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Abstract
In this paper we study the von Kármán plate model with long-range memory. We
prove an explicit and general decay rate result using some properties of the convex
functions. Our result is obtained without imposing any restrictive assumptions on the
behavior of the relaxation function at infinity. These general decay estimates extend
and improve on some earlier results: exponential or polynomial decay rates.
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1 Introduction
This paper is concerned with the general decay of the solutions to a von Kármán system
for the plate equation with memory:

u′′ – h�u′′ + �u –
∫ t


g(t – s)�u(s) ds = [u, v] in � × (,∞), (.)

�v = –[u, u] in � × (,∞), (.)

v =
∂v
∂ν

=  on � × (,∞), (.)

u =
∂u
∂ν

=  on � × (,∞), (.)

Bu – B

{∫ t


g(t – s)u(s) ds

}
=  on � × (,∞), (.)

Bu – h
∂u′′

∂ν
– B

{∫ t


g(t – s)u(s) ds

}
=  on � × (,∞), (.)

u(x, y, ) = u(x, y), u′(x, y, ) = u(x, y) in �, (.)

where � is an open bounded set of R with a sufficiently smooth boundary � = � ∪ �.
Here, � and � are closed and disjoint. The equations describe small vibrations of a thin
homogeneous isotropic plate of uniform thickness h. Let us denote by ν = (ν,ν) the ex-
ternal unit normal to �, and by η = (–ν,ν) the unitary tangent positively oriented on �.
Here

Bu = �u + ( – μ)Bu and Bu =
∂�u
∂ν

+ ( – μ)Bu,
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where constant μ ( < μ < 
 ) is Poisson’s ratio and

Bu = ννuxy – ν
 uyy – ν

 uxx,

Bu =
∂

∂η

[(
ν

 – ν

)
uxy + νν(uyy – uxx)

]
.

The von Kármán bracket is given by

[u, v] = uxxvyy – uxyvxy + uyyvxx.

For the last several decades, the mathematical models of vibrating, flexible structures have
been considerably stimulated by an increasing number of questions of practical concern.
The main purpose of this monograph is to present a systematic study of uniform stabiliza-
tion of the motion of a thin plate through the action of forces and moments applied at the
edge of the plate. Among the elastic plate models, the von Kármán model is a ‘large deflec-
tion’ plate model, in a sense of a nonlinear analogue of the Kirchhoff model. However, it
is assumed that the vertical deflection is small in comparison with the lateral dimensions
of the plate. This hypothesis leads to a coupled pair of fourth-order, nonlinear partial dif-
ferential equations for the vertical displacement u and the Airy-stress function v. We may
interpret Eq. (.) as saying that the stresses at any instant depend on the complete history
of strains which the material has undergone. We will give later the precise condition on g
in order to obtain the general decay results.

The problem of stability of the solutions to a von Kármán system with dissipative effects
has been studied by several authors. In [–] the authors considered the von Kármán sys-
tem with frictional dissipations effective in the boundary. It is shown in these works that
these dissipations produce uniform rate of decay of the solution when t goes to infinity.
Rivera and Menzala [] and Rivera et al. [] studied the stability of the solutions to a von
Kármán system for viscoelastic plates with memory and boundary memory conditions,
respectively. They proved that the energy decays uniformly exponentially or algebraically
with the same rate of decay as the relaxation function. Later, Santos and Soufyane [] gen-
eralized the decay result of []. Raposo and Santos [] investigated the general decay of
the solutions to a von Kármán plate model. Recently, Kang [] proved the general decay
of the solutions to a von Kármán plate model with memory and boundary damping. Kang
[] improved the results of [] without imposing any restrictive growth assumption on the
damping term and strongly weakening the usual assumption on the relaxation function.

