
Xin and Cheng Boundary Value Problems  (2015) 2015:200 
DOI 10.1186/s13661-015-0464-8

R E S E A R C H Open Access

Some results for fourth-order nonlinear
differential equation with singularity
Yun Xin1* and Zhibo Cheng2

*Correspondence:
xy_1982@126.com
1College of Computer Science and
Technology, Henan Polytechnic
University, Jiaozuo, 454000, China
Full list of author information is
available at the end of the article

Abstract
By application of Green’s function and some fixed point theorems, i.e., Leray-Schauder
alternative principle and Schauder’s fixed point theorem, we establish two new
existence results of positive periodic solutions for a nonlinear fourth-order singular
differential equation, which extend and improve significantly existing results in the
literature.
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1 Introduction
Generally speaking, differential equations with singularities have been considered from
the very beginning of the discipline. The main reason is that singular forces are ubiquitous
in applications, gravitational and electromagnetic forces being the most obvious examples.
In , Ding [] discussed the Brillouin electron beam focusing system

x′′ + a( + cos t)x =

x

,

and obtained the existence of a positive periodic solution for the model if  < a < 
 .

Afterwards, in , Taliaferro [] discussed the model equation with singularity

y′′ +
q(t)
yα

= ,  < t < , (.)

subject to

y() =  = y(),

and obtained the existence of a solution for the problem. Here, α > , q ∈ C(, ) with q > 
on (, ) and

∫ 
 t(– t)q(t) dt < ∞. We call the equation with strong force condition if α ≥ 

and we call it with weak force condition if  < α < .
Ding and Taliaferro’s work has attracted the attention of many specialists in differential

equations. More recently, the method of lower and upper solutions [, ], the Poincaré-
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Birkhoff twist theorem [–], topological degree theory [, ], Schauder’s fixed point the-
orem [], the Krasnoselskii fixed point theorem in a cone [, ] and fixed point index
theory [] have been employed to investigate the existence of positive periodic solutions
of singular second-order and third-order differential equations.

At the beginning, most of work concentrated on second-order and third-order singular
differential equations, as in the references we mentioned above. Recently some results on
fourth-order differential equations have been published (see [–]). In , Conti et
al. [] studied the fourth-order equation

u()(t) – cu′′(t) = f
(
t, u(t)

)
, t ∈ [, T],

with periodic boundary conditions, where c ≥ –(π/T), f : R →R is continuous, T-peri-
odic in t and has a superlinear behavior at  and at infinity. Under these assumptions, they
showed that for each positive integer n ≥  the problem admits a T-periodic solution hav-
ing precisely n simple zeroes in [, T]. The proof was inspired by Nehari’s argument of
combining variational methods and nodal properties of solutions. However, here a new
and subtle min-max procedure is built, allowing one to interpret nodal properties of so-
lutions of the problem as a topological property and to get these solutions by means of a
variational principle with two constraints. In , Li and Zhang [] used some Sobolev
constants to explicitly characterize a class of potentials q(t) ∈ Lp(, T) for which the peri-
odic beam equation with periodic boundary condition

u()(t) = q(t)u(t), t ∈ (, T),

u(i)() = u(i)(T),  ≤ i ≤ ,

is non-degenerate. As an application, they obtained the uniqueness of periodic solutions
of a certain class of superlinear beam equations. Recently, Mosconi and Santra [] proved
that if F ∈ C(R) was coercive and {F ′ = } was discrete, then the EFK equation

u′′′′ – cu′′ + F ′(u) =  (.)

possesses L∞(R) solutions if and only if F ′ changed sign at least twice. As a corollary they
proved that if un solved

u′′′′
n + c

nu′′
n + F ′(un) = ,

then ‖un‖∞ → +∞ if cn → , provided F has a unique local minimum, its only minimum
is non-degenerate and int({F ′ = }) = ∅. Finally, they gave criteria ensuring existence and
non-existence of T-periodic solutions to (.) when F had multiple well.

In the above papers, the authors investigated fourth-order equations. However, the study
on the singular fourth-order equation is relatively infrequent. Motivated by [, , ], in
this paper, we further consider a fourth-order nonlinear differential equation as follows:

x()(t) – ρx(t) = f
(
t, x(t)

)
+ e(t), (.)

where ρ ∈ R+, e(t) ∈ L(R) is an ω-periodic function, f ∈ Car(R × R+, R) is an L-
Carathéodory function, i.e., it is measurable in the first variable and continuous in the
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second variable, and for every  < r < s, there exists hr,s ∈ L[,ω] such that |f (t, x(t))| ≤ hr,s

for all x ∈ [r, s] and a.e. t ∈ [,ω], f is an ω-periodic function about t. The nonlinear term
f of (.) can be with a singularity at origin, i.e.,

lim
x→+

f (t, x) = +∞
(

or lim
x→+

f (t, x) = –∞
)

, uniformly in t.

It is said that (.) is of repulsive type (resp. attractive type) if f (t, x) → +∞ (resp. f (t, x) →
–∞) as x → +.

The remaining part of the paper is organized as follows. In Section , the Green’s func-
tion for the fourth-order linear differential equation

x()(t) – ρx(t) = h(t)

will be given. Here, h ∈ C(R, (, +∞)) is an ω-periodic function. Some useful properties for
Green’s function are obtained. In Section , by employing Green’s function and a nonlinear
alternative principle of Leray-Schauder, we state and prove the first existence result for
(.). The result is applicable to the case of a strong singularity as well as the case of a weak
singularity. In Section , we get a second existence result for (.). We prove that a weak
singularity enables the achievement of new existence criteria through a basic application
of Schauder’s fixed point theorem.

