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Abstract
We consider the periodic initial value problem associated to the generalized
Benjamin-Bona-Mahony equation with generalized damping on the one dimensional
torus. In contrast to the classical BBM equation, the main difference is that the
generalized equation contains two nonlocal operators, and the main difficulty comes
from two nonlocal operators. By the fixed point theorem, we prove that the periodic
initial value problem is locally well-posed. We also prove that if the solution exists
globally in time, it exhibits some asymptotic behavior.
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1 Introduction
The classical Benjamin-Bona-Mahony (BBM) equation

ut – uxxt + ux + uux =  (.)

was proposed in [] as a model for propagation of long waves which incorporates nonlinear
dispersive and dissipative effects. It has extensively been studied in the recent literature;
see for example [–] on the existence and uniqueness of solutions and [–] on the
global attractors and references therein.

In this paper, we consider the periodic initial value problem of generalized BBM equa-
tions with generalized damping on the D torus T = R/πZ:

⎧
⎪⎨

⎪⎩

ut + Lput + ux + uux + Mαu = , x ∈ T, t ∈ (, T),
u(, x) = u(x), x ∈ T,
∫

T
u(t, x) dx = ,

(.)

where the two nonlocal operators are defined by

L̂pu(k) = |k|p+û(k), p > ;
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M̂αu(k) = |k|αû(k), α ∈
(

,
p + 



]

, (.)

and û(k) is the kth Fourier coefficient of u(t, x) in x.
For α = , the generalized damping becomes a parabolic damping,

Mu = –uxx as M̂u(k) = |k|û(k).

For α = , it is a weak damping,

Mu = u as M̂u(k) = û(k).

For example, Wang [] considered the damped BBM equation ut – utxx + γ (u – uxx) +
uux = f (x) (Introduction, p.) and the BBM equation with different damping coefficients
ut – utxx + γ u – νuxx + uux = f (x) (Remark ., p.).

In fact, one can consider more general damping terms. For example, Chehab et al. []
studied the long-time behavior of the solution of a damped BBM equation

ut – uxxt + ux + uux + Mαu = , x ∈ T[, L], t ∈ (, T), (.)

with

M̂αu(k) = γkû(k),

and (γk)k∈Z are positive real numbers.
In the absence of fractional damping Mαu, Carvajal and Panthee [] proved that the

Cauchy problem
{

ut + Lput + ux + (uk+)x = , x ∈R, t ∈ (, T), k ∈ Z
+,

u(, x) = u(x), x ∈R,
(.)

is ill-posed for data with lower order Sobolev regularity and in a certain range of the
Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.

In this paper we study the generalized BBM equations with the fractional damping
terms. In contrast to the classical BBM equation, the main difference is that equation (.)
contains two nonlocal operators, its dissipation is weaker than the classical BBM equation.
In the study of the periodic initial value problem (.), the main difficulty is that Lp and
Mα are nonlocal operators. By the fixed point theorem and the Fourier analysis method,
similar to [–], we prove the local well-posedness of the solution to the problem (.).

2 Local well-posedness
We define a space

Ḣβ (T) =
{

u ∈ L(T) :
∫

T

u dx = ,
∑

k∈Z\{}
|k|β

∣
∣̂u(k)

∣
∣ < +∞

}

with the norm

|u|β =
∑

k∈Z\{}
|k|β

∣
∣̂u(k)

∣
∣.
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Then we can obtain the local existence and uniqueness of the solution to the periodic
initial value problem (.).

Theorem . Assume α ∈ ( 
 , p+

 ]. If u(x) ∈ Ḣα(T), there exist a constant T = C(|u|α) >
 and a unique solution u(t, x) ∈ C([, T], Ḣα(T)). Moreover, for any constant M > ,
|u|α ≤ M, |v|α ≤ M, there exists a constant C >  such that the solutions u(t, x), v(t, x)
of the periodic initial value problem (.) with the initial data u(x) ∈ Ḣα(T) and v(x) ∈
Ḣα(T), respectively, satisfy

∣
∣u(t) – v(t)

∣
∣
α

≤ C|u – v|α , ∀t ≤ 
CM

. (.)

Proof We first write equation (.) in the following form:

ut = –(I + Lp)–∂xu – (I + Lp)–∂x

(
u



)

– (I + Lp)–Mαu

= –iϕ(Dx)u – iϕ(Dx)
(

u



)

– ϕα(Dx)u

= –
[
iϕ(Dx) + ϕα(Dx)

]
u – iϕ(Dx)

(
u



)

, (.)

where

ϕ̂(Dx)u(k) =
k

 + |k|p+ û(k),

̂ϕα(Dx)u(k) =
|k|α

 + |k|p+ û(k), k ∈ Z. (.)