On the other hand, the problem of stability of the solutions to a viscoelastic system with
memory has been studied by many authors. In [–] the authors showed exponential
and polynomial decay for a viscoelastic wave equation under the usual condition

–cg(t) ≤ g ′(t) ≤ –cg(t) and  ≤ g ′′(t) ≤ cg(t)

for some ci, i = , , . Later, this assumption was relaxed by several authors. Berrimi and
Messaoudi [] studied exponential and polynomial decay rates under condition on g such
as

g ′(t) ≤ –ξgp(t) for  ≤ p <



, t ≥ , (.)
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where ξ > . Messaoudi and Tatar [] and Liu [] considered exponential and polyno-
mial decay for a quasilinear equation and a system of two coupled quasilinear viscoelas-
tic equations under condition (.) by choosing a suitable perturbed energy, respectively.
Messaoudi [] and Han and Wang [] proved a general decay rate for viscoelastic equa-
tions under a more general condition on g such as

g ′(t) ≤ –ξ (t)g(t),
|ξ ′(t)|
|ξ (t)| ≤ k, ξ (t) > , ξ ′(t) ≤ ,∀t > . (.)

Guesmia and Messaoudi [] obtained general stability for a Timoshenko system under
weaker condition

g ′(t) ≤ –ξ (t)g(t), (.)

where ξ is a nonincreasing and positive function. The stability of the solutions to a vis-
coelastic system under condition (.) was studied in [–] and the references therein.
Mustafa and Messaoudi [, ] investigated the general stability result for a viscoelastic
equation for a relaxation function satisfying

g ′(t) ≤ –H
(
g(t)

)
, (.)

where H is a nonnegative function, with H() = , and H is a linear or strictly increasing
and strictly convex on (, r] for some r > . The above conditions are weaker conditions on
H than those imposed in []. Recently, Cavalcanti et al. [] proved the uniform decay
rates of the energy for solutions of a von Kármán system with long memory for the memory
kernel g satisfying (.).

Motivated by the work in [–], we establish an explicit and general decay of the
solutions to a von Kármán plate model (.)-(.) for relaxation functions satisfying (.).
The proof is based on the multiplier method and makes use of some properties of convex
functions. This result improves on earlier ones in the literature because it allows certain
relaxation functions which are not necessarily of exponential or polynomial decay.

The paper is organized as follows. In Section , we present some notations and mate-
rial needed for our work and state a global existence theorem. In Section , we prove the
general decay of the solutions to the von Kármán system with memory.

2 Preliminaries
In this section, we present some material needed in the proof of our result and state the
main result. Throughout this paper we denote (u, v) =

∫
�

u(x, y)v(x, y) d� and define

V =
{

v ∈ H(�) | v =  on �
}

, U =
{

u ∈ H(�)
∣∣∣ u =

∂u
∂ν

=  on �

}
.

For a Banach space X, ‖ · ‖X denotes the norm of X. For simplicity, we denote ‖ · ‖L(�) by
‖ · ‖.

A simple calculation, based on the integration by parts formula, yields

(
�u, v

)
= a(u, v) + (Bu, v)� –

(
Bu,

∂v
∂ν

)
�

, (.)
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where the bilinear symmetric form a(u, v) is given by

a(u, v) =
∫

�

{
uxxvxx + uyyvyy + μ(uxxvyy + uyyvxx) + ( – μ)uxyvxy

}
d�,

where d� = dx dy. Since � 
= ∅, we know that
√

a(u, u) is equivalent to the H(�) norm
on U , i.e.,

c‖u‖
H(�) ≤ a(u, u) ≤ c̃‖u‖

H(�),

where c and c̃ are generic positive constants. This and the Sobolev imbedding theorem
imply that for some positive constants Cp and Cs,

‖u‖ ≤ Cpa(u, u), ‖∇u‖ ≤ Csa(u, u), ∀u ∈ U . (.)

We consider the following hypotheses:
(H) g : R+ →R

+ is a differentiable function such that

g() > , l :=
∫ ∞


g(s) ds < . (.)

(H) There exists a positive function H ∈ C(R+), with H() = , and H is a linear or
strictly increasing and strictly convex C function on (, r] for some r <  such that

g ′(t) ≤ –H
(
g(t)

)
, ∀t ≥ . (.)

