –α(w + z) –
γ – 

r
(w – z)(w + z) +

v

r
,

zt + λzx = –α(w + z) +
γ – 

r
(w – z)(w + z) +

v

r
,

vt = –
(

α +
w + z

r

)

v,

()

where λ = –K√
γ r– γ –

 σ – γ –
 and μ = K√

γ r– γ –
 σ – γ –

 are two characteristics for (). The
corresponding initial and boundary conditions for () are

w(x, ) = w(x), z(x, ) = z(x), v(x, ) = v(x),

and

w(, t) + z(, t) = . ()

In this section, we always assume the initial and boundary conditions satisfy

w(x), z(x), v(x) ∈ C
b[,∞),

w(x) – z(x) ≥ δ,

w(x) + z(x) = , μ()wx() = λ()zx() = v(),

()

where δ is a positive constant and μ(x) and λ(x) are the two given characteristics at t = .
Lemma . gives the C norm estimate for solutions inside the region of smooth solu-

tions.

Lemma . [] Under the conditions () and (), if

∣
∣v(x)

∣
∣ ≤ M,

∣
∣w(x)

∣
∣ ≤ M,

∣
∣z(x)

∣
∣ ≤ M,
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then when α > (γ –)M+
√

(γ –)M
+(γ –)M


 , we have

∣
∣w(x, t)

∣
∣ ≤ M,

∣
∣z(x, t)

∣
∣ ≤ M,

∣
∣v(x, t)

∣
∣ ≤ Me–αt , ()

and

∣
∣w(x, t) – z(x, t)

∣
∣ > , ()

where (x, t) is in the region of smooth solutions and M = M


α
+ M.

The Mi (i ≥ ) appearing in the rest of this paper are positive constants depending on
M, M, and δ.

Next we estimate the derivatives of w(x, t), z(x, t) and v(x, t) with respect to x.
Let P(x, t) = wx(x, t), Q(x, t) = zx(x, t), R(x, t) = vx(x, t). We have the following system for

P, Q, and R:

Pt + μPx = –α(P + Q) – K
√

γ
γ + 
γ – 

Ar(w – z)


γ – (P – Q)P

–
γ – 

r
(w – z)P +

vR
r

–
vσ

r –
γ – 

r
(w + z)(P – Q)

–
γ – 

r
(w – z)(P + Q) +

γ – 
r

(
γ – 

K√
γ

)– 
γ –

(w – z)
γ –
γ – (w + z), ()

Qt + λQx = –α(P + Q) + K
√

γ
γ + 
γ – 

Ar(w – z)


γ – (P – Q)P

+
γ – 

r
(w – z)P +

vR
r

–
vσ

r –
γ – 

r
(w + z)(P – Q)

+
γ – 

r
(w – z)(P + Q) –

γ – 
r

(
γ – 

K√
γ

)– 
γ –

(w – z)
γ –
γ – (w + z), ()

Rt = –
{

α +


r
(w + z)

}

R –


r
(P + Q)v +


r (w + z)σv, ()

and let

F =
r

(w – z)l P – a(w – z)m –
a

r
(w – z)m+ +

a

r
(w – z)m(w + z),

G =
r

(w – z)l Q – b(w – z)m –
b

r
(w – z)m+ +

b

r
(w – z)m(w + z),

()

where A = ( γ –
k√

γ
)

γ +
γ – , l = – γ +

(γ –) , m = – –γ

(γ –) . We have the following lemma.

Lemma . [] Under the conditions of Lemma ., if  < γ < 
 or 

 < γ < , and α being
sufficiently large, there exists a constant M such that if

F(x, ) ≥ M,

G(x, ) ≥ M,
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we have

M ≤ F(x, t) ≤ sup
{

F(x, ), G(x, )
}

,

M ≤ G(x, t) ≤ sup
{

F(x, ), G(x, )
}

.

Combining Lemma . and (), we know that

∣
∣P(x, t)

∣
∣ ≤ M,

∣
∣Q(x, t)

∣
∣ ≤ M,

∣
∣R(x, t)

∣
∣ ≤ R,

where R is a positive constant depending only on M, ‖R(x, )‖C .

Remark  According to Lemma . and (), we obtain ux = P+Q
 , and ρx = 

r + 
γ – ×

( γ –
K√

γ
)


γ – (w – z)

–γ
γ – (P – Q)r. Then

∥
∥u(x, t)

∥
∥

C ≤ M,
∥
∥ρ(x, t)

∥
∥

C ≤ M,

and the C norm estimate for solutions inside the region of smooth solutions is proved.
So we get the existence of one order global smooth solution for () and ().