Then we get

u(t) = Stu – i
∫ t


St–τ ϕ(Dx)

(
u



)

dτ , (.)

where

Stu =
∑

k∈Z\{}
eikxe

– ik+|k|α

+|k|p+ t
û(k). (.)

We define a map



(
u(t)

)
= Stu – i

∫ t


St–τ ϕ(Dx)

(
u



)

dτ (.)

and a closed ball

B(T) =
{

u(t, x) ∈ C
(
[, T], Ḣα(T)

)
:
∣
∣u(t) – u

∣
∣
α

≤ |u|α
}

. (.)

We now prove that 
 has a unique fixed point in B(T).
Step one: 
 is onto, that is, for u(t) ∈ B(T) we have 
(u(t)) ∈ B(T).
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According to the definition of the norm |u(t)|α , we get

|Stu|α =
∑

k∈Z\{}
|k|α

∣
∣Ŝtu(k)

∣
∣

=
∑

k∈Z\{}
|k|α

∣
∣e

– ik+|k|α

+|k|p+ t
û(k)

∣
∣

=
∑

k∈Z\{}
|k|αe

– |k|α

+|k|p+ t∣∣û(k)
∣
∣

≤
∑

k∈Z\{}
|k|α

∣
∣û(k)

∣
∣ = |u|α

and
∣
∣
∣
∣St–τ ϕ(Dx)

(
u



)∣
∣
∣
∣



α

=
∑

k∈Z\{}
|k|α

∣
∣ ̂St–τ ϕ(Dx)

(
u/

)
(k)

∣
∣

=
∑

k∈Z\{}
|k|α

∣
∣
∣
∣e

– ik+|k|α

+|k|p+ (t–τ ) k
 + |k|p+

(̂
u/

)
(k)

∣
∣
∣
∣



≤
∑

k∈Z\{}
|k|α

∣
∣
(̂
u/

)
(k)

∣
∣

=



∑

k∈Z\{}
|k|α

∣
∣û(k)

∣
∣

=



∣
∣u∣∣

α
≤ C|u|α ,

the last inequality comes from the fact that Ḣα(T) is an algebra for α > 
 .

Putting the above two inequalities into (.) we have

∣
∣
(u)

∣
∣
α

≤ |Stu|α +
∫ t



∣
∣
∣
∣St–τ ϕ(Dx)

(
u



)∣
∣
∣
∣
α

dτ

≤ |u|α + C
∫ t



∣
∣u(τ )

∣
∣
α

dτ

≤ |u|α + CT sup
t∈[,T]

∣
∣u(t)

∣
∣
α

. (.)

Since u(t) ∈ B(T) and

∣
∣u(t)

∣
∣
α

– |u|α ≤ ∣
∣u(t) – u

∣
∣
α

≤ |u|α ,

we have |u(t)|α ≤ |u|α and

∣
∣


(
u(t)

)
– u

∣
∣
α

≤ ∣
∣


(
u(t)

)∣
∣
α

+ |u|α ≤ |u|α + CT |u|α
≤ |u|α , if  < T <


C|u|α .

Therefore, for T ∈ (, 
C|u|α ), we have 
(u(t)) ∈ B(T) for u(t) ∈ B(T).
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Step two: 
 is a contractive mapping on B(T).
Let u(t), v(t) ∈ B(T). Since

∣
∣


(
u(t)

)
– 


(
v(t)

)∣
∣
α

=
∣
∣
∣
∣

∫ t


St–τ ϕ(Dx)

(
u


–

v



)

dτ

∣
∣
∣
∣



α

≤
∫ t



∑

k∈Z\{}
|k|α

∣
∣
∣
∣e

– ik+|k|α

+|k|p+ (t–τ ) k
 + |k|p+

̂
(

u


–

v



)

(k)
∣
∣
∣
∣



dτ

≤ C
∫ t



∑

k∈Z\{}
|k|α

∣
∣ ̂
(
u – v

)
(k)

∣
∣ dτ

= C
∫ t



∣
∣u – v∣∣

α
dτ

≤ C
∫ t



(|u|α + |v|α
)|u – v|α dτ ,

due to u(t), v(t) ∈ B(T), we have

∣
∣


(
u(t)

)
– 


(
v(t)

)∣
∣
α

≤ C
(|u|α + |v|α

)
T sup

t∈[,T]

∣
∣u(t) – v(t)

∣
∣
α

, (.)

that is,

sup
t∈[,T]

∣
∣


(
u(t)

)
– 


(
v(t)

)∣
∣
α

≤ 
√

CT
(|u|α + |v|α

)
sup

t∈[,T]

∣
∣u(t) – v(t)

∣
∣
α

. (.)

