
Ma and Fang Boundary Value Problems  (2015) 2015:234 
DOI 10.1186/s13661-015-0498-y

R E S E A R C H Open Access

The first and second expansion of large
solutions for quasilinear elliptic equations
with weight functions
Yun-Feng Ma1 and Zhong Bo Fang2*

*Correspondence:
fangzb7777@hotmail.com
2School of Mathematical Sciences,
Ocean University of China, Songling
Road 238, Qingdao, 266100,
P.R. China
Full list of author information is
available at the end of the article

Abstract
By the Karamata regular variation theory and comparison principle, we establish the
boundary behavior of positive weak solutions for the problem

�pu = b(x)f (u), x ∈ �, u|∂� =∞,

where � is a bounded domain with smooth boundary in RN , the weight b(x) ∈ Cα(�),
which may be vanishing on the boundary and rapidly varying near the boundary, and
the nonlinearity f may be rapidly varying at infinity. For the case f (s) = sm ± f1(s) with
sufficiently large s, wherem > p – 1 and f1 is normalized regularly varying at infinity
with indexm1 ∈ (0,p – 1), we show the influence of the geometry of � on the
boundary behavior of solutions. Finally, we prove the existence and uniqueness of the
solution for the problem.
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1 Introduction and main results
In this paper, we consider the first and second expansions of positive weak large solutions
near the boundary for the quasilinear elliptic problem of the form

�pu = b(x)f (u), x ∈ �, u|∂� = ∞, (.)

where �pu = div(|∇u|p–∇u) (p > ), � ⊂ RN (N ≥ ) is a bounded domain with C-
smooth boundary, b(x) satisfies (b) and (b), and f satisfies (f), (f), and (f), where

(b) b(x) ∈ Cα(�) for some α ∈ (, ), and b(x) is positive in �;
(b) there exist k ∈ � and b ∈ R such that

lim
d(x)→

b(x)
Kp–(d(x))kp(d(x))

= b,
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where � denotes the set of all positive nondecreasing functions in C(, δ) (δ > )
such that

lim
t→+

d
dt

(
K(t)
k(t)

)
:= Ck ∈ [,∞), K(t) =

∫ t


k(s) ds;

(f) f ∈ C[,∞), f () = , f is increasing in (,∞);
(f)

∫ ∞
 f – 

p– (v) dv < ∞;
(f) there exists Cf >  such that lims→∞ f ′(s)

∫ ∞
s

dv
f (v) = Cf .

Note that, some basic examples for k ∈ � can be given as follows:
() k(t) = t α

 , α > , Ck = ( + α)–;
() k(t) = e–t–α , α > , Ck = ;
() k(t) = 

(– ln t)α , α > , Ck = ;

() k(t) = e–et–α

, α > , Ck = ;
() k(t) = (ln( + t))α , α > , Ck = ( + α)–.
p-Laplacian equations like (.) usually occur in the study of the generalized reaction-

diffusion theory, non-Newtonian fluid theory, non-Newtonian filtration, and the turbu-
lent flow of a gas in porous medium. In the non-Newtonian theory, the quantity p is a
characteristic of the medium. Media with p >  are called dilatant fluids, and those with
p <  are called pseudoplastics. If p = , then they are Newtonian fluids. The p-Laplacian
operator also appears in the study of torsional creep (elastic for p =  and plastic for p < ;
see []), flow through porous media (p = 

 ; see []), and glacial sliding (p ∈ (, 
 ]; see []).

We are concerned with the positive weak large solutions for problem (.). By a so-
lution for problem (.) we understand a function u ∈ W ,p

loc (�) ∩ L∞
loc(�) that satisfies

�pu = b(x)f (u) in the weak sense and u(x) → ∞ as d(x) = dist(x, ∂�) → . Sometimes,
the solution is also called a large solution, an explosive solution, or a boundary blow-up
solution.