To simplify calculation in our analysis, we introduce the following notation:

(g ∗ u)(t) :=
∫ t


g(t – s)u(s) ds,

(g �u)(t) :=
∫ t


g(t – s)

∥∥u(·, t) – u(·, s)
∥∥ ds,

(
g � ∂u

)
(t) :=

∫ t


g(t – s)a

(
u(·, t) – u(·, s), u(·, t) – u(·, s)

)
ds.

From the symmetry of a(·, ·) we have that for any v ∈ C(, T ; H(�)),

a
(
g ∗ v, v′) = –




g(t)a(v, v) +



g ′ � ∂v

–



d
dt

{
g � ∂v –

(∫ t


g(s) ds

)
a(v, v)

}
. (.)

We introduce the following lemma for the bracket’s binary.

Lemma . ([]) Let u, w ∈ H(�) and v ∈ H
(�), where � is an open bounded and con-

nected set of R with regular boundary. Then

∫
�

w[v, u] d� =
∫

�

v[w, u] d�. (.)
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Lemma . ([]) If u, v ∈ H(�), then [u, v] ∈ L(�) and satisfies

∥∥[u, v]
∥∥ ≤ c′

‖u‖H‖v‖W ,∞ and ‖v‖W ,∞ ≤ c′
‖u‖

H . (.)

By using Galerkin’s approximation, we can obtain the following result for the solution.
For the initial data (u, u) ∈ H(�) × H(�), h > , system (.)-(.) has a unique weak
solution u in the following class:

u ∈ L∞(
,∞; U ∩ H(�)

)
, u′ ∈ L∞(

,∞; V ∩ H(�)
)
.

We introduce the energy of problem (.)-(.) as

E(t) =


∥∥u′∥∥ +




a(u, u) +
h

∥∥∇u′∥∥ +




‖�v‖. (.)

Now, we are ready to state the following main result.

Theorem . Assume that (H) and (H) hold. Suppose that D is a positive C function,
with D() = , for which H is a strictly increasing and strictly convex C function on (, r]
and

∫ +∞



g(s)
H–

 (–g ′(s))
ds < +∞. (.)

Then there exist positive constants k, k, k and ε such that the solution of (.)-(.)
satisfies

E(t) ≤ kH–
 (kt + k), ∀t ≥ , (.)

where

H(t) =
∫ 

t


sH ′

(εs)
ds and H(t) = H

(
D(t)

)
.

Moreover, for some choice of D, if
∫ 

 H(t) dt < +∞, then we obtain

E(t) ≤ kG–(kt + k), (.)

where

G(t) =
∫ 

t


sH ′(εs)

ds. (.)

In particular, (.) is valid for the special case H(t) = ctp for  ≤ p < 
 .

Remark . If F is a convex function on [a, b], f : � → [a, b] and h are integrable functions
on �, h(x) ≥ , and

∫
�

h(x) dx = h > , then Jensen’s inequality states that

F
(


h

∫
�

f (x)h(x) dx
)

≤ 
h

∫
�

F
(
f (x)

)
h(x) dx. (.)
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Remark . . From the properties of H , we can show that the function H is strictly
decreasing and convex on (, ], with limt→ H(t) = +∞. Then Theorem . ensures

lim
t→+∞ E(t) = .

. By using (H) and (H), we conclude that limt→+∞ g(t) = . This implies that
limt→+∞(–g ′(t)) cannot be equal to a positive number, and so it is natural to assume that
limt→+∞(–g ′(t)) = . Therefore, there is t >  large enough such that g(t) >  and

max
{

g(t), –g ′(t)
}

< min
{

r, H(r), H(r)
}

, ∀t ≥ t. (.)

Since g is nonincreasing, g() >  and g(t) > , we obtain

 < g(t) ≤ g(t) ≤ g(), ∀t ∈ [, t]. (.)

From H is a positive continuous function, we have

c ≤ H
(
g(t)

) ≤ c, ∀t ∈ [, t] (.)

for some positive constants c and c. Hence, by (.), (.) and (.),

g ′(t) ≤ –H
(
g(t)

) ≤ –
c

g()
g() ≤ –

c

g()
g(t),

which gives

g ′(t) ≤ –cg(t), ∀t ∈ [, t] (.)

for some positive constant c.