To conclude this introduction, some notations are presented as follows: for a.e. means
for almost every. We write d(t) 	  if d(t) ≥  for a.e. t ∈ [,ω] and it is positive in a set of
positive measure. The set of positive real numbers is denoted by R+. For a given function
e ∈ L[,ω], we denote the essential supremum and infimum by e∗ and e∗ if they exist.
Define Cω = {x(t) ∈ C(R, R) : x(t + ω) = x(t)}. Let X = {φ ∈ C(R,R) : φ(t + ω) = φ(t)} with
the maximum norm ‖φ‖ = max≤t≤ω |φ(t)|. Obviously, X is a Banach space.

2 Green’s function of fourth-order differential equation
Lemma . For ρ >  and h ∈ X, the equation

⎧
⎨

⎩

u() – ρu = h(t),

u(i)() = u(i)(ω), i = , , , ,
(.)

has a unique solution which is of the form

u(t) =
∫ ω


G(t, s)

(
–h(s)

)
ds, (.)

where

G(t, s) =

⎧
⎨

⎩

exp(ρ(t–s))+exp(ρ(s+ω–t))
ρ(exp(ρω)–) + sinρ(t–s)–sinρ(t–s–ω)

ρ(–cosρω) ,  ≤ s ≤ t ≤ ω,
exp(ρ(t+ω–s))+exp(ρ(s–t))

ρ(exp(ρω)–) + sinρ(s–t)–sinρ(s–ω–t)
ρ(–cosρω) ,  ≤ t ≤ s ≤ ω.

(.)

Proof It is easy to check that the associated homogeneous equation of (.) has the solu-
tion

v(t) = c exp(ρt) + c exp(–ρt) + c cosρt + c sinρt.
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Applying the method of variation of parameters, we get

c′
(t) =

exp(–ρt)h(t)
ρ , c′

(t) =
– exp(ρt)h(t)

ρ ,

c′
(t) =

sin(ρt)h(t)
ρ , c′

(t) =
– cos(ρt)h(t)

ρ ,

and then

c(t) = c() +
∫ t



exp(–ρs)h(s)
ρ ds, c(t) = c() +

∫ t


–

exp(ρs)h(s)
ρ ds,

c(t) = c() +
∫ t



sin(ρs)h(s)
ρ ds, c(t) = c() +

∫ t


–

cos(ρs)h(s)
ρ ds.

Noting that u() = u(ω), u′() = u′(ω), u′′() = u′′(ω), u′′′() = u′′′(ω), we obtain

c() =
∫ ω



exp(ρ(ω – s))
ρ( – exp(ρω))

h(s) ds,

c() =
∫ ω



exp(ρs)
ρ( – exp(ρω))

h(s) ds,

c() = –
∫ ω



sin(ρs) – sin(ρ(s – ω))
ρ( – cosρω)

h(s) ds,

c() = –
∫ ω



cos(ρ(s – ω)) – cos(ρs)
ρ( – cosρω)

h(s) ds.

Therefore

u(t) = c(t) exp(ρt) + c(t) exp(–ρt) + c(t) cosρt + c(t) sinρt

=
∫ t



{
exp(ρ(t – s)) + exp(ρ(s + ω – t))

ρ(exp(ρω) – )
+

sinρ(t – s) – sinρ(t – s – ω)
ρ( – cosρω)

}
(
–h(s)

)
ds

+
∫ ω

t

{
exp(ρ(t + ω – s)) + exp(ρ(s – t))

ρ(exp(ρω) – )
+

sinρ(s – t) – sinρ(s – t – ω)
ρ( – cosρω)

}

× (
–h(s)

)
ds

=
∫ ω


G(t, s)

(
–h(s)

)
ds,

where G(t, s) is defined as in (.).
By a direct calculation, we get that the solution u satisfies the periodic boundary value

condition of problem (.). �

Now we present the properties of Green’s functions for (.).

Lemma .
∫ ω

 G(t, s) ds = 
ρ and if ρ < π

ω
holds, then  < l < G(t, s) ≤ L for all t ∈ [,ω]

and s ∈ [,ω].

Proof From (.) we can get
∫ ω

 G(t, s) ds = 
ρ . If ρ < π

ω
, we get G(t, s) >  for all t ∈ [,ω]

and s ∈ [,ω].
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Next we compute a lower and an upper bound for G(t, s) for s ∈ [,ω]. We have

l :=
exp( ρω

 )
ρ(exp(ρω) – )

≤ G(t, s) <
 + exp(ρω)

ρ(exp(ρω) – )
+


ρ( – cosρω)

:= L,

and the proof is complete. �

3 Existence results (I)
In the section, we state and prove the first existence results. The proof is based on the
following nonlinear alternative of Leray-Schauder, which can be found in [].

Lemma . Let C be a convex subset of a normed linear space E, and let U be an open
subset of C with  ∈ U . Then every compact, continuous map F : Ū → C has at least one
of the following properties:

(I) F has a fixed point in Ū or
(II) there is a u ∈ ∂U and λ ∈ (, ) with x = λFx.