The study of large solutions started from the work of Bieberbach [] for the case b(x) = ,
f (u) = eu, p = , and N = , which plays an important role in the theories of Riemannian
surfaces of negative constant curvatures and automorphic functions. More exactly, if a
Riemannian metric of the form |ds| = eu(x)|dx| has a constant Gaussian curvature –b,
then �u = beu. Rademacher [] extended the results in [] to the three-dimensional
space. Later, C Bandle et al. discussed the existence, uniqueness, and accurate estimate
of boundary behavior of large solutions for problem (.) with p =  and b(x), f (u) satis-
fying some proper conditions and obtained some better results dealing with a gradient
term (see [–] and the references therein). Also, some results in [–] have been ex-
tended to p >  (see [–]). Recently, boundary blow-up problems have been applied to
Liouville theorems for logistic-like equations in RN in [], the analysis of blow-up for a
parabolic equation with a nonlinear boundary condition in [], and the characterization
of the long-time behavior of positive solutions for the parabolic equations in [, ].

However, Cirstea and Rădulescu [] first introduced Karamata regular variation the-
ory approaching to study the uniqueness and asymptotic behavior of boundary blow-up
solutions, which enables us to obtain some qualitative behavior of the boundary blow-up
solutions in a general framework. The asymptotic behavior of the boundary blow-up solu-
tions near the boundary has been investigated by many researchers (see [–] and their
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references). It is well known that the first-order asymptotic expansion of the solution u(x)
in terms of d(x) is independent of the geometry of the domain, whereas the second-order
asymptotic expansion of the solution u(x) depends linearly on the mean curvature of the
boundary of �. There have been many results about the first expansion of large solution
for problem (.) with p =  and b(x), f (u) satisfying some proper conditions under differ-
ent regularity boundary conditions (see [–]) and the second expansion (see[–]
and references therein). Bandle and Marcus [] first studied the influence of the geometry
of � on the boundary behavior of the unique radially symmetric solution for problem (.)
in a ball or an annulus when f (u) is of power form. Their results were extended by Bandle,
Anedda, Porru et al. to more general boundary smooth domains, weights, and nonlineari-
ties (see [–]). Specially, Cirstea et al. [, –] used the Karamata regular variation
theory, nonlinear transformations, the perturbed method, the upper and lower solution
method, and localization method to establish the first and second expansion of large so-
lutions for problem (.) with p = , and Cirstea and Rădulescu [] first introduced the
set �. Recently, some results in [, –] have been extended to p > . For instance,
Huang et al. [–] studied the existence and the first and second expansions of weak
solutions when b(x) and f (u) satisfy some suitable conditions, which are different from
the conditions in our paper. For more results about the p-Laplacian equations, we refer to
[–] and references therein.

Inspired by the above works, in this paper, we introduce the constants Cf and Ck to
get the asymptotic expansion of solutions for problem (.). In particular, when b(x) =
Kp–(d(x))k(d(x)) near the boundary and f (s) = sm ± f(s) for sufficiently large s, where
m > p – , and f satisfies

(f) there exists m ∈ (, p – ) such that

lim
s→∞

sf ′
 (s)

f(s)
= m,

we show the influence of the geometry of � on the boundary behavior of solutions for
problem (.). Finally, we prove the existence and uniqueness of the solution for problem
(.). More precisely, we obtain the following results.

Theorem  Let f satisfy (f)-(f), and b satisfy (b)-(b). Suppose that  < Cf < p–
p– in (f)

and

Cf + Ck >  +
p – 
p – 

Cf Ck . (.)

Then, for any solution u of problem (.), we have

lim
d(x)→

u(x)
φ(γ K(d(x)))

= , (.)

where φ is uniquely defined by

∫ ∞

φ(t)
f – 

p– (μ) dμ = t, ∀t >  (.)
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and

γ =



(
b

p – 
· (p – )(Cf – ) – Cf

( – Ck)(p – )(Cf – ) – Cf Ck

) 
p–

. (.)

Remark  By (.) one can see that if Cf > , then Ck can be equal to zero and if Ck > ,
then Cf can be equal to .

Theorem  Let f satisfy (f), f (s) = sm ± f(s) for sufficiently large s, m > p – , f satisfy (f),
and b(x) = Kp–(d(x))k(d(x)) near the boundary, where k satisfies

(k) k ∈ C[, a] ∩ C(, a] for some a > , k(t) > , k′(t) > , ∀t ∈ (, a], and k() = ;
(k) k ∈ � with Ck > ;
(k) limt→

d

dt ( K (t)
k(t) ) = .