3 The boundedness of C2 norm of solutions for 2D Euler equation with
symmetry outside a core region

For convenience, we list some equations which will be used later:

d(P – Q)
dμt

= –K
√

γ Ar(w – z)
γ +
γ – Qx + A, ()

d(P – Q)
dλt

= –K
√

γ Ar(w – z)
γ +
γ – Px + A, ()

d(P + Q)
dμt

= K
√

γ Ar(w – z)
γ +
γ – Qx + B, ()

d(P + Q)
dλt

= K
√

γ Ar(w – z)
γ +
γ – Px + B, ()

where we have used the notation d
dμt = ∂

∂t + μ ∂
∂x , d

dλt = ∂
∂t + λ ∂

∂x , and

A = –K
√

γ
γ + 
γ – 

Ar(ω – z)


γ – (P – Q)(P + Q) –
γ – 

r
(w + z)(P – Q)

–
γ – 

r
(w – z)(P + Q) +

γ – 
r

(
γ – 

K√
γ

)– 
γ –

(w – z)
γ –
γ – (ω + z), ()

B = –α(P + Q) +
vR

r
–

vσ

r

– K
√

γ
γ + 
γ – 

Ar(ω – z)


γ – (P – Q) –
γ – 

r
(w – z)(P – Q). ()

Now we estimate the derivatives of wx(x, t), zx(x, t) and vx(x, t) with respect to x.
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Let H(x, t) = wxx(x, t), I(x, t) = zxx(x, t), L(x, t) = vxx(x, t). We have the following system
for H, I, and L:

Ht + μHx = –α(H + I) –
γ + 
γ – 

K
√

γ Ar(w – z)


γ – (P – Q)(H + I)

–



γ + 
γ – 

K
√

γ Ar(w – z)


γ – (P + Q)(H – I)

– 
γ + 
γ – 

K
√

γ Ar(w – z)


γ – (P – Q)(H – I)

+
(γ – )

r
(P – Q)(H – I) –

γ – 
r

(P + Q)(H – I)

–
Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

(w – z)
γ +
γ – (H – I)


r

+
vL + R

r
–

vRσ + vσx

r +
vσ 

r + C, ()

It + λIx = –α(H + I) +
γ + 
γ – 

K
√

γ Ar(w – z)


γ – (P – Q)(H + I)

+



γ + 
γ – 

K
√

γ Ar(w – z)


γ – (P + Q)(H – I)

+ 
γ + 
γ – 

K
√

γ Ar(w – z)


γ – (P – Q)(H – I)

–
(γ – )

r
(P – Q)(H – I) +

γ – 
r

(P + Q)(H – I)

+
Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

(w – z)
γ +
γ – (H – I)


r

+
vL + R

r
–

vRσ + vσx

r +
vσ 

r – C, ()

Lt = –
{

α +


r
(w + z)

}

L –

r

(P + Q)R –


r
(H + I)v +


r (w + z)σR

+
(P + Q)

r vσ +


r (P + Q)σR +


r (P + Q)vσx –


r (w + z)σ v, ()

where  < γ < 
 or 

 < γ < , and

C = –
γ + 

(γ – ) K
√

γ Ar(w – z)
–γ
γ – (P – Q){(P + Q) + (P – Q)

}
–

γ – 
r

(P – Q)(P + Q)

–
γ + 

r
(P – Q) +

Kγ (γ + )
(γ – )

(
γ – 

K√
γ

) γ
γ –

(w – z)


γ – (P – Q) 
r

+
γ – 
γ – 

K
√

γ

(
γ – 

K√
γ

) γ –
γ –

(w – z)– 
γ –

(w + z)(P + Q)
r

+



K
√

γ

(
γ – 

K√
γ

) γ –
γ –

(w – z)– 
γ –

(w – z)(P + Q)
r

– K
√

γ

(
γ – 

K√
γ

) γ –
γ –

(w – z)– 
γ –

(w – z)(P – Q)
r
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+
(γ – )

r (w – z)(P – Q) +

r Kγ

(
γ – 

K√
γ

) (γ –)
γ –

(w – z)
(γ –)
γ –

–
(γ – )K√

γ



(
γ – 

K√
γ

) γ –
γ –

(w – z)
γ –
γ –

(w + z)
r . ()

