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Abstract
Our concern is the second order difference equation �2u(t – 1) + g(u(t)) = h(t) subject
to the Neumann boundary conditions �u(0) =�u(T ) = 0. Under convex/concave
conditions imposed on g, some results on the exact numbers of solutions and
positive solutions are established based on the discussions to the maximum and
minimum numbers of (positive) solutions.
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1 Introduction
For a, b ∈ Z with a < b, define [a, b]Z = {a, a + , a + , . . . , b – , b}. Consider the following
Neumann boundary value problem:

{
�u(t – ) + g(u(t)) = h(t), t ∈ [, T]Z,
�u() = �u(T) = ,

(.)

where h : [, T]Z → R, �u(t) = u(t + ) – u(t) and T >  is a given positive integer. Our
purpose is to find the exact number of solutions and positive solutions of (.).

In these last years, the existence and multiplicity of solutions for nonlinear discrete prob-
lems subject to various boundary value conditions have been widely studied by using dif-
ferent abstract methods such as critical point theory, fixed point theorems, lower and up-
per solutions method, and Brower degree (see, e.g., [–] and the references therein). All
these results are about the unique solution, or the minimum amount of solutions, and
positive solutions. To the best of our knowledge, there is no report on the exact number
of solutions for discrete boundary value problems.

For BVPs of differential equations, there are many papers concerned with the bifurca-
tion values and exact multiplicities of solutions and positive solutions by bifurcation the-
ory, quadrature method, time-map analysis and otherwise. See [–] and the references
therein. For difference equations, however, the loss of continuity puts some methods used
well in differential equations, such as the quadrature method and its time-map analysis,
out of action. Therefore, it is very meaningful to study the exact number of solutions for
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discrete boundary value problems. In this paper, based on the discussions to the max-
imum and minimum numbers of (positive) solutions, we establish some results on the
exact number of (positive) solutions of (.) under convex/concave conditions.

The remaining part of this paper is organized as follows. In Section , under the Neu-
mann boundary conditions �u() = �u(T) = , we show the Green’s functions of the lin-
ear difference operators –�u(t – ) + Lu(t) and �u(t – ) + Ku(t), where L and K are two
positive constants with K <  sin π

T . Then, in Section , we make some estimates on the
maximum number of solutions of (.), and, in Section , we establish some results on the
minimum numbers of solutions and positive solutions of (.). Finally, we give the results
on the exact multiplicities of solutions and positive solutions of (.) in Section .

2 Green’s functions
In this section, we show the Green’s functions of the linear difference operators –�u(t –
) + Lu(t) and �u(t – ) + Ku(t) satisfying the Neumann boundary conditions �u() =
�u(T) = .

Let  < K <  sin π
T . Consider the Neumann boundary value problem

{
�u(t – ) + Ku(t) = h(t), t ∈ [, T]Z,
�u() = �u(T) = .

(.)

It is easy to see that the corresponding homogeneous equation �u(t – ) + Ku(t) =  has
two independent real solutions cos θ t and sin θ t, where θ is defined by

θ = arccos

(
 –

K


)
,  < θ <

π

T
. (.)

Lemma . Problem (.) has a unique solution

u(t) =
T∑

s=

G(t, s)h(s), (.)

where

G(t, s) =


sin θ sin θT

{
cos s–

 θ cos T+–t
 θ ,  ≤ s ≤ t ≤ T + ,

cos t–
 θ cos T+–s

 θ ,  ≤ t ≤ s ≤ T .

In addition, if  < K <  sin π
T , then G(t, s) >  for all (t, s) ∈ [, T + ]Z × [, T]Z.

Proof First, we show that u given by (.) solves (.). By G(, s) = G(, s) we know that
u() = u(), i.e., �u() = . Similarly, G(T , s) = G(T + , s) implies that �u(T) = . Now
we show that u satisfies the equation �u(t – ) + Ku(t) = h(t), i.e., u(t + ) + (K – )u(t) +
u(t – ) = h(t), t ∈ [, T]Z. Since

u(t + ) + (K – )u(t) + u(t – )

=
T∑

s=

[
G(t + , s) + (K – )G(t, s) + G(t – , s)

]
h(s)
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=

( t–∑
s=

+
T∑

s=t+

)[
G(t + , s) + (K – )G(t, s) + G(t – , s)

]
h(s)

+
[
G(t + , t) + (K – )G(t, t) + G(t – , t)

]
h(t)

:=
t–∑
s=

I(t, s)h(s) +
T∑

s=t+

I(t, s)h(s) + I(t)h(t),

we just need to verify that I ≡ , I ≡ , and I ≡ . In fact, by the fact that cos θ t solves
the homogeneous equation �u(t – ) + Ku(t) = , we know that, for all t ∈ [, T]Z and
 ≤ s ≤ t – ,

I(t, s) sin θ sin θT

= cos
(s – )θ



[
cos

(T – t – )θ


+ (K – ) cos
(T +  – t)θ



+ cos
(T +  – t)θ



]

= .