The following two results hold:
() if m +  – p > m, then, in a sufficiently small neighborhood of ∂�, for any solution u

of problem (.), we have

u(x) = C
(
K

(
d(x)

))– (p–)
m+–p

(
 + C(N – )H(x)

K(d(x))
k(d(x))

+ o
(
d(x)

))
, (.)

where

C =
((

(p – )
m +  – p

)p(
p –  +

(m +  – p)Ck



)) 
m+–p

,

C =
m +  – p

(p – )(m – ) + (m + )(m +  – p)Ck
.

() if m +  – p ≤ m and k(t) = t θ
 with θ >  such that θ

+θ
> m–(m+p–)

m+–p , then () still
holds.

Remark  Some basic examples of k that satisfy (k)-(k) can be given as follows:
() k(t) = t α

 , α > , where Ck = 
+α

;
() k(t) = etα – , α > , where Ck = 

+α
;

() k(t) = ln( + tα), α > , where Ck = 
+α

.

Remark  If k(t) = (ln( + t))α , α > , then limt→+
d

dt ( K (t)
k(t) ) = α

(+α)(+α) . In this case, k(t)
does not satisfy (k).

This paper is organized as follows. In Section , we present some notation and results in
regular variation theory. Theorems  and  will be proved in Section . Finally, we prove
the existence and uniqueness of the solution for problem (.) in Appendices A. and A..

2 Preliminary results
2.1 Properties of regularly varying function
Karamata regular variation theory was established by Karamata in  and is a basic
tool in stochastic process. In , Haan improved the results, which have been applied in



Ma and Fang Boundary Value Problems  (2015) 2015:234 Page 5 of 19

stochastic process, analytical function theory, integral functions, integral transform and
asymptotic estimation of an integral sequence (see [–]).

In this section, we recall some basic definitions and qualities in regular variation theory.

Definition  A positive measurable function f defined on [a,∞) for some a >  is called
regularly varying at infinity with index ρ (written as f ∈ RV ρ ) if for each ξ >  and some
ρ ∈ R,

lim
t→∞

f (ξ t)
f (t)

= ξρ . (.)

In particular, when ρ = , f is called slowly varying at infinity. Clearly, if f ∈ RV ρ , then
L(s) := f (s)

sρ is slowly varying at infinity.

Definition  A positive measurable function f defined on [a,∞) for some a >  is called
rapidly varying at infinity if for each ρ > ,

lim
s→∞

f (s)
sρ

= ∞. (.)

Some basic examples of slowly varying functions at infinity are listed as follows:
() every measurable function on [a,∞) which has a positive limit at infinity;
() (ln t)s and (ln(ln t))s, s ∈ R;
() e(ln t)s ,  < s < .

Some basic examples of rapidly varying functions at infinity are given as follows:
() et and eet ;
() ee(ln t)s , eets

and eets
, s > ;

() tγ e(ln t)q and (ln t)γ e(ln t)q , q > , γ ∈ R;
() (ln t)γ etq and tγ etγ , q > , γ ∈ R.

We see that a positive measurable function h defined on (, a) for some a >  is regularly
varying at zero with index σ (written as g ∈ RVZσ ) if t → g( 

t ) belongs to RV –σ . Similarly,
g is called rapidly varying at zero if t → g( 

t ) is rapidly varying at infinity.

Proposition  (Uniform convergence theorem) If f ∈ RV ρ , then (.) holds uniformly for
ξ ∈ [c, c] with  < c < c. Moreover, if ρ < , then uniform convergence holds on intervals
of the form (a,∞) with a > ; if ρ > , then uniform convergence holds on intervals (, a],
provided that f is bounded on (, a] for all a > .

Proposition  (Representation theorem) A function L is slowly varying at infinity if and
only if it can be written in the form

L(s) = ϕ(s) exp

(∫ s

a

y(t)
t

dt
)

, s ≥ a (.)

for some a ≥ a, where the functions ϕ and y are measurable and as s → ∞, y(s) →  and
ϕ(s) → c > .

We say that

L̂(s) = c exp

(∫ s

a

y(t)
t

dt
)

, s ≥ a, (.)
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is normalized slowly varying at infinity and

f (s) = csρ L̂(s), s ≥ a, (.)

is normalized regularly varying at infinity with index ρ (written as f ∈ NRV ρ ).

Similarly, g is called normalized regularly varying at zero with index σ (written as g ∈
NRVZσ ) if t → g( 

t ) belongs to NRV –σ . A function f ∈ RV ρ belongs to NRV ρ if and only if

f ∈ C[a,∞) for some a >  and lim
s→∞

sf ′(s)
f (s)

= ρ. (.)