Under the a priori estimate of H and I, using the property of P, Q, R, w, z, v and (), we
have

∣
∣L(x, t)

∣
∣ ≤ L,

where L is a positive constant depending only on M, ‖L(x, )‖C . We estimate the
boundedness of H and I as follows. Let

H = H +
c

r
(ω – z)s (P – Q) + c(P – Q)(ω – z)s + c(P + Q)(ω – z)s

+
c

r (P – Q)(ω – z)s +
c

r (P + Q)(ω – z)s +
c

r (P – Q)(ω – z)s , ()

I = I +
d

r
(ω – z)s (P – Q) + d(P – Q)(ω – z)s + d(P + Q)(ω – z)s

+
d

r (P – Q)(ω – z)s +
d

r (P + Q)(ω – z)s +
d

r (P – Q)(ω – z)s , ()

where s = s = s = – γ +
γ – < , s = s = –, s = , and let

ε

(

r,

r

, w, z, P, Q
)

= –
γ + 
γ – 

K
√

γ Ar(w – z)


γ –

(



P –



Q
)

+
γ – 

r
(P – Q)

–
Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

(w – z)
γ +
γ –


r

. ()

According to (), (), we know that if we deduced the boundedness of H and I, the
boundedness of H and I is apparent. Comparing () with (), and together with (),
we have

Ht + μHx

=
{

–α + ε

(

r,

r

, w, z, P, Q
)}

H + K
√

γ Ar
(

c +
(γ + )
γ – 

)

(P – Q)I

+ (K
√

γ Ac – α)I – K
√

γ Ar
(

c –
γ + 

(γ – )

)

(P + Q)I

+
(

K
√

γ Ac –
(γ – )



)

r

(P – Q)I +
(

γ – 


– K
√

γ Ac

)

r

(P + Q)I

+
(

Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

+ K
√

γ Ac

)

r

(ω – z)I

–
{

c

r
(ω – z)s + c(P – Q)(ω – z)s +

c

r (P – Q)(ω – z)s +
c

r (ω – z)s

}

A
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–
{

c(P + Q)(ω – z)s +
c

r (P + Q)(ω – z)s

}

B + C + D

+
vL + R

r
–

vRσ + vσx

r +
vσ 

r , ()

and also combining (), (), and (), we can obtain

It + λIx

=
{

–α – ε

(

r,

r

, w, z, P, Q
)}

I + K
√

γ Ar
(

d –
(γ + )
γ – 

)

(P – Q)H

+ (K
√

γ Ad – α)H + K
√

γ Ar
(

d –
γ + 

(γ – )

)

(P + Q)H

+
(

K
√

γ Ad +
(γ – )



)

r

(P – Q)H +
(

γ – 


+ K
√

γ Ad

)

r

(P + Q)H

–
(

Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

– K
√

γ Ad

)

r

(ω – z)H

–
{

d

r
(ω – z)s + d(P – Q)(ω – z)s +

d

r (P – Q)(ω – z)s +
d

r (ω – z)s

}

A

–
{

d(P + Q)(ω – z)s +
d

r (P + Q)(ω – z)s

}

B – C + E

+
vL + R

r
–

vRσ + vσx

r +
vσ 

r , ()

where

D = –
{

c

r
s(ω – z)s–(P – Q) + cs(P – Q)(ω – z)s–

+ cs(P + Q)(ω – z)s–

+
c

r s(P – Q)(ω – z)s– +
c

r s(P + Q)(ω – z)s–

+
c

r s(ω – z)s–(P – Q)
}

d(ω – z)
dμt

+
{

c

r (ω – z)s (P – Q) +
c

r (P – Q)(ω – z)s +
c

r (P + Q)(ω – z)s

+
c

r (P – Q)(ω – z)s

}
dr

dμt
, ()

and

E = –
{

d

r
s(ω – z)s–(P – Q) + ds(P – Q)(ω – z)s– + ds(P + Q)(ω – z)s–

+
d

r s(P – Q)(ω – z)s– +
d

r s(P + Q)(ω – z)s–

+
d

r s(ω – z)s–(P – Q)
}

d(ω – z)
dμt
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+
{

d

r (ω – z)s (P – Q) +
d

r (P – Q)(ω – z)s +
d

r (P + Q)(ω – z)s

+
d

r (P – Q)(ω – z)s

}
dr

dμt
. ()