This implies I ≡ . Similarly I ≡ . Finally,

I(t) sin θ sin θT

= cos
((t – ) – )θ


cos

(T +  – t)θ


– cos
(t – )θ


cos

(T +  – (t – ))θ


=


[
cos(T – )θ – cos(T + )θ

]
= sin θ sin θT

holds for all t ∈ [, T]Z, which implies I ≡ .
Since the corresponding homogeneous problem has only the trivial zero solution, prob-

lem (.) has a unique solution u, which is given by (.). Clearly, if  < K <  sin π
T , then

 < θ < π
T and hence G(t, s) >  for all (t, s) ∈ [, T + ]Z × [, T]Z. The proof is complete.

�

Let L > . Consider the Neumann boundary value problem

{
–�u(t – ) + Lu(t) = h(t), t ∈ [, T]Z,
�u() = �u(T) = .

(.)

For convenience, let

A =


(
L +  +

√
L + L

)
, ρ =

(
AT – A–T)(

A – 
)
.

Lemma . Problem (.) has a unique solution

u(t) =
T∑

s=

G(t, s)h(s), (.)
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where

G(t, s) =

ρ

{
(As + A–s+)(At–T + AT–t+),  ≤ s ≤ t ≤ T + ,
(At + A–t+)(As–T + AT–s+),  ≤ t ≤ s ≤ T ,

and G(t, s) >  for all (t, s) ∈ [, T + ]Z × [, T]Z.

Proof First, we show that u given by (.) solves (.). By G(, s) = G(, s) we know
�u() =  and by G(T , s) = G(T + , s), �u(T) = . Now we show that u satisfies the
equation –�u(t – ) + Lu(t) = h(t), i.e., u(t + ) – (L + )u(t) + u(t – ) = –h(t), t ∈ [, T]Z.
Since

u(t + ) – (L + )u(t) + u(t – )

=
T∑

s=

[
G(t + , s) – (L + )G(t, s) + G(t – , s)

]
h(s)

=

( t–∑
s=

+
T∑

s=t+

)[
G(t + , s) – (L + )G(t, s) + G(t – , s)

]
h(s)

+
[
G(t + , t) – (L + )G(t, t) + G(t – , t)

]
h(t)

:=
t–∑
s=

I(t, s)h(s) +
T∑

s=t+

I(t, s)h(s) + I(t)h(t),

we just need to verify that I ≡ , I ≡ , and I ≡ –. In fact, by the fact that A is a real root
of the equation �(λ) := λ –(L+)λ+ = , we know that, for all t ∈ [, T]Z and  ≤ s ≤ t –,

ρI(t, s) =
(
As + A–s+)(At–T– + AT–t)�(A) = ,

holds, which implies I ≡ . Similarly I ≡ . For I, we have, for all t ∈ [, T]Z,

ρI(t) =
(
At + A–t+)[At–T–(A – (L + )A

)
+ AT–t( – (L + )A

)]
+

(
At– + A–t+)(At–T + AT–t+)

=
(
At + A–t+)(–At–T– – AT–t+) +

(
At– + A–t+)(At–T + AT–t+)

= –
(
A – 

)(
AT – A–T)

= –ρ, t ∈ [, T]Z.

Thus, I ≡ –.
It is easy to check that the corresponding homogeneous problem has only the trivial zero

solution. So problem (.) has a unique solution u which is given by (.). Finally, since
A > , we have, for all (t, s) ∈ [, T + ]Z × [, T]Z, G(t, s) > . The proof is complete. �

3 Estimates on the maximum number of solutions
In this section, we make estimations on the maximum number of solutions of problem
(.). First, we prove some lemmas for later use. The first lemma is the discrete Sobolev
inequality.



Bai et al. Boundary Value Problems  (2015) 2015:229 Page 5 of 17

Lemma . Assume u : [, T + ]Z → R satisfies �u(T) =  and there exists t ∈ [, T – ]
such that u(t) = . Then

T∑
t=t+

∣∣u(t)
∣∣q ≤

( T∑
t=t+

(t – t)
q
p

)( T∑
t=t+

∣∣�u(t – )
∣∣q

)
,

t∑
t=

∣∣u(t)
∣∣q ≤

( t∑
t=

(t – t)
q
p

)( t∑
t=

∣∣�u(t – )
∣∣q

)
,

where p > , 
p + 

q = .

Proof For t > t, since u(t) =
∑t–

τ=t
�u(τ ) + u(t) =

∑t–
τ=t

�u(τ ), we have by the Hölder
inequality

∣∣u(t)
∣∣ ≤

t–∑
τ=t

∣∣�u(τ )
∣∣ ≤ (t – t)


p

( t–∑
τ=t

∣∣�u(τ )
∣∣q

) 
q

,

which implies that

T∑
t=t+

∣∣u(t)
∣∣q ≤

( T∑
t=t+

(t – t)
q
p

)( T∑
τ=t+

∣∣�u(τ – )
∣∣q

)

by the boundary condition �u(T) = . On the other hand, for t < t, since u(t) = u(t) –∑t–
τ=t �u(τ ) = –

∑t–
τ=t �u(τ ), we have

∣∣u(t)
∣∣ ≤

t–∑
τ=t

∣∣�u(τ )
∣∣ ≤ (t – t)


p

(t–∑
τ=t

∣∣�u(τ )
∣∣q

) 
q

,

which implies that

t∑
t=

∣∣u(t)
∣∣q ≤

( t∑
t=

(t – t)
q
p

)( t∑
t=

∣∣�u(t – )
∣∣q

)
.