3 General decay of the energy
In this section we prove the decay rates in Theorem .. The following result shows the
dissipative property of system (.)-(.). Multiplying (.) by u′(t), we have the identity

E′(t) = a
(
g ∗ u, u′). (.)

We define the modified energy by

E(t) =


∥∥u′∥∥ +

h

∥∥∇u′∥∥ +




(
 –

∫ t


g(s) ds

)
a(u, u) +




g � ∂u +



‖�v‖.

From (.) and (.), we get

E ′(t) = –



g(t)a(u, u) +



g ′ � ∂u. (.)

This implies that E(t) is nonincreasing, and from (.) one sees that

E(t) ≤ 
 – l

E(t), ∀t ≥ . (.)
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First, let us define the perturbed modified energy by

L(t) = NE(t) + ε
(t) + �(t), (.)

where


(t) =
∫

�

u′u d� + h
∫

�

∇u′∇u d�

and

�(t) =
∫

�

(
h�u′ – u′)∫ t


g(t – s)

(
u(t) – u(s)

)
ds d�.

Using the ideas presented in [], we easily obtain the following lemmas.

Lemma . For N >  large enough, there exist α >  and α >  such that

αE(t) ≤ L(t) ≤ αE(t), ∀t ≥ . (.)

Proof By Young’s inequality, (.) and (.), we have

∣∣
(t)
∣∣ ≤ 


∥∥u′∥∥ +

h

∥∥∇u′∥∥ +

Cp + Csh


a(u, u) (.)

and

∣∣�(t)
∣∣ ≤ 


∥∥u′∥∥ +

h

∥∥∇u′∥∥ +

(Cp + Csh)l


g � ∂u. (.)

From (.) and (.) we obtain

∣∣L(t) – NE(t)
∣∣ ≤ 


(ε + )

∥∥u′∥∥ +
h


(ε + )
∥∥∇u′∥∥

+
(Cp + Csh)ε


a(u, u) +

(Cp + Csh)l


g � ∂u

≤ CE(t),

where C is a positive constant depending on ε, h, Cp, Cs and l. Choosing N >  large, we
complete the proof of Lemma .. �

Lemma . For each t >  and sufficiently large N > , there exist positive constants β

and β such that

L′(t) ≤ –βE(t) + βg � ∂u, ∀t ≥ t. (.)

Proof Direct computations, using (.), yield


′(t) = –a(u, u) + a(g ∗ u, u) +
(
[u, v], u

)
+

∥∥u′∥∥ + h
∥∥∇u′∥∥. (.)
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By Young’s inequality, we have

a(g ∗ u, u) ≤ (δ + )
(∫ t


g(s) ds

)
a(u, u) +


δ

g � ∂u. (.)

From (.) and (.), we get


′(t) ≤ ∥∥u′∥∥ + h
∥∥∇u′∥∥ +


δ

g � ∂u

–
(

 – (δ + )
∫ t


g(s) ds

)
a(u, u) – ‖�v‖, (.)

where δ > . Similarly we deduce

� ′(t) =
∫ t


g(t – s)a

(
u(t) – u(s), u(t)

)
ds –

∫ t


g(t – s)

(
u(t) – u(s), [u, v]

)
ds

–
∫ t


g(t – s)a

(
u(t) – u(s),

∫ t


g(t – τ )u(τ ) dτ

)
ds

– h
∫ t


g ′(t – s)

(∇u(t) – ∇u(s),∇u′(t)
)

ds – h
(∫ t


g(s) ds

)∥∥∇u′∥∥

–
∫ t


g ′(t – s)

(
u(t) – u(s), u′(t)

)
ds –

(∫ t


g(s) ds

)∥∥u′∥∥

:= I + I + · · · + I – h
(∫ t


g(s) ds

)∥∥∇u′∥∥ –
(∫ t


g(s) ds

)∥∥u′∥∥. (.)