Therefore, 
 is a contractive mapping on B(T) if 
√

CT(|u|α + |v|α) < , that is,

 < T <


C(|u|α + |v|α)
.

Thanks to the Banach fixed point theorem, 
 has a unique fixed point u(t) such that u(t) =

(u(t)), that is, there exists a unique solution of the periodic initial value problem (.).

Step three: the continuity of solution with the initial data.
Let u(t) and v(t) be solutions of the periodic initial value problem (.) with the initial

data u and v, respectively, such that |u|α ≤ M, |v|α ≤ M. For t ∈ [, T], the Duhamel
principle gives us the following formula:

u(t) – v(t) = St(u – v) – i
∫ t


St–τ ϕ(Dx)

(
u


–

v



)

dτ , (.)

hence

∣
∣u(t) – v(t)

∣
∣
α

≤ ∣
∣St(u – v)

∣
∣
α

+
∫ t



∣
∣
∣
∣St–τ ϕ(Dx)

(
u


–

v



)∣
∣
∣
∣
α

dτ

≤ |u – v|α + C
(∣
∣u(t)

∣
∣
α

+
∣
∣v(t)

∣
∣
α

)
T sup

t∈[,T]

∣
∣u(t) – v(t)

∣
∣
α

≤ |u – v|α + C
(|u|α + |v|α

)
T sup

t∈[,T]

∣
∣u(t) – v(t)

∣
∣
α

≤ |u – v|α + CMT sup
t∈[,T]

∣
∣u(t) – v(t)

∣
∣
α

,
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if T < 
CM , there exists a constant C = 

–CMT >  such that

∣
∣u(t) – v(t)

∣
∣
α

≤ sup
t∈[,T]

∣
∣u(t) – v(t)

∣
∣
α

≤ C|u – v|α . (.)

The proof is complete. �

3 Asymptotic behavior of the solution
We first consider the corresponding problem with the linear equation

⎧
⎪⎨

⎪⎩

ut + Lput + ux + Mαu = , x ∈ T, t ∈ (, T),
u(, x) = u(x), x ∈ T,
∫

T
u(t, x) dx = .

(.)

If u(t) ∈ L(T), ∀t > , then the kth Fourier coefficient ûk(t) of u(t, x) in x satisfies

(
 + |k|p+)û′

k(t) +
(
ik + |k|α

)
ûk(t) = , k ∈ Z,

that is,

ûk(t) = e
– ik+|k|α

+|k|p+ t
ûk().

Therefore, we have

|u|p+


=
∑

k∈Z\{}
|k|p+∣∣̂uk(t)

∣
∣ =

∑

k∈Z\{}
|k|p+e

– |k|α

+|k|p+ t∣∣̂uk()
∣
∣. (.)

Theorem . If u(x) ∈ Ḣ
p+

 (T), then the unique solution u(t, x) of the periodic initial
value problem (.) satisfies

∣
∣u(t)

∣
∣

p+


≤ |u|p+


,  < α ≤ p + 


. (.)

Furthermore, we have

∣
∣u(t)

∣
∣
α

≤ 
et

|u|p+


,  < α <
p + 


,∀t > , (.)

∣
∣u(t)

∣
∣
α

≤ e–t|u|p+


, α =
p + 


,∀t > . (.)

Proof Equation (.) implies that

|u|p+


=
∑

k∈Z\{}
|k|p+e

– |k|α

+|k|p+ t∣∣̂uk()
∣
∣

≤
∑

k∈Z\{}
|k|p+∣∣̂uk()

∣
∣

= |u|p+


,  < α ≤ p + 


. (.)
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On the other hand, for  < α < p+
 we have

|u|α =
∑

k∈Z\{}
|k|αe

– |k|α

+|k|p+ t∣∣̂uk()
∣
∣

=
∑

k∈Z\{}
|k|p+  + |k|p+

|k|p+
|k|α

 + |k|p+ e
– |k|α

+|k|p+ t∣∣̂uk()
∣
∣

≤
∑

k∈Z\{}
|k|p+ϕα(k)e–ϕα (k)t∣∣̂uk()

∣
∣, (.)

where

ϕα(k) =
|k|α

 + |k|p+ ,  < α <
p + 


, k ∈ Z \ {}. (.)