The proof is complete. �

Definition . We say that u : [, T + ]Z → R has a generalized zero at t ∈ [, T + ]Z

provided that u(t) =  if t =  and if t ∈ [, T + ]Z either u(t) =  or u(t – )u(t) < .

Lemma . Let p : [, T]Z → R and p(t) �≡  on [, T]Z. Consider the following problem:

{
�u(t – ) + p(t)u(t) = , t ∈ [, T]Z,
�u() = �u(T) = .

(.)

If p(t) < 
T– for t ∈ [, T]Z, then every nontrivial solution u(t) of (.) has no generalized

zero on [, T + ]Z.
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Proof Let u be a nontrivial solution u(t) of (.). By the boundary conditions �u() =
�u(T) = , we know that u() = u() �=  and u(T) = u(T + ) �= . Otherwise, u ≡  on
[, T + ]Z. Suppose that there exists t ∈ [, T – ]Z such that u(t) = . Multiplying the
equation in (.) with u(t) and summing both sides from  to t, we have

t∑
t=

[
�u(t – )

] =
t∑

t=

p(t)u(t) ≤ max
≤t≤t

p+(t)
t∑

t=

u(t),

where p+ is the positive part of p. Similarly, summing both sides from t +  to T , we have

T∑
t=t+

[
�u(t – )

] =
T∑

t=t+

p(t)u(t) ≤ max
t+≤t≤T

p+(t)
T∑

t=t+

u(t).

Thus, by Lemma ., we have

max
≤t≤t

p+(t)

( t∑
t=

(t – t)

)
≥ , max

t+≤t≤T
p+(t)

( T∑
t=t+

(t – t)

)
≥ .

It follows that

max
≤t≤T

p+(t) ≥ max

{( t∑
t=

(t – t)

)–

,

( T∑
t=t+

(t – t)

)–}
≥ 

T – 
,

which is a contradiction with the assumption p(t) < 
T– for t ∈ [, T]Z.

Note that the equation �u(t – ) + p(t)u(t) =  is disconjugate on ∈ [, T + ]Z since
p(t) < 

T– for t ∈ [, T]Z (see Corollary . in []). It implies that the nontrivial u has at
most one generalized zero on ∈ [, T + ]Z. Set z(t) = u(t+)

u(t) . Then z(t) satisfies

z(t) +


z(t – )
=  – p(t), z() = z(T) = .

If there exists t ∈ [, T]Z such that z(t) < , then the boundary conditions z() = z(T) = 
implies that z(t) has at least two generalized zeros. Thus, u(t) has at least two generalized
zeros, which contradicts with that u(t) is disconjugate. The proof is complete. �

Lemma . Let p, p : [, T]Z → R satisfy the conditions of Lemma .. Assume p(t) ≤
p(t) on [, T]Z and there exists t ∈ [, T]Z such that p(t) < p(t). Then at least one of
the problems

{
�u(t – ) + pi(t)u(t) = , t ∈ [, T]Z,
�u() = �u(T) = ,

i = , , (.)

has only the trivial solution.

Proof By way of contradiction, assume that u and u are the nontrivial solutions of prob-
lems (.) corresponding to p and p, respectively. By Lemma ., we know that u(t) and
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u(t) both have no generalized zero on t ∈ [, T + ]Z. It follows by p(t) – p(t) ≤  and
p(t) – p(t) �≡ , t ∈ [, T]Z, that

T∑
t=

[
p(t) – p(t)

]
u(t)u(t) �= . (.)

On the other hand, by

u(t)
[
�u(t – ) + p(t)u(t)

]
= ,

u(t)
[
�u(t – ) + p(t)u(t)

]
= ,

we have

[
u(t)�u(t – ) – u(t)�u(t – )

]
+

[
p(t) – p(t)

]
u(t)u(t) = .

Summing both sides from  to T , we get

T∑
t=

[
p(t) – p(t)

]
u(t)u(t) = ,

which is a contradiction with (.). The proof is complete. �

Lemma . Assume g ∈ C(R) and g ′(x) < 
T– for all x ∈ R. Let u and u are two distinct

solutions of (.), then u(t) – u(t) has no generalized zero on [, T + ]Z and hence u and
u are strictly ordered.

Proof Set v = u – u. Then v is a nontrivial solution of (.) with

p(t) =

{
g(u(t))–g(u(t))

u(t)–u(t) , u(t) �= u(t),
g ′(u(t)), u(t) = u(t).

Since g ′(x) < 
T– , we know p(t) < 

T– for all t ∈ [, T]Z. Thus, Lemma . implies that
v(t) has no generalized zero on [, T + ]Z. Therefore, u and u are strictly ordered. The
proof is complete. �

Now, we show our main results of this section. First, if g is strictly convex on R, we have
the following result.

Theorem . Assume g ∈ C(R), g ′(x) < 
T– for all x ∈ R and g ′ is strictly increasing. Then

problem (.) has at most two solutions.