Now, we estimate the terms on the right-hand side of (.). Since E(t) is bounded, we have
that ‖v‖∞ ≤ ∫

�
|�v| d� is also bounded, and then Young’s and Hölder’s inequalities, (.),

(.), (.) and (.) give that

|I| ≤ η

(∫ t


g(s) ds

)
a(u, u) +


η

g � ∂u,

|I| =
∫

�

[
u,

∫ t


g(t – s)

(
u(t) – u(s)

)
ds

]
v d� ≤ ηa(u, u) + cηl‖v‖

∞g � ∂u,

|I| ≤ l
∫ t


g(t – s)a

(
u(t) – u(s), u(t) – u(s)

)
ds + l

∫ t


g(t – s)a

(
u(t) – u(s), u(t)

)
ds

≤
(

l +
l

η

)
g � ∂u + lηa(u, u),

|I| ≤ hη
∥∥∇u′∥∥ +

h
η

∫
�

(∫ t


g ′(t – s)

∣∣∇u(t) – ∇u(s)
∣∣ds

)

d�

≤ hη
∥∥∇u′∥∥ –

g()Csh
η

g ′ � ∂u,

|I| ≤ η
∥∥u′∥∥ +


η

∫
�

(∫ t


g ′(t – s)

∣∣u(t) – u(s)
∣∣ds

)

d�

≤ η
∥∥u′∥∥ –

g()Cp

η
g ′ � ∂u.
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From the above estimates, we see that

� ′(t) ≤
(

hη – h
∫ t


g(s) ds

)∥∥∇u′∥∥ +
(

η –
∫ t


g(s) ds

)∥∥u′∥∥ + η
(
 + l + l)a(u, u)

+
(

l +
l

η
+


η

+ cηl‖v‖
∞

)
g � ∂u –

g()(Csh + Cp)
η

g ′ � ∂u. (.)

Let
∫ t

 g(s) ds := g, where t was introduced in (.). Since g is positive, we have∫ t
 g(s) ds ≥ g for all t ≥ t. Thus, making use of this and combining (.), (.), (.)

and (.), we obtain

L′(t) ≤ –(g – η – ε)
∥∥u′∥∥ – h(g – η – ε)

∥∥∇u′∥∥

–
[

N


g(t) + ε
(
 – ( + δ)l

)
– η

(
 + l + l)]a(u, u)

– ε‖�v‖ +
(

N


–
g()(Csh + Cp)

η

)
g ′ � ∂u

+
(

l +
ε

δ
+


η

+
l

η
+ cηl‖v‖

∞

)
g � ∂u.

We first take ε >  and δ >  so small that g – ε >  and  – ( + δ)l > , respectively. And
then, we choose η >  sufficiently small so that g – η – ε >  and ε( – ( + δ)l) – η( + l +
l) > . Finally, taking N >  large enough, we deduce that (.). �

Proof of Theorem . From (.), (.) and (.), we have

L′(t) ≤ –βE(t) –
β

c

∫ t


g ′(t – s)a

(
u(t) – u(s), u(t) – u(s)

)
ds

+ β

∫ t

t

g(t – s)a
(
u(t) – u(s), u(t) – u(s)

)
ds

≤ –βE(t) –
β

c
E ′(t) + β

∫ t

t

g(t – s)a
(
u(t) – u(s), u(t) – u(s)

)
ds. (.)

We take L(t) = L(t) + β
c
E(t), which is clearly equivalent to E(t). By (.), we get, for all

t ≥ t,

L′(t) ≤ –βE(t) + β

∫ t

t

g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds. (.)

(A) The special case H(t) = ctp and  ≤ p < 
 .

Case . p = . Using (.) and (.), estimate (.) yields

L′(t) ≤ –βE(t) –
β

c

∫ t

t

g ′(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≤ –βE(t) –
β

c
E ′(t), (.)
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which gives

(
L +

β

c
E
)′

(t) ≤ –βE(t), ∀t ≥ t.