Define the function γ : R → R by

γ (t) =
∫ ω


G(t, s)e(s) ds,

which under the hypothesis in Section  is the unique ω-periodic solution of

x()(t) – ρx(t) = e(t).

Under Lemma ., we always denote

σ = l/L.

Obviously, we have  < σ < .
We take X = Cω with ‖x‖ = maxt |x(t)|. Define the operator T : X → X,

(Tx)(t) =
∫ ω


G(t, s)f

(
s, x(s) + γ (s)

)
ds. (.)

Define the cone K in X by

K =
{

x ∈ X : x(t) ≥  for all t ∈ R and min
t∈R

x(t) ≥ σ‖x‖
}

.

Theorem . Assume that ρ < π
ω

holds. Suppose that the following conditions are satis-
fied:

(H) For each constant L > , there exists a continuous function φL 	  such that f (t, x) ≥
φL(t) for a.e. t and x ∈ (, L].

(H) There exist continuous, non-negative functions g(x), h(x) and k(t) such that

 ≤ f (t, x) ≤ k(t)
(
g(x) + h(x)

)
for all x ∈ (,∞) and a.e. t,

and g(x) >  is non-increasing, h(x)/g(x) is non-decreasing in x.
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(H) There exists a positive number r >  such that

r
g(σ r + γ∗)( + h(r+γ ∗)

g(r+γ ∗) )
> K∗,

where K(t) =
∫ ω

 G(t, s)k(s) ds.

If γ∗ ≥ , then (.) has at least one positive ω-periodic solution x with x(t) > γ (t) for all t
and  < ‖x – γ ‖ < r.

Proof Step . Consider the equation

x()(t) – ρx(t) = f
(
t, x(t) + γ (t)

)
. (.)

It is easy to see that if (.) has a positive ω-periodic solution x satisfying x(t) +γ (t) >  for
t ∈ [,ω] and  < ‖x‖ < r, then u(t) = x(t) + γ (t) is a positive ω-periodic solution of (.)
with  < ‖u – γ ‖ < r. So we only need to consider (.).

Step . In order to study (.), we first consider a family of equations.
Since (H) holds, we can choose n ∈ {, , . . .} such that 

n
< σ r + γ∗ and

K∗g(σ r + γ∗)
(

 +
h(r + γ ∗)
g(r + γ ∗)

)

+


n
< r.

Let N = {n, n + , . . .}. Fix n ∈ N. Consider the family of equations

x()(t) – ρx(t) = μfn
(
t, x(t) + γ (t)

)
+

ρ

n
, (.)

where μ ∈ [, ], and

fn(t, x) =

⎧
⎨

⎩

f (t, x) if x ≥ 
n ,

f (t, 
n ) if x ≤ 

n .

Now we prove that (.) has a periodic solution for each n.
If x is a periodic solution of problem (.), we have from Lemma . that

x(t) = μ

∫ ω


G(t, s)fn

(
t, x(s) + γ (s)

)
ds +


n

.

Define Tn : K → X by

(Tnx)(t) =
∫ ω


G(t, s)fn

(
t, x(s) + γ (s)

)
ds.

So, solving (.) is equivalent to the following fixed point problem:

x(t) = μ(Tnx)(t) +

n

. (.)
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Let � = {x ∈ K | ‖x‖ < r}. We claim Tn(�) ⊂ K . In fact, ∀x ∈ K , we have

min
t∈R

(Tnx)(t) = min
t∈R

∫ ω


G(t, s)fn

(
s, x(s) + γ (s)

)
ds

= min
t∈R

∫ ω


G(t, s)f +

n
(
s, x(s) + γ (s)

)
ds

≥ m
∫ ω


f +
n
(
s, x(s) + γ (s)

)
ds

= σM
∫ ω


f +
n
(
s, x(s) + γ (s)

)
ds

≥ σ max
t∈R

∫ ω


G(t, s)f +

n
(
s, x(s) + γ (s)

)
ds

= σ max
t∈R

∫ ω


G(t, s)fn

(
s, x(s) + γ (s)

)
ds

= σ‖Tnx‖,

here f +
n (t, x) = max{, fn(t, x)}. This implies that Tn(�) ⊂ K . Besides, it is easy to see that

Tn : � → K is completely continuous.
We claim that any fixed point x of (.) for all μ ∈ [, ] must satisfy ‖x‖ = r. Otherwise,

assume that x is a fixed point of (.) for some μ ∈ [, ] such that ‖x‖ = r. Thus, we
have

x(t) –

n

= μ

∫ ω


G(t, s)fn

(
s, x(s) + γ (s)

)
ds

= μ

∫ ω


G(t, s)f +

n
(
s, x(s) + γ (s)

)
ds

≥ μm
∫ ω


f +
n
(
s, x(s) + γ (s)

)
ds

= μσM
∫ ω


f +
n
(
s, x(s) + γ (s)

)
ds

≥ σ max
t∈R

{

μ

∫ ω


G(t, s)f +

n
(
s, x(s) + γ (s)

)
ds

}

= σ max
t∈R

{

μ

∫ ω


G(t, s)fn

(
s, x(s) + γ (s)

)
ds

}

= σ

∥
∥
∥
∥x –


n

∥
∥
∥
∥.

Therefore, we have

x(t) ≥ σ

∥
∥
∥
∥x –


n

∥
∥
∥
∥ +


n

≥ σ

(

‖x‖ –

n

)

+

n

≥ σ r.