Proof Suppose that problem (.) has three solutions u, u, and u. By Lemma ., we
assume u(t) < u(t) < u(t), t ∈ [, T + ]Z. Let v = u – u, v = u – u, then v and v

solve problem (.) with, respectively,

p(t) = p(t) :=
g(u(t)) – g(u(t))

u(t) – u(t)
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and

p(t) = p(t) :=
g(u(t)) – g(u(t))

u(t) – u(t)
.

Since g ′ is strictly increasing, we have p(t) < p(t) < 
T– . By Lemma ., either v(t) ≡ 

or v(t) ≡ , which is a contradiction. The proof is complete. �

Similarly, if g is strictly concave on R, we have the following result.

Theorem . Assume g ∈ C(R), g ′(x) < 
T– for all x ∈ R and g ′ is strictly decreasing.

Then problem (.) has at most two solutions.

4 On the minimum number of solutions and positive solutions
In this section, we consider the minimum numbers of solution and positive solutions of
(.). First, we consider the nonexistence, existence and multiplicity of solutions of (.)
when g ∈ C(R) and g has a unique global minimum value on R.

Theorem . Let g ∈ C(R), limx→–∞ g(x) = a, limx→+∞ g(x) = b, and λ∗ := g(x) =
minx∈R g(x). Here, a, b may be +∞. Assume g(x) > λ∗ for all x ∈ R\{x} and λ∗ < min{a, b}.

() If one of the following conditions is satisfied, then problem (.) has no solution:
(-i) h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z;

(-ii) max{a, b} < +∞, h(t) ≥ max{a, b} for all t ∈ [, T]Z and max{a, b} > g(x) for all
x ∈ R.

() If h(t) ≡ λ∗ on [, T]Z, then problem (.) has exactly one solution.
() If λ∗ ≤ h(t) < min{a, b}, h(t) �≡ λ∗ for t ∈ [, T]Z, and g ′(x) <  sin π

T on [x,∞), then
problem (.) has at least two solutions.

() If one of the following conditions is satisfied, then problem (.) has at least one
solution:

(-i) a �= b, min{a, b} < +∞ and h(t) ≡ min{a, b}, t ∈ [, T]Z;
(-ii) b < h(t) < a, t ∈ [, T]Z;

(-iii) a < h(t) < b, t ∈ [, T]Z, and g ′(x) <  sin π
T on [x,∞).

Proof (-i) Since h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, we have
∑T

t= h(t) < Tλ∗. Assume
problem (.) has a solution u. Since g(u(t)) ≥ λ∗, t ∈ [, T]Z,

∑T
t= g(u(t)) ≥ Tλ∗. Summing

both sides of the equation �u(t – ) + g(u(t)) = h(t) from  to T , we have by the boundary
conditions �u() = �u(T) = ,

Tλ∗ ≤
T∑

t=

g
(
u(t)

)
=

T∑
t=

h(t) < Tλ∗,

which is a contradiction.
(-ii) Suppose (.) has a solution u. Then g(u(t)) < max{a, b} for all t ∈ [, T]Z, which

implies that �u(t – ) = h(t) – g(u(t)) >  for t ∈ [, T]Z. Thus, we have the contradiction
that �u(T) > �u().

() It is easy to see that u(t) ≡ x is a solution of (.). Assume that v is also a solution
of (.). Since g(v(t)) ≥ λ∗, t ∈ [, T]Z, we have �v(t – ) ≤ , t ∈ [, T]Z. It follows by the
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boundary conditions �v() = �v(T) =  that �v(t) ≡ , t ∈ [, T]Z. Thus, g(v(t)) ≡ g(x).
Therefore, v(t) ≡ x, t ∈ [, T + ]Z, since g(x) > g(x) for all x ∈ R \ {x}.

() Without loss of generality, we assume b ≤ a. Since λ∗ ≤ h(t) < b, h(t) �≡ λ∗, t ∈ [, T]Z,
we see by limx→–∞ g(x) = a and limx→+∞ g(x) = b that there exist c < x < c such that

g(c) > h(t), g(c) > h(t), t ∈ [, T]Z. (.)

Set u(t) ≡ c, u(t) ≡ x, u(t) ≡ c, t ∈ [, T + ]Z. We prove that problem (.) has at
least two solutions u∗

 , u∗
: u∗

 ∈ [u, u], u∗
 ∈ [u, u]. Here, [u, u] and [u, u] denote

order intervals.
First, we show that u(t) is not a solution of (.). In fact, if it is not true, then summing

both sides of the equation of (.) yields a contradiction:

Tλ∗ =
T∑

t=

g
(
u(t)

)
=

T∑
t=

h(t) > Tλ∗.

Second, we prove that (.) has at least one solution u∗
 ∈ [u, u]. Let E = {u : [, T +

]Z → R} with the norm ‖u‖ = maxt∈[,T+]Z |u(t)|. Since g ′ is continuous on the bounded
closed interval [c, x], there exists L >  such that g ′(x) > –L for x ∈ [c, x]. Consider the
following problem:

{
–�u(t – ) + Lu(t) = g(u(t)) + Lu(t) – h(t), t ∈ [, T]Z,
�u() = �u(T) = .

(.)