From (.) and (.), we see that L + β
c E ∼ E ∼ E. Then we have

E(t) ≤ c′e–ct = c′G–(t),

where

G(t) =
∫ 

t


sH ′(εs)

ds =
∫ 

t


sc

ds = –
ln t
c

.

Case .  < p < 
 . By (.) we obtain

g ′(t) ≤ –cgp(t),  < p <



. (.)

Using (.) and (.) we see that

∫ ∞


g–θ (s) ds < ∞ (.)

for any θ <  – p. By (.) and (.) and taking t even larger if needed, we deduce that,
for all t ≥ t,

k(t) :=
∫ t

t

g–θ (s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≤ 
∫ t

t

g–θ (s)
[
a
(
u(t), u(t)

)
+ a

(
u(t – s), u(t – s)

)]
ds

≤ cE()
∫ t

t

g–θ (s) ds < . (.)

From Hölder’s inequality, Jensen’s inequality (.), (.), (.) and (.), we have

∫ t

t

g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

=
∫ t

t

g(p–+θ )( θ
p–+θ

)(s)g–θ (s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≤
(∫ t

t

gp–+θ (s)g–θ (s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

) θ
p–+θ

×
(∫ t

t

g–θ (s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

) p–
p–+θ

= k(t)
(


k(t)

∫ t

t

gp–+θ (s)g–θ (s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

) θ
p–+θ
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≤
(∫ t

t

gp(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

) θ
p–+θ

≤
(


c

) θ
p–+θ

(∫ t

t

–g ′(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

) θ
p–+θ

≤
(


c

) θ
p–+θ (

–E ′(t)
) θ

p–+θ . (.)

Then, using (.), we show that (.) yields, for θ = 
 ,

L′(t) ≤ –βE(t) +
β

c


p–

(
–E ′(t)

) 
p– . (.)

Multiplying (.) by Eγ (t), with γ = p – , and using (.) and Young’s inequality, we
obtain

(
LEγ

)′(t) = L′(t)Eγ (t) + γL(t)Eγ –(t)E ′(t) ≤ –βEγ +(t) +
β

c


γ +
Eγ (t)

(
–E ′(t)

) 
γ +

≤ –βEγ +(t) + εEγ +(t) + Cε

(
–E ′(t)

)
.

Taking ε < β, we have, for some C > ,

L′
(t) ≤ –CLγ +

 (t),

where L = LEγ + CεE ∼ E ∼ E. Therefore we deduce that

E(t) ≤ c

(c′ + c′′t)

γ

. (.)

Since p < 
 and by (.), we find that

∫ ∞


E(t) dt ≤

∫ ∞



c

(c′ + c′′t)


p–
dt < +∞.

Using this fact, we have

∫ t


a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds ≤ c

∫ t


E(s) ds < +∞. (.)

Hence, from (.), (.), (.) and Hölder’s inequality, estimate (.) gives

L′(t) ≤ –βE(t) + β

(∫ t


a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

) p–
p (

gp � ∂u
) 

p

≤ –βE(t) + c
(
–g ′ � ∂u

) 
p ≤ –βE(t) + c

(
–E ′(t)

) 
p . (.)

Now, we multiply (.) by Eγ (t), with γ = p – . Then, repeating the above steps, we see
that

E(t) ≤ c

(c′ + c′′t)

γ

= cG–(a′ + a′′t
)
, (.)
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where

G(t) =


cpε
p–


∫ 

t


sp ds =


cp(p – )εp–



(


tp– – 
)

.

(B) The general case. This case is obtained on account of the ideas presented in [, ]
as follows. Let H∗

 be the convex conjugate of H in the sense of Young (see []); then

H∗
(s) = s

(
H ′


)–(s) – H

[(
H ′


)–(s)

]
, if s ∈ (

, H ′
(r)

]
(.)

and H∗
 satisfies the following Young’s inequality:

AB ≤ H∗
(A) + H(B), if A ∈ (

, H ′
(r)

]
, B ∈ (, r]. (.)

We define η(t) by

η(t) :=
∫ t

t

g(s)
H–

 (–g ′(s))
a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds,

where H is such that (.) is satisfied. As in (.), we find that η(t) satisfies

η(t) < , ∀t ≥ t. (.)