Proposition  If functions L, L are slowly varying at infinity, then
() Lσ for every σ ∈ R, cL + cL (c ≥ , c ≥  with c + c > ), L ◦ L (if L(t) → +∞

as t → +∞) are also slowly varying at infinity;
() for every θ > , tθ L(t) → +∞ and t–θ L(t) →  as t → ∞;
() for ρ ∈ R, ln(L(t))

ln t →  and ln(tρL(t))
ln t → ρ as t → +∞.

Proposition  If f ∈ RV ρ , f ∈ RV ρ with limt→∞ f(t) = ∞, then f ◦ f ∈ RV ρρ .

Proposition  (Asymptotic behavior) If a function L is slowly varying at infinity, then for
a ≥  and t → ∞, we have

()
∫ t

a sβL(s) ds ∼= (β + )–t+βL(t) for β > –;
()

∫ ∞
t sβL(s) ds ∼= (–β – )–t+βL(t) for β < –.

Proposition  (Asymptotic behavior) If a function H is slowly varying at infinity, then for
a >  and t → +, we have

()
∫ t

 sβH(s) ds ∼= (β + )–t+βH(t) for β > –;
()

∫ ∞
t sβH(s) ds ∼= (–β – )–t+βH(t) for β < –.

2.2 Auxiliary results
In this section, we give some auxiliary results, which will be used in Theorems  and .

Lemma  [, ]
(I) If k ∈ �, then we have:

() limt→+
K (t)
k(t) = ;

() Ck ∈ [, ] and limt→+
K (t)k′(t)

k(t) =  – Ck .
(II) (k)-(k) implies that

() limt→+( K (t)k′(t)
k(t) – ( – Ck)) k(t)

K (t) = .

Lemma  [] Let f satisfy (f), (f), and (f). Then
() Cf ∈ [,∞);
() there exists S >  such that f (s)

sq is increasing in [S,∞), where q ∈ (p – , Cf
Cf – ) for

 < Cf < p–
p– and q ∈ (p – ,∞) for Cf = ;

() f satisfies the Keller-Osserman condition
∫ ∞



dt

(p′F(t))

p

< ∞, F(t) =
∫ t


f (s) ds, (.)

where 
p′ + 

p = ;
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() (f) holds for Cf >  if and only if f ∈ NRV Cf
Cf –

;

() Cf = , and f is rapidly varying at infinity.

Lemma  Let f satisfy (f)-(f), and φ be the solution for the problem
∫ ∞

φ(t)
f – 

p– (s) ds = t, ∀t > .

Then we have
() –φ′(t) = f


p– (φ(t)), φ(t) > , t > , φ() := limt→+ φ(t) = +∞,

φ′′(t) = 
p– f


p– –(φ(t))f ′(φ(t));

() limt→+
tφ′(t)
φ(t) = – (p–)(Cf –)

Cf –(p–)(Cf –) , i.e., φ ∈ NRVZ
–

(p–)(Cf –)
Cf –(p–)(Cf –)

;

() limt→+
tφ′′(t)
φ′(t) = – Cf

Cf –(p–)(Cf –) , i.e., –φ′ ∈ NRVZ
–

Cf
Cf –(p–)(Cf –)

;

() limt→+
ln(φ(t))

– ln t = (p–)(Cf –)
Cf –(p–)(Cf –) , limt→+

ln(φ′(t))
– ln t = (p–)Cf

Cf –(p–)(Cf –) .

Proof () By the definition of φ and a direct calculation we can show ().
() It follows from Proposition  that

lim
t→+

tφ′(t)
φ(t)

= – lim
t→+

tf


p– (φ(t))
φ(t)

= – lim
u→∞

(f (u))


p–

u

∫ ∞

u

dv

f


p– (v)

= – lim
u→∞ u

Cf
(p–)(Cf –) –

L̂


p– (u)
∫ ∞

u
v

–
Cf

(p–)(Cf –) L̂– 
p– (v) dv

= –
(

Cf

(p – )(Cf – )
– 

)–

· lim
u→∞ u

Cf
(p–)(Cf –) –

L̂


p– (u)u
–

Cf
(p–)(Cf –) +

L̂– 
p– (u)

= –
(p – )(Cf – )

Cf – (p – )(Cf – )
.