By Lemma ., (.) is equivalent to u(t) = Su(t). Here, S : E → E is defined by

Su(t) =
T∑

s=

G(t, s)
[
g
(
u(s)

)
+ Lu(s) – h(s)

]
, t ∈ [, T + ]Z. (.)

It is easy to see that S is continuous. Since u(t) satisfies
{

–�u(t – ) + Lu(t) = Lu(t), t ∈ [, T]Z,
�u() = �u(T) = ,

we see by (.) and the positivity of G(t, s) that

Su(t) =
T∑

s=

G(t, s)
[
g
(
u(s)

)
+ Lu(s) – h(s)

]

>
T∑

s=

G(t, s)Lu(s) = u(t), t ∈ [, T + ]Z,

which shows that u is a lower solution of the operator S. Similarly, one can check that
Su(t) ≤ u(t) and hence u is an upper solution of S. On the other hand, S is an increasing
operator defined on [u, u]. In fact, for v, v ∈ [u, u] with v ≤ v, we have

Sv(t) – Sv(t) =
T∑

s=

G(t, s)
[
g
(
v(s)

)
– g

(
v(s)

)
+ L

(
v(s) – v(s)

)]

≥ , t ∈ [, T + ]Z,
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by g ′(x) > –L for x ∈ [c, x]. Therefore, S has at least one solution u∗
 ∈ [u, u] by the fixed

point theorem of increasing operator in ordered Banach spaces due to Amann []. So,
(.), and hence (.), has at least one solution u∗

 ∈ [u, u].
Now, we prove that (.) has at least one solution u∗

 ∈ [u, u]. Since g ′(x) <  sin π
T for

x ∈ [x, +∞), there exists K >  such that

g ′(x) < K <  sin π

T
, x ∈ [x, c]. (.)

Consider the following problem:

{
�u(t – ) + Ku(t) = h(t) – g(u(t)) + Ku(t), t ∈ [, T]Z,
�u() = �u(T) = .

(.)

By Lemma ., G(t, s) > , and (.) is equivalent to u(t) = Qu(t). Here, Q : E → E is de-
fined by

Qu(t) =
T∑

s=

G(t, s)
[
h(s) – g

(
u(s)

)
+ Ku(s)

]
, t ∈ [, T + ]Z. (.)

Similar to the discussion of the operator S, Q has at least one solution u∗
 ∈ [u, u], which

is a solution of (.). Therefore, problem (.) has at least two solutions.
(-i) Without loss of generality, we assume b < a. Since h(t) ≡ b, t ∈ [, T]Z, there exists

c < x such that g(c) = b. Obviously, u(t) ≡ c is a solution of (.).
(-ii) Since b < h(t) < a, t ∈ [, T]Z, there exist c < c < x such that g(c) > h(t), g(c) <

h(t), t ∈ [, T]Z. By the continuity of g ′, there exists L >  such that g ′(x) > –L, x ∈ [c, c].
Let u(t) ≡ c, u(t) ≡ c. Considering the operator S defined as (.) on [u, u], one can
see that S has a fixed point u∗ ∈ [u, u], which is a solution of (.).

(-iii) Since a < h(t) < b, t ∈ [, T]Z, there exist x < c < c such that g(c) < h(t), g(c) >
h(t), t ∈ [, T]Z. By g ′(x) <  sin π

T for x ≥ x, there exists K >  such that g ′(x) < K <
 sin π

T , x ∈ [c, c]. Let u(t) ≡ c, u(t) ≡ c. Considering the operator Q defined as (.)
on [u, u], one can see that Q has a fixed point u∗ ∈ [u, u], which is a solution of (.).

The proof is complete. �

Similarly, if g ∈ C(R) and g has a unique global maximum value on R, we have the
following result.

Theorem . Let g ∈ C(R), limx→–∞ g(x) = a, limx→+∞ g(x) = b, and λ∗ := g(x) =
maxx∈R g(x). Here, a, b may be –∞. Assume g(x) < λ∗ for all x ∈ R\{x} and λ∗ > max{a, b}.

() If one of the following conditions is satisfied, then problem (.) has no solution:
(-i) h(t) ≥ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z;

(-ii) min{a, b} > –∞, h(t) ≤ min{a, b} for t ∈ [, T]Z and min{a, b} < g(x) for x ∈ R.
() If h(t) ≡ λ∗ on [, T]Z, then problem (.) has exactly one solution.
() If max{a, b} < h(t) ≤ λ∗, h(t) �≡ λ∗ for t ∈ [, T]Z; and g ′(x) <  sin π

T on (–∞, x],
then problem (.) has at least two solutions.

() If one of the following conditions is satisfied, then problem (.) has at least one
solution:
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(-i) a �= b, max{a, b} > –∞ and h(t) ≡ max{a, b} for t ∈ [, T]Z;
(-ii) a < h(t) < b for t ∈ [, T]Z, and g ′(x) <  sin π

T on (–∞, x];
(-iii) b < h(t) < a for t ∈ [, T]Z.

Now, we consider the positive solutions of (.). Let 〈, +∞) denote (, +∞) or [,∞).
First, if g ∈ C(〈, +∞), R) and g has a unique global minimum value on 〈, +∞), we have
the following result.