So, we have

x(t) + γ (t) ≥ σ r + γ∗ >

n
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since 
n ≤ 

n
< σ r + γ∗. Thus, from (H) we have

x(t) = μ

∫ ω


G(t, s)fn

(
s, x(s) + γ (s)

)
ds +


n

= μ

∫ ω


G(t, s)f +

n
(
s, x(s) + γ (s)

)
ds +


n

= μ

∫ ω


G(t, s)f +(

s, x(s) + γ (s)
)

ds +

n

≤
∫ ω


G(t, s)f +(

s, x(s) + γ (s)
)

ds +

n

≤
∫ ω


G(t, s)k(s)g

(
x(s) + γ (s)

)
(

 +
h(x(s) + γ (s))
g(x(s) + γ (s))

)

ds +

n

≤ g(σ r + γ∗)
(

 +
h(r + γ ∗)
g(r + γ ∗)

)

K∗ +


n
,

where f +(t, x) = max{, f (t, x)}.
Therefore,

r = ‖x‖ ≤ g(σ r + γ∗)
(

 +
h(r + γ ∗)
g(r + γ ∗)

)

K∗ +


n
.

This is a contradiction to the choice of n and the claim is proved.
From this claim, Lemma . guarantees that

x(t) = (Tnx)(t) +

n

(.)

has a fixed point, denoted by xn, in �, i.e.,

x()(t) – ρx(t) = fn
(
t, x(t) + γ (t)

)
+

ρ

n
(.)

has an ω-periodic solution xn with ‖xn‖ < r. Since xn(t) ≥ 
n >  for all t ∈ [,ω], xn is

actually a positive ω-periodic solution of (.).
Now we show that xn(t) + γ (t) has a uniform positive lower bound, i.e., there exists a

constant ϑ > , independent of n ∈ N, such that

min
t∈[,ω]

{
xn(t) + γ (t)

} ≥ ϑ

for all n ∈ N. To see this, we know from (H) that there exists a continuous function
φr+γ ∗ (t) >  such that f (t, x) ≥ φr+γ ∗ (t) for a.e. t and  < x ≤ r + γ ∗. Let xr+γ ∗ (t) be the
unique ω-periodic solution to

x()(t) – ρx(t) = φr+γ ∗ (t),

then we have

xr+γ ∗ (t) + γ (t) =
∫ ω


G(t, s)φr+γ ∗ (s) ds + γ (t) ≥ ∗ + γ∗ > ,

where (t) =
∫ ω

 G(t, s)φr+γ ∗ (s) ds.
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Since xn(t) + γ (t) ≤ r + γ ∗ and xn + γ∗ ≥ 
n , we have

xn(t) + γ (t) =
∫ ω


G(t, s)fn

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

=
∫ ω


G(t, s)f +(

s, xn(s) + γ (s)
)

ds + γ (t) +

n

≥
∫ ω


G(t, s)φr+γ ∗ (s) ds + γ (t)

≥ ∗ + γ∗ := ϑ . (.)

So we have xn(t) + γ (t) ≥ ϑ for all n.
Step . In order to pass the solutions xn of (.) to that of the original problem (.), we

need to show that {xn}n∈N is compact.
First we show

∥
∥x′

n
∥
∥ ≤ M (.)

for some constant M >  (independent of n ∈ N) and for all n ∈ N.
In fact, since xn is an ω-periodic solution of (.), we have

x()
n (t) – ρxn(t) = fn

(
t, xn(t) + γ (t)

)
+

ρ

n
. (.)

Multiplying both sides of (.) by xn(t) and integrating from  to ω, we have

∫ ω


x()

n (t)xn(t) dt + ρ
∫ ω



∣
∣xn(t)

∣
∣ dt

=
∫ ω


fn

(
t, xn(t) + γ (t)

)
xn(t) dt +

ρ

n

∫ ω


xn(t) dt. (.)

Substituting
∫ ω

 x()
n (t)xn(t) dt =

∫ ω

 |x′′
n(t)| dt into (.), we have

∫ ω



∣
∣x′′

n(t)
∣
∣ dt = ρ

∫ ω



∣
∣xn(t)

∣
∣ dt +

∫ ω


fn

(
t, xn(t) + γ (t)

)
xn(t) dt +

ρ

n

∫ ω


xn(t) dt

≤ ρ
∫ ω



∣
∣xn(t)

∣
∣ dt +

∫ ω



∣
∣fn

(
t, xn(t) + γ (t)

)∣
∣
∣
∣xn(t)

∣
∣dt +

ρ

n

∫ ω



∣
∣xn(t)

∣
∣dt

≤ ρrω +
(∫ ω



∣
∣fn

(
t, xn(t) + γ (t)

)∣∣ dt
) 


(∫ ω



∣
∣xn(t)

∣
∣ dt

) 


+
ρ

n
rω

≤ ρrω + r
√

ω|fr| +
|d|
n

rω,

where |fr| = maxϑ≤xn(t)+γ≤r+γ ∗ |fn(t, xn(t) + γ (t))|, |fr| = (
∫ ω

 |fr| dt) 
 . It is easy to see that

there exists a constant M′
 >  such that

∫ ω



∣
∣x′′

n(t)
∣
∣ dt ≤ M′

.
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From xn() = xn(ω) we know that there exists a point t ∈ [,ω] such that x′
n(t) = .