() (f) implies that

lim
t→+

tφ′′(t)
φ′(t)

= –


p – 
lim

t→+
tf


p– –(

φ(t)
)
f ′(φ(t)

)

= –


p – 
· lim

u→∞ f


p– –(u)f ′(u)
∫ ∞

u

dv

f


p– (v)

= –


p – 
· lim

u→∞
uf ′(u)
f (u)

f


p– (u)
u

∫ ∞

u

dv

f


p– (v)

= –


p – 
· (p – )(Cf – )

Cf – (p – )(Cf – )
· Cf

Cf – 

= –
Cf

Cf – (p – )(Cf – )
.

The last result () follows from ()-() and Proposition (). �
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Lemma  Under the hypotheses in Theorem , let k ∈ � and

�(t) =
(
K(t)

)– (p–)
m+–p

(
 + h(t)

)

with limt→ h(t) = . The following two results hold:
() if m +  – p > m, then k(t)(K(t))

(m+p–)(p–)
m+–p f(�(t)) →  as t → ;

() if m +  – p ≤ m and k(t) = t θ
 with θ >  such that θ

+θ
> m–(m+p–)

m+–p , then () still
holds.

Proof We know that f ∈ NRV m by (f) with m ∈ (, m) and f(s) = csm L̂(s) for suffi-
ciently large s, where L̂ is normalized slowly varying at infinity, and c > .

Let

�(t) =
(
K(t)

)– (p–)
m+–p .

We see that L̂(�(t)) is also normalized slowly varying at zero, and by a similar argument
as in Propositions  and (), for every β >  and t → +, we have

(
�(t)

)β L̂
(
�(t)

) →  and L̂
(
�(t)

)(
L̂
(
�(t)

))–( + h(t)
)m → . (.)

() If m +  – p > m, let β ∈ (, m + p –  – m), then by (.) we have

k(t)
(
K(t)

) (m+p–)(p–)
m+–p f

(
�(t)

)

= k(t)
(
K(t)

) (m+p–)(p–)
m+–p c

(
�(t)

)m L̂
(
�(t)

)

= ck(t)
(
K(t)

) (m+p–)(p–)–(p–)m–(p–)β
m+–p

(
�(t)

)β L̂
(
�(t)

)
· L̂

(
�(t)

)(
L̂
(
�(t)

))–( + h(t)
)m →  as t → .

() If m +  – p ≤ m and k(t) = t θ
 with θ >  such that θ

+θ
> m–(m+p–)

m+–p and (p–)m
m+–p ∈

(, θ
+θ

– m–(m+p–)
m+–p ), then we get

k(t)
(
K(t)

) (m+p–)(p–)
m+–p f

(
�(t)

)
= ctσ

(
�(t)

)β L̂
(
�(t)

)
L̂
(
�(t)

)(
L̂
(
�(t)

))–( + h(t)
)m →  as t → ,

where

c = c

(
θ + 



) (p–)(m+β–m+–p)
m+–p

,

σ =
θ (m +  – p) – ( + θ )(p – )(m + β – m +  – p)

(m +  – p)
> . �

3 Proofs of main results
In this section, we mainly prove Theorem  and Theorem . For the proofs, we use the
upper and lower solution method. One critical step is to set up the comparison princi-
ple. Thus, we first give the comparison principle in general form for quasilinear elliptic
equations.
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Lemma  [] Suppose that D is a bounded domain in RN and a(x) and β(x) are contin-
uous functions on D with ‖a‖L∞(D) < ∞, β(x) ≥ , β(x) �=  for x ∈ D. Let u, u ∈ C(D) be
positive in D and satisfy in the sense of distributions

–�pu – a(x)up–
 + β(x)g(u) ≥  ≥ –�pu – a(x)up–

 + β(x)g(u),

lim
d(x,∂�)→

(
up–

 – up–


) ≤ ,

where g ∈ C([,∞)), and g(s)
sp– is increasing for

s ∈
(

inf
D

{u, u}, sup
D

{u, u}
)

.

Then u ≥ u in D.

Next, fix ε > . For all δ > , we define �δ = {x ∈ � :  < d(x) < δ}. Since � is smooth,
there exists δ >  such that d ∈ C(�δ ) and

∣∣∇d(x)
∣∣ = , �d(x) = –(N – )H(x)d(x) + o(), ∀x ∈ �δ . (.)