Furthermore, we define I(t) by

I(t) := –
∫ t

t

g ′(s)
g(s)

H–
 (–g ′(s))

a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds.

Since H is strictly convex on (, r] and H() = , then

H(λx) ≤ λH(x) (.)

provided  ≤ λ ≤  and x ∈ (, r]. From (.), (.) and Jensen’s inequality (.), we
obtain

I(t) =


η(t)

∫ t

t

η(t)H
[
H–


(
–g ′(s)

)] g(s)
H–

 (–g ′(s))
a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≥ 
η(t)

∫ t

t

H
[
η(t)H–


(
–g ′(s)

)] g(s)
H–

 (–g ′(s))
a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≥ H

(∫ t

t

g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

)
.

This implies that

∫ t

t

g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds ≤ H–


(
I(t)

)
. (.)

Using (.) and (.) we see that

L′(t) ≤ –βE(t) + βH–


(
I(t)

)
, ∀t ≥ t. (.)
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By (.), (.) and the properties of H and D, we have

g(s)
H–

 (–g ′(s))
≤ g(s)

H–
 (H(g(s)))

=
g(s)

D–(g(s))
≤ δ (.)

for some positive constant δ. Thus, using (.), (.) and (.) and choosing t even
larger, we can find that I(t) satisfies, for all t ≥ t,

I(t) ≤ –δ

∫ t

t

g ′(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds ≤ –cE()

∫ t

t

g ′(s) ds

≤ cg(t)E() ≤ min
{

r, H(r), H(r)
}

. (.)

Now, for ε < r and d > , we define the functional

F(t) := L(t)H ′


(
ε

E(t)
E()

)
+ dE(t),

which satisfies

dF(t) ≤ E(t) ≤ dF(t) (.)

for some d, d > . From (.), we have H–
 (I(t)) ≤ r. Also, by ε < r, E ′ ≤ , we get

ε
E(t)
E() < r. Using the fact that E ′ ≤ , H > , H ′

 >  and H ′′
 >  on (, r] and (.), (.),

(.), (.) and (.), we obtain

F ′
(t) ≤ –βE(t)H ′



(
ε

E(t)
E()

)
+ βH ′



(
ε

E(t)
E()

)
H–


(
I(t)

)
+ dE ′(t)

≤ –βE(t)H ′


(
ε

E(t)
E()

)
+ βH∗



(
H ′



(
ε

E(t)
E()

))
+ βI(t) + dE ′(t)

≤ –βE(t)H ′


(
ε

E(t)
E()

)
+ βε

E(t)
E()

H ′


(
ε

E(t)
E()

)

– βH

(
ε

E(t)
E()

)
+ βI(t) + dE ′(t)

≤ –
(
βE() – βε

) E(t)
E()

H ′


(
ε

E(t)
E()

)
– βδE ′(t) + dE ′(t).

Therefore, with a suitable choice of ε and d, we see that

F ′
(t) ≤ –k

( E(t)
E()

)
H ′



(
ε

E(t)
E()

)
= –kH

( E(t)
E()

)
, ∀t ≥ t, (.)

where k >  and H(t) = tH ′
(εt). From the strict convexity of H on (, r], we find that

H(t) >  and H ′
(t) = H ′

(εt) + εtH ′′
 (εt) >  on (, ]. We take

R(t) =
dF(t)
E()

,

which is clearly equivalent to E(t). By (.), (.) and H ′
 > , we have

R′(t) ≤ –
kd

E()
H

( E(t)
E()

)
≤ –kH

(
R(t)

)
, ∀t ≥ t,
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where k = kd
E() > . Hence, a simple integration gives, for some k, k > ,

R(t) ≤ H–
 (kt + k), ∀t ≥ t, (.)

where H(t) =
∫ 

t


H(s) ds. Here, we have used, on the basis of the properties of H, the fact
that H is a strictly decreasing function on (, ] and limt→ H(t) = +∞. From (.), (.)
and (.), estimate (.) is established.