Therefore, we have

∥
∥x′

n
∥
∥ = max

t

∣
∣
∣
∣

∫ t

t

x′′
n(s) ds

∣
∣
∣
∣ ≤

∫ ω



∣
∣x′′

n(s)
∣
∣ds ≤ ω




(∫ ω



∣
∣x′′

n(s)
∣
∣ ds

) 
 ≤ ω


 M′ 


 := M.

The fact ‖xn‖ < r and (.) show that {xn}n∈N is bounded and an equi-continuous fam-
ily on R. Now the Arzela-Ascoli theorem guarantees that {xn}n∈N has a subsequence,
{xnk }k∈N , converging uniformly on R to a function x ∈ X. From the fact ‖xn‖ < r and
ϑ ≤ xn + γ , x satisfies ϑ ≤ x(t) + γ (t) ≤ r + γ ∗ for all t. Moreover, xnk satisfies the inte-
gral equation

xnk (t) =
∫ ω


G(t, s)f

(
s, xnk (s) + γ (s)

)
ds +


nk

.

Letting k → ∞, we get

x(t) =
∫ ω


G(t, s)f

(
s, x(s) + γ (s)

)
ds.

Therefore, x is a positive periodic solution of (.) and satisfies  < ‖x‖ ≤ r. Besides, it
is not difficult to show that ‖x‖ < r by noting that if ‖x‖ = r, the argument similar to the
proof of the first claim will yield a contradiction.

Combining the three steps, the proof is completed. �

Corollary . Assume that ρ < π
ω

holds. Suppose that the following condition is satisfied:

(F) There exist continuous functions d(t), d̂(t) 	  and τ > ,  ≤ η < , such that

 ≤ d̂(t)
xτ

≤ f (t, x) ≤ d(t)
xτ

+ d(t)xη for all x >  and a.e. t.

If γ∗ ≥ , then (.) has at least one positive ω-periodic solution.

Proof We will apply Theorem .. We take

φL(t) =
d̂(t)
Lτ

, k(t) = d(t), g(x) =


xτ
, h(x) = xη.

Then (H) and (H) are satisfied and the existence condition (H) becomes

r(σ r + γ∗)τ

 + (r + γ ∗)τ+η
> �∗, (.)

where �(t) =
∫ ω

 G(t, s)d(s) ds for some r > .
Since τ > ,  ≤ η <  and γ∗ ≥ , we can choose r >  large enough such that (.) is

satisfied. �

Theorem . Assume that ρ < π
ω

and (H)-(H) hold. If γ∗ > , then (.) has at least one
positive ω-periodic solution x with x(t) > γ (t) for all t and  < ‖x – γ ‖ < r.
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Proof We will follow the same strategy and notations as in the proof of Theorem .. Step 
and Step  are the same as in the proof of Theorem .. Now, we consider that xn(t) + γ (t)
has a uniform positive lower bound, i.e., there exists a constant ϑ > , independent of
n ∈ N, such that

min
t∈[,ω]

{
xn(t) + γ (t)

} ≥ ϑ

for all n ∈ N.
Since xn + γ > 

n and γ∗ > , from Lemma ., we know that G and f are of non-negative
sign. Thus we have

xn(t) + γ (t) =
∫ ω


G(t, s)fn

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

=
∫ ω


G(t, s)f

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

≥
∫ ω


G(t, s)f

(
s, xn(s) + γ (s)

)
ds + γ (t)

≥ γ∗ := ϑ.

So we have xn(t) + γ (t) ≥ ϑ.
The proof left is the same as in Theorem .. �

Corollary . Assume that ρ < π
ω

holds. Suppose that the following condition is satisfied:

(F) There exists a continuous function d(t) ≥  for a.e. t ∈ [,ω] and τ > ,  ≤ η < , such
that

 ≤ f (t, x) ≤ d(t)
xτ

+ d(t)xη for all x > , for a.e. t.

If γ∗ > , then (.) has at least one positive ω-periodic solution.

Proof We will apply Theorem .. Take

k(t) = d(t), g(x) =


xτ
, h(x) = xη,

then (H) is satisfied and the existence condition (H) becomes

r(σ r + γ∗)τ

 + (r + γ ∗)τ+η
> �∗, (.)

where �(t) =
∫ ω

 G(t, s)d(s) ds for some r > .
Since τ > ,  ≤ η <  and γ∗ > , we can choose r >  large enough such that (.) is

satisfied. �

Theorem . Assume that ρ < π
ω

and (H)-(H) hold. And the following condition is sat-
isfied:

(H) γ∗ + ∗ > , here (t) =
∫ ω

 G(t, s)φr+γ ∗ (s) ds.
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Then (.) has at least one positive ω-periodic solution x with x(t) > γ (t) for all t and  <
‖x – γ ‖ < r.

Proof We will follow the same strategy and notations as in the proof of Theorem .. Step 
and Step  are the same as in the proof of Theorem .. Now, we mainly consider that
xn(t) + γ (t) has a uniform positive lower bound, i.e., there exists a constant ϑ > , inde-
pendent of n ∈ N, such that

min
t∈[,ω]

{
xn(t) + γ (t)

} ≥ ϑ

for all n ∈ N.
Since (H) holds, we know that there exists a continuous function φr+γ ∗ (t) >  such that

f (t, x) ≥ φr+γ ∗ (t) for a.e. t and  < x ≤ r +γ ∗. Let xr+γ ∗ (t) be the unique ω-periodic solution
to

x()(t) – ρx(t) = φr+γ ∗ (t).