Proof of Theorem  Let ε ∈ (, b
 ) and γ = γ – εγ

b
, γ = γ + εγ

b
. We have

γ


< γ < γ < γ < γ .

Set

d(x) = d(x) – ρ, d(x) = d(x) + ρ, (.)

uε = φ
(
γK(d(x)

))
, x ∈ D–

ρ and uε = φ
(
γK(d(x)

))
, x ∈ D+

ρ . (.)

Then, for x ∈ D–
ρ ,

�puε – b(x)f (uε)

= (p – )
∣∣γφ

′(γK(d(x)
))

K
(
d(x)

)
k
(
d(x)

)∣∣p–

· (φ′′(γK(d(x)
))

γ 
 K(d(x)

)
k(d(x)

)
+ φ′(γK(d(x)

))
γk(d(x)

)
+ φ′(γK(d(x)

))
γK

(
d(x)

)
k′(d(x)

)
+ γφ

′(γK(d(x)
))

K
(
d(x)

)
k
(
d(x)

)
�d(x))

– bKp–(d(x)
)
kp(d(x)

)
f
(
φ
(
γK(d(x)

)))
= (p – )(γ)p–f

(
φ
(
γK(d(x)

)))
Kp–(d(x)

)
kp(d(x)

)

·
(

γ

(
γK(d(x))φ′′(γK(d(x)))

–φ′(γK(d(x)))
–

Cf

Cf – (p – )(Cf – )

)

– γ

(
K(d(x))k′(d(x))

k(d(x))
– ( – Ck)

)
– γ

K(d(x))
k(d(x))

�d(x)

–
(


(γ)p–(p – )

b(x)
Kp–(d(x))kp(d(x))

–
b

(γ)p–(p – )

)

–
b

(γ)p–(p – )
+

γCf

Cf – (p – )(Cf – )
– γ( – Ck) – γ

)
.
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By (b), (b), and Lemmas - we see that there exists δε ∈ (, δ
 ) sufficiently small such

that

(r) (b – ε)Kp–(d(x) – ρ)kp(d(x) – ρ) ≤ (b – ε)Kp–(d(x))kp(d(x)) < b(x), x ∈ D–
ρ =

�δε /�ρ ; b(x) < (b + ε)Kp–(d(x))kp(d(x)) ≤ (b + ε)Kp–(d(x) + ρ)kp(d(x) + ρ), x ∈
D+

ρ = �δε–ρ , where ρ ∈ (, δε),
(r)

γ

∣∣∣∣γ
K(t)φ′′(γK(t))

φ′(γK(t))
–

Cf

Cf – (p – )(Cf – )

∣∣∣∣ + γ

∣∣∣∣K(t)k′(t)
k(t)

– ( – Ck)
∣∣∣∣

+ γ
K(t)
k(t)

∣∣�d(x)
∣∣ < ε, ∀(x, t) ∈ �δε × (, δε),

and by the value of γ in Theorem ,

–
b

(γ)p–(p – )
+

γCf

Cf – (p – )(Cf – )
– γ( – Ck) – γ = .

Then

�puε – b(x)f (uε) ≤ ,

i.e., uε is a supersolution of Eq. (.) in D–
ρ .

Similarly, we can show that uε is a subsolution of Eq. (.) in D+
ρ .

Now let u be an arbitrary solution of problem (.) and C(δε) := maxd(x)≥δε u(x). We see
that

u ≤ C(δε) + uε on ∂D–
ρ .

Since φ is decreasing and γ > γ , we have

uε ≤ φ
(
γ K(δε)

)
:= C(δε) whenever d(x) = δε – ρ

and

uε ≤ u + C(δε) on ∂D+
ρ .

It follows by (f) and Lemma  that

u ≤ C(δε) + uε , x ∈ D–
ρ and uε ≤ u + C(δε), x ∈ D+

ρ . (.)

Hence, letting ρ → , we have, for x ∈ D–
ρ ∩ D+

ρ ,

 –
C(δε)

φ(γK(d(x)))
≤ u(x)

φ(γK(d(x)))

and

u(x)
φ(γK(d(x)))

≤  +
C(δε)

φ(γ)K(d(x))
.
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Consequently,

 ≤ lim inf
d(x)→

u(x)
φ(γK(d(x)))

and lim sup
d(x)→

u(x)
φ(γK(d(x)))

≤ .