In order to get the relationship between Ht + μHx and H and the relationship between
It + λIx and I, we must choose the proper ci, di, i = , . . . , , such that

K
√

γ Ac – α = , c +
(γ + )
γ – 

= ,

γ + 
(γ – )

– c = , K
√

γ Ac –
(γ – )


= ,

γ – 


– K
√

γ Ac = ,
Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

+ K
√

γ Ac = ,

K
√

γ Ad – α = , d –
(γ + )
γ – 

= ,

γ + 
(γ – )

– d = , K
√

γ Ad +
(γ – )


= ,

γ – 


+ K
√

γ Ad = ,
Kγ

γ – 

(
γ – 

K√
γ

) γ
γ –

– K
√

γ Ad = .

This implies

c = d =
α

K√
γ A

, c = –d = –
(γ + )
γ – 

,

c = d =
γ + 

(γ – )
, c = –d =

(γ – )
K√

γ A
,

c = –d =
γ – 

K√
γ A

, c = –d = –


A

(
γ – 

K√
γ

) γ +
γ –

.

()

Thus, the coefficient of I in () and the coefficient of H in () become zero. We can now
proceed to obtain

Ht + μHx =
{

–α + ε

(

r,

r

, w, z, P, Q
)}

H –
{

c

r
(ω – z)s + c(P – Q)(ω – z)s

+
c

r (P – Q)(ω – z)s +
c

r (ω – z)s

}

A

–
{

c(P + Q)(ω – z)s +
c

r (P + Q)(ω – z)s

}

B + C + D

+
vL + R

r
–

vRσ + vσx

r +
vσ 

r , ()
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It + λIx =
{

–α – ε

(

r,

r

, w, z, P, Q
)}

I –
{

d

r
(ω – z)s + d(P – Q)(ω – z)s

+
d

r (P – Q)(ω – z)s +
d

r (ω – z)s

}

A

–
{

d(P + Q)(ω – z)s +
d

r (P + Q)(ω – z)s

}

B – C + E

+
vL + R

r
–

vRσ + vσx

r +
vσ 

r . ()

Substituting () and () into () and (), respectively, we can deduce that

Ht + μHx

=
{

–α + ε

(

r,

r

, w, z, P, Q
)}

H +
{

–α + ε

(

r,

r

, w, z, P, Q
)}{

–
c

r
(ω – z)s (P – Q)

– c(P – Q)(ω – z)s – c(P + Q)(ω – z)s –
c

r (P – Q)(ω – z)s

–
c

r (P + Q)(ω – z)s –
c

r (P – Q)(ω – z)s

}

–
{

c

r
(ω – z)s + c(P – Q)(ω – z)s

+
c

r (P – Q)(ω – z)s +
c

r (ω – z)s

}

A +
vL + R

r
–

vRσ + vσx

r +
vσ 

r

–
{

c(P + Q)(ω – z)s +
c

r (P + Q)(ω – z)s

}

B + C + D, ()

It + λIx

=
{

–α – ε

(

r,

r

, w, z, P, Q
)}

I +
{

–α – ε

(

r,

r

, w, z, P, Q
)}{

–
d

r
(ω – z)s (P – Q)

– d(P – Q)(ω – z)s – d(P + Q)(ω – z)s –
d

r (P – Q)(ω – z)s

–
d

r (P + Q)(ω – z)s –
d

r (P – Q)(ω – z)s

}

–
{

d

r
(ω – z)s + d(P – Q)(ω – z)s

+
d

r (P – Q)(ω – z)s +
d

r (ω – z)s

}

A +
vL + R

r
–

vRσ + vσx

r +
vσ 

r

–
{

d(P + Q)(ω – z)s +
d

r (P + Q)(ω – z)s

}

B – C + E. ()

In order to simplify () and (), we let

χ = χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)

=
{

–α + ε

(

r,

r

, w, z, P, Q
)}{

–
c

r
(ω – z)s (P – Q) – c(P – Q)(ω – z)s

– c(P + Q)(ω – z)s –
c

r (P – Q)(ω – z)s –
c

r (P + Q)(ω – z)s

–
c

r (P – Q)(ω – z)s

}

–
{

c

r
(ω – z)s + c(P – Q)(ω – z)s +

c

r (P – Q)(ω – z)s
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+
c

r (ω – z)s

}

A +
vL + R

r
–

vRσ + vσx

r +
vσ 

r

–
{

c(P + Q)(ω – z)s +
c

r (P + Q)(ω – z)s

}

B + C + D, ()

and

χ =χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)