From (H) we have

xr+γ ∗ (t) + γ (t) =
∫ ω


G(t, s)φr+γ ∗ (s) ds + γ (t) ≥ ∗ + γ∗ > .

Since xn(t) + γ (t) ≤ r + γ ∗ and xn + γ∗ ≥ 
n , then

xn(t) + γ (t) =
∫ ω


G(t, s)fn

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

=
∫ ω


G(t, s)f

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

≥
∫ ω


G(t, s)φr+γ ∗ (s) ds + γ (t)

≥ ∗ + γ∗ := ϑ,

i.e., xn(t) + γ (t) ≥ ϑ.
The proof left is the same as in Theorem .. �

As an application of Theorem ., we consider the case γ∗ = . The following Corol-
lary . is a direct result of Theorem ..

Corollary . Assume that ρ < π
ω

and (H)-(H) hold. If γ∗ = , then (.) has at least one
positive ω-periodic solution.

Theorem . Assume that ρ < π
ω

and (H)-(H) hold. And the following condition is sat-
isfied:

(H) γ∗ + ′∗ > , here ′(t) =
∫ ω

 G(t, s)φr(s) ds.

If γ ∗ ≤ , then (.) has at least one positive ω-periodic solution x with x(t) > γ (t) for all t
and  < ‖x – γ ‖ < r.
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Proof We will follow the same strategy and notations as in the proof of Theorem .. Step 
and Step  are the same as in the proof of Theorem .. Now, we mainly consider that
xn(t) + γ (t) has a uniform positive lower bound, i.e., there exists a constant ϑ > , inde-
pendent of n ∈ N, such that

min
t∈[,ω]

{
xn(t) + γ (t)

} ≥ ϑ

for all n ∈ N.
Since (H) and γ ∗ ≤ , we know that there exists a continuous function φr(t) >  such

that f (t, x) ≥ φr(t) for a.e. t and  < x ≤ r + γ ∗ ≤ r. Let xr(t) be the unique ω-periodic
solution to

x()(t) – ρx(t) = φr(t).

From (H) then we have

xr(t) + γ (t) =
∫ ω


G(t, s)φr(s) ds + γ (t) ≥ ′

∗ + γ∗ > .

Since xn(t) + γ (t) ≤ r + γ ∗ ≤ r and xn + γ∗ ≥ 
n , we have

xn(t) + γ (t) =
∫ ω


G(t, s)fn

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

=
∫ ω


G(t, s)f

(
s, xn(s) + γ (s)

)
ds + γ (t) +


n

≥
∫ ω


G(t, s)φr(s) ds + γ (t)

≥ ′
∗ + γ∗ := ϑ.

So we have xn(t) + γ (t) ≥ ϑ.
The proof left is the same as in Theorem .. �

Corollary . Assume that ρ < π
ω

and (F) hold. If γ ∗ ≤  and γ∗ > – �̂∗
rτ , here �̂ =

∫ ω

 G(t, s)d̂(s) ds, then (.) has at least one positive ω-periodic solution.

Proof We will apply Theorem .. Take

φL(t) =
d̂(t)
Lτ

, k(t) = d(t), g(x) =


xτ
, h(x) = xη,

then (H) and (H) are satisfied. Since γ ∗ ≤  and γ∗ > – �̂∗
rτ , we know that condition (H)

holds.
Next, the existence condition (H) becomes

r(σ r + γ∗)τ

 + (r + γ ∗)τ+η
> �∗ (.)

for some r > . Since τ > ,  ≤ η <  and γ ∗ ≤ , we can choose r >  large enough such
that (.) is satisfied. �
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4 Existence results (II)
In this section, we establish the existence of positive periodic solutions for the fourth-
order differential equation (.) by using Schauder’s fixed point theorem, which can be
found in [] (see p.).

Lemma . ([], see p.) A compact operator A : M → M has a fixed point provided M
is a bounded, closed, convex, nonempty subset of a Banach space X over R.

Theorem . Assume that ρ < π
ω

and (H)-(H) hold. Furthermore, assume that the fol-
lowing condition holds:

(H′
) There exists a positive constant R >  such that R > (R)∗ + γ∗ >  and

R ≥ g
(
(R)∗ + γ∗

)
(

 +
h(R)
g(R)

)

K∗ + γ ∗,

where R(t) =
∫ ω

 G(t, s)φR(s) ds.

Then (.) has at least one positive periodic solution.

Proof An ω-periodic solution of (.) is just a fixed point of the map T∗ : X → X defined
by

(
T∗x

)
(t) =

∫ ω


G(t, s)

[
f
(
s, x(s)

)
+ e(s)

]
ds =

∫ ω


G(t, s)f

(
s, x(s)

)
ds + γ (t). (.)

Let R be a positive constant satisfying (H′
) and

r = (R)∗ + γ∗.

Then we have R > r > . Now we define the set

� =
{

x ∈ X : r ≤ x(t) ≤ R for all t
}

. (.)