Since the function xe–xt is uniformly bounded by 
et , we have

|u|α ≤ 
et

∑

k∈Z\{}
|k|p+∣∣̂uk()

∣
∣ =


et

|u|p+


. (.)

For α = p+
 , we have

|u|p+


=
∑

k∈Z\{}
|k|p+e

– |k|p+

+|k|p+ t∣∣̂uk()
∣
∣

≤
∑

k∈Z\{}
|k|p+e–t∣∣̂uk()

∣
∣

= e–t
∑

k∈Z\{}
|k|p+∣∣̂uk()

∣
∣

= e–t|u|p+


. (.)

The proof is complete. �

We now deal with the nonlinear equation (.), that is, ut + Lput + ux + uux + Mαu = .
We can find similar kind of decreasing properties but less explicit than in the linear case.

Theorem . If u(x) ∈ Ḣ
p+

 (T), then the unique solution u(t, x) of the periodic initial
value problem (.) satisfies

lim
t→+∞

∣
∣u(t)

∣
∣

p+


= . (.)

Proof Since
∫

T
uux dx = ,

∫

T
uux dx = , and

∫

T

u(ut + Lput) dx = π
d
dt

( ∑

k∈Z\{}

∣
∣̂uk(t)

∣
∣ +

∑

k∈Z\{}
|k|p+∣∣̂uk(t)

∣
∣

)

= π
d
dt

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣,
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∫

T

uMαu dx = π
∑

k∈Z\{}
|k|α

∣
∣̂uk(t)

∣
∣ = π

∣
∣u(t)

∣
∣
α

.

The equation and zero mean condition in (.) imply that




d
dt

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ +

∣
∣u(t)

∣
∣
α

= , (.)

hence

d
dt

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ = –

∣
∣u(t)

∣
∣
α

≤ . (.)

It implies that
∑

k∈Z\{}( + |k|p+)|̂uk(t)| is decreasing in t, so we have

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ ≤

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk()

∣
∣, ∀t ≥ . (.)

Therefore,

∣
∣u(t)

∣
∣

p+


=
∑

k∈Z\{}
|k|p+∣∣̂uk(t)

∣
∣

≤
∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk()

∣
∣

≤ |u|p+


, ∀t ≥ . (.)

Equation (.) and u(x) ∈ Ḣ
p+

 lead to u(t) ∈ Ḣ
p+

 and then u(t) ∈ Ḣα for 
 < α ≤ p+

 .
On the other hand, (.) implies that

∑
k∈Z\{}( + |k|p+)|̂uk(t)| is decreasing in t and

bounded below by zero, then the limit

lim
t→+∞

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣

exists, we denote it by A.
Denote

lim
t→+∞

∣
∣u(t)

∣
∣
α

= B.

If B > , for large enough t, we have |u(t)|α > B/, then there is a constant T >  such that

d
dt

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ < –B, t > T ,

hence

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ <

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(T)

∣
∣ – B(t – T),
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and then

lim
t→+∞

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ ≤ –∞.

This contradiction leads to limt→+∞ |u(t)|α = B = , that is,

lim
t→+∞

∑

k∈Z\{}
|k|α

∣
∣̂uk(t)

∣
∣ = ,

then ∀k ∈ Z, limt→+∞ |̂uk(t)| = , therefore we have

lim
t→+∞

∑

k∈Z\{}

(
 + |k|p+)∣∣̂uk(t)

∣
∣ = A = 

and

lim
t→+∞

∑

k∈Z\{}
|k|p+∣∣̂uk(t)

∣
∣ = , i.e. lim

t→+∞
∣
∣u(t)

∣
∣

p+


= .

The proof is complete. �

Remark . This paper gives the local well-posedness for the subcritical index α > 
 . The

interesting case would be to consider the supercritical case  < α < 
 and the critical case

α = 
 . In the supercritical case  < α < 

 , there will be less dissipation, so the dispersive
part comes to play a principal role. In the cases  < α < 

 and α = 
 , Ḣα(T) is not an

algebra, we must find another way to establish the estimates on the nonlinear term. We
will consider the supercritical case in future work.
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