Theorem . Let g ∈ C(〈, +∞), R), limx→+ g(x) = a, limx→+∞ g(x) = b. Here, a, b may
be +∞. Assume that there exists x >  such that

λ∗ := g(x) = min
x∈〈,+∞)

g(x),

and g(x) > λ∗ for all x ∈ 〈, +∞) \ {x}, λ∗ < min{a, b}.
(I) Suppose λ∗ ≥ .
() If one of the following conditions is satisfied, then problem (.) has no positive

solution:
(-i) h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z;

(-ii) max{a, b} < +∞, h(t) ≥ max{a, b} for t ∈ [, T]Z, and g(x) < max{a, b} for all
x ∈ (, +∞).

() If h(t) ≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly one positive solution.
() If λ∗ ≤ h(t) < min{a, b}, h(t) �≡ λ∗ for t ∈ [, T]Z, and g ′(x) <  sin π

T on [x, +∞),
then problem (.) has at least two positive solutions.

() If one of the following conditions is satisfied, then problem (.) has at least one
positive solution:

(-i) a �= b, min{a, b} < +∞, h(t) ≡ min{a, b} for t ∈ [, T]Z;
(-ii) b < h(t) < a for t ∈ [, T]Z;

(-iii) a < h(t) < b for t ∈ [, T]Z, and g ′(x) <  sin π
T on [x,∞).

(II) Suppose λ∗ < .
() If one of the following conditions is satisfied, then problem (.) has no positive

solution:
(-i) h(t) ≤ λ∗ for t ∈ [, T]Z;

(-ii) max{a, b} < +∞ and h(t) ≥ max{a, b} for t ∈ [, T]Z, and g(x) < max{a, b} for
all x ∈ (, +∞).

() If one of the following conditions is satisfied, then problem (.) has at least two
positive solutions:
(-i) a > , b > ,  < h(t) < min{a, b} for t ∈ [, T]Z, and g ′(x) <  sin π

T on [x,∞);
(-ii) a > , b > , and h(t) ≡  for t ∈ [, T]Z.

() If one of the following conditions is satisfied, then problem (.) has at least one
positive solution:

(-i)  < min{a, b} < +∞, a �= b, and h(t) ≡ min{a, b} for t ∈ [, T]Z;
(-ii)  < b < a and b < h(t) < a for t ∈ [, T]Z;

(-iii)  < a < b, a < h(t) < b for t ∈ [, T]Z, and g ′(x) <  sin π
T on [x,∞);

(-iv) a ≤ , b > , and h(t) ≡  for t ∈ [, T]Z;
(-v) a ≤ , b > ,  < h(t) < b for t ∈ [, T]Z, and g ′(x) <  sin π

T on [x,∞);
(-vi) a > , b < , and  < h(t) < a for t ∈ [, T]Z.
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Proof We only show the proofs of (), (), and (-iv)-(-vi).
() Without loss of generality, we assume b ≤ a. By the proof of Theorem .(), we can

choose  < c < x < c and L > , K > , such that S defined as (.) has a fixed point u∗


satisfying c ≤ u∗
 (t) ≤ x and Q defined as (.) has a fixed point u∗

 satisfying x ≤ u∗
(t) ≤

c. Clearly, u∗
 (t) and u∗

(t) are two positive solutions of (.).
() By a > , b > , and λ∗ < , there exist x and x satisfying  < x < x < x such that

g(x) = g(x) = . Therefore, if h(t) ≡  on [, T]Z, then u(t) ≡ x and u(t) ≡ x are two
positive solutions of (.). If  < h(t) < min{a, b}, we know that there exist  < c < c < x

and x < c < c such that

g(c) > h(t), g(c) < h(t), g(c) < h(t), g(c) > h(t).

Let ui(t) ≡ ci (i = , , , ). Similar to the proof of Theorem .(), consider the operator
S defined as (.) on [u, u] and the operator Q defined as (.) on [u, u], one can find
that S has a fixed point in [u, u] and Q has a fixed point in [u, u].

(-iv) By a ≤ , b > , then there exists x > x by λ∗ <  such that g(x) = . It is easy to
see that u(t) ≡ x is a positive solution of (.) since h(t) ≡  for t ∈ [, T]Z.

(-v) By a ≤ , b > , there exists x >  such that g(x) = . Thus,  < h(t) < b, t ∈ [, T]Z,
implies that there exist c > c > x such that g(c) < h(t) and g(c) > h(t) for t ∈ [, T]Z.
Similar to the proof of Theorem .(), Q defined on [u, u] has a fixed point in [u, u],
where u(t) ≡ c, u(t) ≡ c, t ∈ [, T]Z.

(-vi) By a > , b < , there exists x >  such that g(x) = . Since  < h(t) < a for t ∈
[, T]Z, there exist  < c < c < x such that g(c) > h(t) and g(c) < h(t) for t ∈ [, T]Z.
Similar to the proof of Theorem .(), S defined on [u, u] has a fixed point in [u, u],
where u(t) ≡ c, u(t) ≡ c, t ∈ [, T]Z.

The proof is complete. �

Finally, if g ∈ C(〈, +∞), R) and g has a unique global maximum value on 〈, +∞), we
have the following result.