Obviously, � is a closed convex set. Next we prove T∗(�) ⊂ �.
In fact, for each x ∈ � and for all t ∈ [,ω], using the fact that G(t, s) >  for all (t, s) ∈

[,ω] × [,ω], together with condition (H), we get

(
T∗x

)
(t) =

∫ ω


G(t, s)f

(
s, x(s)

)
ds + γ (t)

=
∫ ω


G(t, s)f +(

s, x(s)
)

ds + γ (t)

≥
∫ ω


G(t, s)φR(s) ds + γ (t)

≥ (R)∗ + γ∗ := r > ,

where f +(t, x) = max{, f (t, x)}.
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On the other hand, by conditions (H) and (H′
), we have

(
T∗x

)
(t) =

∫ ω


G(t, s)f

(
s, x(s)

)
ds + γ (t)

=
∫ ω


G(t, s)f +(

s, x(s)
)

ds + γ (t)

≤
∫ ω


G(t, s)k(s)

(
g
(
x(s)

)
+ h

(
x(s)

))
ds + γ (t)

≤ g(r)
(

 +
h(R)
g(R)

)

K∗ + γ ∗ ≤ R.

In conclusion, T(�) ⊂ �. Say W is any bounded subset in �. Then, for ∀x ∈ W , we have

∥
∥T∗x

∥
∥ = max

t

∣
∣
∣
∣

∫ ω


G(t, s)f

(
s, x(s)

)
ds + γ (t)

∣
∣
∣
∣

≤ max
t

∣
∣
∣
∣

∫ ω


G(t, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣ + |γ |∗

≤ M|fR| + |γ |∗ := N,

where |γ |∗ = maxt∈[,ω] |γ (t)|, |fR| = maxr≤x(t)≤R |f (t, x(t))|, |fR| =
∫ ω

 |fR|dt = ω|fR|.
Due to the continuity of G, we have

∣
∣
∣
∣
dT∗x

dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ ω



∂G(t, s)
∂t

[
f
(
s, x(s)

)
+ e(s)

]
ds

∣
∣
∣
∣

≤
∫ ω



∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣
∣
∣f

(
s, x(s)

)
+ e(s)

∣
∣ds

≤ B′(|fR| + |e|
)

:= N,

where B′ = max | ∂G(t,s)
∂t | for all (t, s) ∈ [,ω] × [,ω], |e| =

∫ ω

 |e(s)|ds.
Therefore, using the Arzela-Ascoli theorem, it is easy to show that T∗ is compact in �.

Hence, the proof is finished by Schauder’s fixed point theorem. �

As an application of Theorem ., we consider the case γ∗ = . The following theorem
is a direct result of Theorem ..

Theorem . Assume that ρ < π
ω

holds and f (t, x) satisfies conditions (H) and (H). Fur-
thermore, assume that the following condition holds:

(H′′
) There exists a positive constant R >  such that R > (R)∗ and

g
(
(R)∗

)
(

 +
h(R)
g(R)

)

K∗ + γ ∗ ≤ R.

If γ∗ = , then (.) has at least one positive periodic solution.

Corollary . Assume that ρ < π
ω

holds. Assume that the following condition holds:
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(F) There exist continuous functions d(t), d̂(t) 	  and  < τ <  satisfying

 ≤ d̂(t)
xτ

≤ f (t, x) ≤ d(t)
xτ

for all x >  and a.e. t.

If γ∗ = , then (.) has at least one positive periodic solution.

Proof We will apply Theorem .. We take

φL(t) =
d̂(t)
Lτ

, k(t) = d(t), g(x) =


xτ
, h(x) = .

Then conditions (H) and (H) are satisfied and the existence condition (H′′
) becomes

R >
�̂∗
Rτ

= r,
(

Rτ

�̂∗

)τ

�∗ + γ ∗ ≤ R, (.)

where �̂ =
∫ ω

 G(t, s)d̂(t) dt, � =
∫ ω

 G(t, s)d(t) dt for some R > . Note that �∗ > , since
 < τ < , we can choose R >  large enough so that (.) is satisfied and the proof is com-
plete. �

Corollary . Assume that ρ < π
ω

holds. Assume that the following condition holds:

(F) There exist continuous functions d(t), d̂(t) 	  and  < τ < ,  ≤ η <  satisfying

 ≤ d̂(t)
xτ

≤ f (t, x) ≤ d(t)
xτ

+ d(t)xη for all x >  and a.e. t.

If γ∗ = , then (.) has at least one positive periodic solution.

Proof We will apply Theorem .. We take

φL(t) =
d̂(t)
Lτ

, k(t) = d(t), g(x) =


xτ
, h(x) = xη.

Then conditions (H) and (H) are satisfied and the existence condition (H′′
) becomes

R >
�̂∗
Rτ

= r,
((

Rτ

�̂∗

)τ

+ Rη

)

�∗ + γ ∗ ≤ R (.)

for some R > . So, we can choose R >  large enough so that (.) is satisfied and the proof
is complete. �

The next results explore the case when γ∗ > .

Theorem . Assume that ρ < π
ω

holds and f (t, x) satisfies (H). Furthermore, assume
that the following condition holds:

(H′′′
 ) There exists R >  such that

g(γ∗)
(

 +
h(R)
g(R)

)

K∗ + γ ∗ ≤ R.

If γ∗ > , then (.) has at least one positive periodic solution.
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Proof We follow the same strategy and notation as in the proof of Theorem .. Let R be
the positive constant satisfying (H′′′

 ) and let r = γ∗; then R > r >  since R > γ ∗. Next we
prove that T∗(�) ⊂ �.