=
{

–α – ε

(

r,

r

, w, z, P, Q
)}{

–
d

r
(ω – z)s (P – Q) – d(P – Q)(ω – z)s

– d(P + Q)(ω – z)s –
d

r (P – Q)(ω – z)s –
d

r (P + Q)(ω – z)s

–
d

r (P – Q)(ω – z)s

}

–
{

d

r
(ω – z)s + d(P – Q)(ω – z)s

+
d

r (P – Q)(ω – z)s +
d

r (ω – z)s

}

A +
vL + R

r
–

vRσ + vσx

r +
vσ 

r

–
{

d(P + Q)(ω – z)s +
d

r (P + Q)(ω – z)s

}

B – C + E. ()

Using the definition of d
dμt and d

dλt , () and () become

dH
dμt

= –
{

α – ε

(

r,

r

, w, z, P, Q
)}

H + χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)

, ()

dI
dμt

= –
{

α + ε

(

r,

r

, w, z, P, Q
)}

I + χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)

, ()

where ε(r, 
r , w, z, P, Q) denotes the function depending on r, 

r , w, z, P, Q, and χi(r, 
r , w –

z, w + z, P – Q, P + Q) (i = , ) denotes the function depending on r, 
r , w – z, w + z, P – Q,

P + Q, then |ε| ≤ M, |χ| ≤ M, |χ| ≤ M.
The following theorem gives the boundedness of H and I, which is defined in () and

().

Theorem . Under the conditions |P(x, t)| ≤ M, |Q(x, t)| ≤ M, |R(x, t)| ≤ R, |w(x, t)| ≤
M, |z(x, t)| ≤ M, |v(x, t)| ≤ Me–αt , then when α is sufficiently large, we have

∣
∣H(x, t)

∣
∣ ≤ M,

∣
∣I(x, t)

∣
∣ ≤ M.

Proof Multiplying () by H and using the Young inequality, we obtain




dH

dμt
= –

{

α – ε

(

r,

r

, w, z, P, Q
)

–


χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)}

H


+


χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)

. ()

Referring to the proof of Theorem . in [], we know that

w(x, t) – z(x, t) > δ > .
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Due to the boundedness of ε and when α is sufficiently large, we can see that

α – ε

(

r,

r

, w, z, P, Q
)

–


χ

(

r,

r

, w – z, w + z, P – Q, P + Q
)

≥ 

α > ,

which implies the following:

dH

dμt
≤ –αH

 + χ,

and using the Gronwall inequality, we have

∣
∣H(x, t)

∣
∣ ≤ M.

In a similar way,

∣
∣I(x, t)

∣
∣ ≤ M.

We have completed the proof. �

4 The existence of the second order smooth solutions of Euler equation with
axial symmetry outside a core region

The main result of this paper, which is the existence of the second order smooth solutions
of this equation, is in the following theorem.

Theorem . Under the assumptions of  < γ < 
 or 

 < γ <  and α being sufficiently
large, there exists second order smooth solutions of () and ().

Proof According to Theorem . and (), (), we have |H| ≤ M, |I| ≤ M. Using (),
we obtain

uxx =
H + I



and

ρxx = –
(

γ – 
K√

γ

)– 
γ –

(w – z)– 
γ –


r +


γ – 

(w – z)–(P – Q)

r

+
( – γ )
(γ – )

(
γ – 

K√
γ

) 
γ –

(w – z)
(–γ )
γ – (P – Q)r

+


γ – 

(
γ – 

K√
γ

) 
γ –

(w – z)
–γ
γ – (H – I)r, ()

because of the boundedness of P, Q, R, w, z, v, we know that

‖u‖C ≤ M,

‖ρ‖C ≤ M.
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So we get the existence of the second order smooth solution of () and (). We have com-
pleted the proof. �

5 Conclusion
In this paper, we have derived the existence of the second order smooth solutions for the
D compressible isentropic Euler equation with axial symmetry and damping outside a
core region. Compared to the transformation about (), the proof seems much more sim-
ple. Based on the results of Lemma . and Lemma ., we have obtained the boundedness
of C norm of the solutions. These are the improvement and innovation for the existing
result in [].
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