Theorem . Let g ∈ C(〈, +∞), R), limx→+ g(x) = a, limx→+∞ g(x) = b. Here, a, b may
be –∞. Assume that there exists x >  such that

λ∗ := g(x) = max
x∈〈,+∞)

g(x)

and g(x) < λ∗ for all x ∈ 〈, +∞) \ {x}, λ∗ > , and λ∗ > min{a, b}.
() If one of the following conditions is satisfied, then problem (.) has no positive

solution:
(-i) h(t) ≥ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z;

(-ii) min{a, b} ≥ , h(t) ≤ min{a, b} for t ∈ [, T]Z, and g(x) > min{a, b} for all
x ∈ (, +∞).

() If h(t) ≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly one positive solution.
() If one of the following conditions is satisfied, then problem (.) has at least two

positive solutions:
(-i) max{a, b, } < h(t) ≤ λ∗, h(t) �≡ λ∗ for t ∈ [, T]Z, and g ′(x) <  sin π

T on
(, x);

(-ii) a < , b < , and h(t) ≡  for t ∈ [, T]Z.
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() If one of the following conditions is satisfied, then problem (.) has at least one
positive solution:

(-i) max{a, b} > , a �= b, and h(t) ≡ max{a, b} for t ∈ [, T]Z;
(-ii) a > , b < , and  < h(t) < a for t ∈ [, T]Z;

(-iii) a < , b > ,  < h(t) < b for t ∈ [, T]Z, and g ′(x) <  sin π
T on (, x);

(-iv) either a ≥ , b <  or a < , b ≥ , and h(t) ≡  for t ∈ [, T]Z.

5 Exact numbers of solutions and positive solutions
In this section, we establish the results of exact multiplicities of solutions and positive
solutions for problem (.). First, we consider the exact number of solutions of (.).

Note that  sin π
T < 

T– for T > .
If g ∈ C(R) and g is strictly convex on R, we have the following result by Theorem .

and Theorem ..

Theorem . Assume g ∈ C(R), g ′(x) is strictly increasing and g ′(x) <  sin π
T for all

x ∈ R. Let

lim
x→±∞ g(x) = +∞, λ∗ = min

x∈R
g(x).

() If h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has no solution.
() If h(t) ≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly one solution.
() If h(t) ≥ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly two solutions.

If g ∈ C(R) and g is strictly concave on R, then, by Theorem . and Theorem ., we
have the following result.

Theorem . Assume g ∈ C(R), g ′(x) is strictly decreasing, and g ′(x) <  sin π
T for all

x ∈ R. Let

lim
x→±∞ g(x) = –∞, λ∗ = max

x∈R
g(x).

() If h(t) ≥ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has no solution.
() If h(t) ≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly one solution.
() If h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly two solutions.

Now, we consider the exact number of positive solutions of problem (.). First, we
consider the case that g ∈ C(〈, +∞), R) and g is strictly convex on 〈, +∞). If g ∈
C((,∞), R), we have the following result by Theorem . and Theorem ..

Theorem . Assume g ∈ C((,∞), R), g ′(x) is strictly increasing, and g ′(x) <  sin π
T for

all x ∈ (,∞). Let

lim
x→

g(x) = lim
x→+∞ g(x) = +∞, λ∗ = min

x∈(,+∞)
g(x).

() If h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has no positive solution.
() If h(t) ≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly one positive solution.
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() If one of the following conditions is satisfied, then problem (.) has exactly two
positive solutions:

(i) λ∗ ≥ , h(t) ≥ λ∗, and h(t) �≡ λ∗ for t ∈ [, T]Z;
(ii) λ∗ <  and h(t) ≡  for t ∈ [, T]Z;

(iii) λ∗ <  and h(t) >  for t ∈ [, T]Z.

If g ∈ C([,∞), R), we have the following result.

Theorem . Assume g ∈ C([,∞), R), g ′(x) is strictly increasing and g ′(x) <  sin π
T for

all x ∈ [,∞). Let

g() = a, lim
x→+∞ g(x) = +∞, λ∗ = min

x∈[,+∞)
g(x).

(I) Suppose λ∗ ≥ .
() If h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has no positive solution.
() If one of the following conditions is satisfied, then problem (.) has exactly one

positive solution:
(-i) λ∗ < a and h(t) ≡ λ∗ for t ∈ [, T]Z;

(-ii) λ∗ < a and h(t) ≡ a for t ∈ [, T]Z;
(-iii) h(t) > a for t ∈ [, T]Z.

() If λ∗ ≤ h(t) < a and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly two
positive solutions.

(II) Suppose λ∗ < .
() If one of the following conditions is satisfied, then problem (.) has exactly one

positive solution:
(-i) a >  and h(t) ≡ a for t ∈ [, T]Z;

(-ii) a >  and h(t) > a for t ∈ [, T]Z;
(-iii) a ≤  and h(t) ≡  for t ∈ [, T]Z;
(-iv) a ≤  and h(t) >  for t ∈ [, T]Z.

() If one of the following conditions is satisfied, then problem (.) has exactly two
positive solutions:
(-i) a >  and  < h(t) < a for t ∈ [, T]Z;

(-ii) a >  and h(t) ≡  for t ∈ [, T]Z.