For each x ∈ � and for all t ∈ [,ω], by the non-negative sign of G(t, s) and f (t, x), we
have

(
T∗x

)
(t) =

∫ ω


G(t, s)f

(
s, x(s)

)
ds + γ (t)

=
∫ ω


G(t, s)f +(

s, x(s)
)

ds + γ (t)

≥ γ∗ = r > .

On the other hand, by (H) and (H′′′
 ), we have

(
T∗x

)
(t) =

∫ ω


G(t, s)f

(
s, x(s)

)
ds + γ (t)

=
∫ ω


G(t, s)f +(

s, x(s)
)

ds + γ (t)

≤
∫ ω


G(t, s)k(s)

(
g
(
x(s)

)
+ h

(
x(s)

))
ds + γ (t)

≤
(

g(r)
(

 +
h(R)
g(R)

))

K∗ + γ ∗

≤ R.

In conclusion, T∗(�) ⊂ �. Meanwhile, using the Arzela-Ascoli theorem, it is easy to
show that T∗ is compact in �. Therefore, by Schauder’s fixed point theorem, our result is
proven. �

Corollary . Assume that ρ < π
ω

holds. Assume that the following condition holds:

(F) There exist a continuous function d(t) 	  and a constant τ >  satisfying

 ≤ f (t, x) ≤ d(t)
xτ

for all x >  and a.e. t.

If γ∗ > , then (.) has at least one positive periodic solution.

Proof We apply Theorem .. We take

k(t) = d(t), g(x) =


xτ
, h(x) = .

Then condition (H) is satisfied and the existence condition (H′′′
 ) is also satisfied if we take

R >  with

R ≥ �∗

γ τ∗
+ γ ∗. �

Corollary . Assume that ρ < π
ω

and (F) hold. If γ∗ > , then (.) has at least one
positive periodic solution.
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Proof We apply Theorem .. We take

k(t) = d(t), g(x) =


xτ
, h(x) = xη.

Then condition (H) is satisfied and the existence condition (H′′′
 ) is also satisfied if we take

R >  with

R ≥ �∗
(


γ τ∗

+ Rη

)

+ γ ∗. �

On the other hand, condition (H) implies in particular that the nonlinearity f (t, x) is
non-negative for all values (t, x), which is quite a hard restriction. In the following, we
show how to avoid this restriction for γ∗ > .

Theorem . Assume that ρ < π
ω

holds. Furthermore, assume that the following condi-
tions hold:

(H∗
) There exist continuous, non-negative functions g(x) and k(t) such that

f (t, x) ≤ k(t)g(x) for all (t, x) ∈ [,ω] × (,∞),

and g(x) >  is non-increasing in x ∈ (,∞).
(H∗

) Let us define

R := g(γ∗)K∗ + γ ∗,

and assume that f (t, x) ≥  for all (t, x) ∈ [,ω] × (, R].

If γ∗ > , then (.) has at least one positive periodic solution.

Proof We again use Schauder’s fixed point theorem. Let R be the positive constant satisfy-
ing (H∗

) and r = γ∗; then R > r >  since R > γ ∗. By again using the method of Theorem .,
it is easy to prove that T∗(�) ⊂ �. We omit the details. �

Corollary . Assume that ρ < π
ω

holds. Assume that the following condition holds:

(F) There exist constants τ ,η,μ >  satisfying

f (t, x) =


xτ
– μxη for all x >  and a.e. t.

If γ∗ > , then (.) has at least one positive periodic solution for each  ≤ μ < μ′, where μ′

is some positive constant.

Proof The nonlinearity is

f (t, x) =


xτ
– μxη,

and therefore (H∗
) holds with k(t) = , g(x) = 

xτ . Let ϒ(t) =
∫ ω

 G(t, s) ds. Then R as defined
in (H∗

) is just R = ϒ∗
γ τ∗ + γ ∗. Note that f (t, x) ≥  if and only if xτ+η ≤ /μ. Therefore, (H∗

)
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is verified for any μ < R–(τ+η). As a consequence, the result holds for

μ′ =
(

ϒ∗

γ τ∗
+ γ ∗

)–(τ+η)

. �

Finally, we consider γ ∗ ≤ .

Theorem . Assume that ρ < π
ω

and (F) hold. If γ ∗ ≤  and

γ∗ ≥
[

�̂∗
(�∗)τ

τ 
] 

–τ
(

 –

τ 

)

, (.)

then there exists a positive ω-periodic solution of (.).

Proof In this case, to prove that T∗(�) ⊂ � defined by (.), it is sufficient to find  < r < R
such that

�̂∗
Rτ

+ γ∗ ≥ r,
�∗

rτ
≤ R. (.)

Taking R = �∗
rτ , the first inequality holds if r verifies

�̂∗
(�∗)τ

rτ
+ γ∗ ≥ r,

or equivalently,

γ∗ ≥ f (r) := r –
�̂∗

(�∗)τ
rτ

.

The function f (r) possesses a minimum at r := [ �̂∗
(�∗)τ τ ]


–τ . Let r = r. Then the first

inequality holds in (.) if γ∗ ≥ f (r), which is just condition (.). The second inequality
holds directly by the choice of R, and it would remain to prove that R = �∗

rτ
> r. This is

easily verified through elementary computations. Using the Arzela-Ascoli theorem, it is
easy to show that T∗ is compact in �. Therefore, the proof is completed by Schauder’s
fixed point theorem. �
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