Moreover, if
∫ t

 H(t) dt < +∞, then

∫ t


a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds ≤ c

∫ t


E(s) ds < +∞.

Similarly, we define, for large t,

η(t) :=
∫ t

t

a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds < 

and

I(t) := –
∫ t

t

g ′(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds.

Using (.), the strict convexity of H and Jensen’s inequality (.), we have

I(t) ≥ 
η(t)

∫ t

t

η(t)H
(
g(s)

)
a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≥ 
η(t)

∫ t

t

H
(
η(t)g(s)

)
a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

≥ H
(


η(t)

∫ t

t

η(t)g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

)

= H
(∫ t

t

g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds

)
.

Thus, we deduce that

∫ t

t

g(s)a
(
u(t) – u(t – s), u(t) – u(t – s)

)
ds ≤ H–(I(t)

)
,

and (.) becomes

L′(t) ≤ –βE(t) + βH–(I(t)
)
, ∀t ≥ t.

Therefore, repeating the same procedures, we find that for some k, k and k > ,

E(t) ≤ kG–(kt + k),

where G(t) =
∫ 

t


sH′(εs) ds. �
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Example We give an example to illustrate the energy decay rates given by Theorem ..
If

g(t) =


a + tq

for q >  and a >  chosen so that g satisfies (.), then g ′(t) = –H(g(t)), where

H(t) = qt
(


t

– a
)– 

q
.

Since

H ′(t) =
q( + 

q – at)

( 
t – a)


q

, H ′′(t) =
aq

t (t – +q–
√

q–
aq )(t – +q+

√
q–

aq )

( 
t – a)+ 

q
,

then the function H satisfies hypothesis (H) on the interval (, r] for any  < r < +q–
√

q–
aq .

By choosing D(t) = tα , (.) is satisfied for any α > q
q– . Then an explicit rate of decay can

be obtained by Theorem .. The function H(t) = H(tα) has derivative

H ′
(t) =

qαtα–[ + 
q – atα]

( 
tα – a)


q

.

Hence,

H(t) =
∫ 

t

[ 
(εs)α – a]


q

qαs(εs)α–[ + 
q – a(εs)α]

ds.

Let 
(εs)α = u, then we have

H(t) =
∫ 

(εt)α


εα

(u – a)

q u– 

α

qα[ + 
q – a

u ]
du ≤ 

qα[ + 
q – aεα

 ]

∫ 
(εt)α


εα

(u – a)

q u– 

α du.

Using the fact that the function f (u) = (u – a)

q is increasing on (a, +∞) and (u – a)


q < u


q

and taking ε < a– 
α , then

H(t) ≤ 
qα[ + 

q – aεα
 ]

∫ 
(εt)α


εα

u

q – 

α du =
ε

q–α–αq
q



α(α – q + αq)[ + 
q – aεα

 ]
[
t

q–α–αq
q – 

]
.

Now, we find that if α < q
+q ,

∫ 


H(t) dt ≤ ε

q–α–αq
q



α(α – q + αq)[ + 
q – aεα

 ]

∫ 



[
t

q–α–αq
q – 

]
dt

=
ε

q–α–αq
q



α(q – α – αq)[ + 
q – aεα

 ]
< +∞.
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Choosing 
εs = v and ε < a–, we obtain

G(t) =
∫ 

t


sH ′(εs)

ds =
∫ 

t

( 
εs – a)


q

sq( + 
q – aεs)

ds =
∫ 

εt


ε

(v – a)

q v–

q( + 
q – a

v )
dv

≤ 
q( + 

q – aε)

∫ 
εt


ε

v

q – dv =


 + 

q – aε

[(


εt

) 
q

–
(


ε

) 
q
]

.

Therefore,

G–(t) ≤ 

ε[( 
ε

)

q + ( + 

q – aε)t]q
.

Then we can use (.) to deduce that the energy decays at the same rate of g , that is,

E(t) ≤ c̃

c̃ + c̃tq ,

where c̃i (i = , , ) are constants.
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