Proof Let λ∗ = g(x). We only show the proofs of (-ii) and (-iii).
(-ii) By g ′ is strictly increasing, there exists a unique x > x such that g(x) = a and g(x) >

a for all x > x. Clearly, u(t) ≡ x is a positive solution of (.). Assume that v(t) is another
positive solution, then u and v are strictly ordered by Lemma .. If x ≡ u(t) < v(t), t ∈
[, T]Z, then g(u(t)) ≡ a < g(v(t)), t ∈ [, T]Z, by the fact that g(x) is strictly increasing on
[x, +∞). Thus, �v(t – ) < , t ∈ [, T]Z, which implies �v(T) < �v(), a contradiction.
If v(t) < u(t) ≡ x, then the fact that g(x) < a for x ∈ (, x) shows that g(v(t)) < g(u(t)) ≡ a
and hence �v(t – ) > , t ∈ [, T]Z. It follows that �v(T) > �v(), a contradiction.

(-iii) We distinguish two cases to finish the proof.
Case : λ∗ = a = g(). In this case, g is strictly increasing on [, +∞). It is easy to see

that (.) has at least one positive solution by a discussion similar to Theorem .(-iii).
Now, we assume that (.) has two distinct positive solutions u and u. Then u and u
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are strictly ordered by Lemma .. Without loss of generality, we assume that u(t) < u(t),
t ∈ [, T +]Z. Then g(u(t)) < g(u(t)), t ∈ [, T +]Z, which implies that �(u –u)(t –) =
g(u(t)) – g(u(t)) > , t ∈ [, T]Z. Thus, we have the contradiction that

�u(T) – �u(T) > �u() – �u().

Case : λ∗ < a. By g ′ is strictly increasing, there exists a unique x > x such that g(x) = a
and g(x) > a for all x > x. Since h(t) > a, there exist c and c: x < c < c such that g(c) <
h(t), g(c) > h(t), t ∈ [, T]Z. By the proof of Theorem .(-iii), we know that (.) has
a positive solution u with c ≤ u(t) ≤ c, t ∈ [, T]Z. Now, we assume that u is also a
positive solution of (.). Then u and u are strictly ordered by Lemma ..

If u(t) < u(t), t ∈ [, T]Z, then g(u(t)) < g(u(t)), t ∈ [, T]Z. In fact, For any given t,
if x < u(t) < u(t), then g(u(t)) < g(u(t)) since g is strictly increasing on [x, +∞). If
 < u(t) ≤ x, then we also have g(u(t)) ≤ a = g(x) < g(c) ≤ g(u(t)), t ∈ [, T]Z. Thus,
�(u – u)(t – ) = g(u(t)) – g(u(t)) < , t ∈ [, T]Z. It follows that �u(T) – �u(T) <
�u() – �u(), a contradiction.

If u(t) > u(t), t ∈ [, T]Z, then, by the monotony of g on [x, +∞), g(u(t)) < g(u(t)),
t ∈ [, T]Z, and consequently, �(u – u)(t – ) = g(u(t)) – g(u(t)) > , t ∈ [, T]Z, which
also yields the contradiction that �u(T) – �u(T) > �u() – �u().

The proof is complete. �

Finally, we consider the case that g ∈ C(〈, +∞), R) and g is strictly concave on 〈, +∞).
If g ∈ C((, +∞), R), we have the following result by Theorem . and Theorem ..

Theorem . Assume g ∈ C((,∞), R), g ′(x) is strictly decreasing and g ′(x) <  sin π
T for

all x ∈ (,∞). Let

lim
x→

g(x) = lim
x→+∞ g(x) = –∞, λ∗ = max

x∈(,+∞)
g(x) ≥ .

() If h(t) ≥ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has no positive solution.
() If h(t) ≡ λ∗ for t ∈ [, T]Z, then problem (.) has exactly one positive solution.
() If one of the following conditions is satisfied, then problem (.) has exactly two

positive solutions:
(-i)  < h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z;

(-ii) λ∗ >  and h(t) ≡  for t ∈ [, T]Z.

If g ∈ C([, +∞), R), we have the following result.

Theorem . Assume g ∈ C([,∞), R), g ′(x) is strictly decreasing and g ′(x) <  sin π
T for

all x ∈ [,∞). Let

g() = a, lim
x→+∞ g(x) = –∞, λ∗ = max

x∈[,+∞)
g(x) > max{, a}.

() If h(t) ≥ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z, then problem (.) has no positive solution.
() If one of the following conditions is satisfied, then problem (.) has exactly one

positive solution:
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(-i) h(t) ≡ λ∗ for t ∈ [, T]Z;
(-ii) a >  and h(t) ≡ a for t ∈ [, T]Z;

(-iii) a >  and  < h(t) < a for t ∈ [, T]Z;
(-iv) a ≥  and h(t) ≡  for t ∈ [, T]Z.

() If one of the following conditions is satisfied, then problem (.) has exactly two
positive solutions:
(-i) max{, a} < h(t) ≤ λ∗ and h(t) �≡ λ∗ for t ∈ [, T]Z;

(-ii) a <  and h(t) ≡  for t ∈ [, T]Z.
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