Thus, letting ε → , we have

 ≤ lim inf
d(x)→

u(x)
φ(γ K(d(x)))

and lim sup
d(x)→

u(x)
φ(γ K(d(x)))

≤ ,

that is,

lim
d(x)→

u(x)
φ(γ K(d(x)))

= .

The proof is complete. �

Proof of Theorem  Let ε ∈ (, ) and

uε = C
(
K

(
d(x)

))– (p–)
m+–p

(
 + C(N – )

(
H(x) + ε

)K(d(x))
k(d(x))

)
, x ∈ D–

ρ ,

uε = C
(
K

(
d(x)

))– (p–)
m+–p

(
 + C(N – )

(
H(x) – ε

)K(d(x))
k(d(x))

)
, x ∈ D+

ρ .

Using Lemma  and a direct calculation we see that, for x ∈ D–
ρ ,

Kp–(d(x)
)
kp(d(x)

)
f
(
uε(x)

)
= Kp–(d(x)

)
kp(d(x)

)(
um

ε (x) ± cum
ε (x)L̂

(
uε(x)

))
= Kp–(d(x)

)
kp(d(x)

)

·
[

Cm


(
K

(
d(x)

))– m(p–)
m+–p

(
 + mC(N – )

(
H(x) + ε

)K(d(x))
k(d(x))

)

± cCm


(
K

(
d(x)

))– m(p–)
m+–p L̂

(
uε(x)

)

·
(

 + C(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

)m]

= Kp–(d(x)
)
kp–(d(x)

)(
K

(
d(x)

))– m(p–)
m+–p +

·
[

Cm


k(d(x))
K(d(x))

+ mCm
 C(N – )

(
H(x) + ε

)

± (
K

(
d(x)

))– (m+m)(p–)
m+–p –k(t)L̂

(
uε(x)

)

·
(

 + C(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

)m]

and

|∇uε | =
(
K

(
d(x)

))– m+p–
m+–p k

(
d(x)

)∇d(x)

·
(

 + C(N – )(Hx + ε)
K(d(x))
k(d(x))

)
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+ C
(
K

(
d(x)

))– (p–)
m+–p C(N – )

(
H(x + ε)

) d
dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

∇d(x),

�puε = (p – )|∇uε |p– ×
[

(p – )(m + p – )
(m +  – p)

· (K
(
d(x)

))– m+p–
m+–p –k(d(x)

)(
 + C(N – )

(
H(x) + ε

)K(d(x))
k(d(x))

)

–
(p – )C

(m +  – p)
(
K

(
d(x)

))– m+p–
m+–p k′(d(x)

)

·
(

 + C(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

)

–
(p – )C

(m +  – p)
(
K

(
d(x)

))– m+p–
m+–p k

(
d(x)

)
�d(x)

·
(

 + C(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

)

–
(p – )C

(m +  – p)
(
K

(
d(x)

))– m+p–
m+–p

· k
(
d(x)

)
C(N – )

(
H(x) + ε

) d
dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

+ CC(N – )
(
H(x) + ε

)(
K

(
d(x)

))– (p–)
m+–p d

dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

+ CC(N – )
(
H(x) + ε

)(
K

(
d(x)

))– (p–)
m+–p d

dt

·
(

K(t)
k(t)

)∣∣∣∣
t=d(x)

�d(x)
]

= (p – )
(

(p – )C

m +  – p

)p–(
K

(
d(x)

))– (p–)(p–)+mp
m+–p kp(d(x)

)

·
[

(p – )(m + p – )C

(m +  – p)

+
(p – )(m + p – )CC

(m +  – p) (N – )
(
H(x) + ε

)K(d(x))
k(d(x))

–
(p – )C

(m +  – p)

(
K(d(x))k′(d(x))

k(d(x))
– ( – Ck)

)

–
(p – )C

(m +  – p)

(
K(d(x))k′(d(x))

k(d(x))
– ( – Ck)

)

· C(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

–
(p – )C

(m +  – p)
( – Ck)

(
 + C(N – )

(
H(x) + ε

)K(d(x))
k(d(x))

)

–
(p – )C

(m +  – p)
K(d(x))
k(d(x))

�d(x)
(

 + C(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

)

–
(p – )CC

(m +  – p)
K(d(x))
k(d(x))

(N – )
(
H(x) + ε

)( d
dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

– Ck + Ck

)
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+ CC(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

d

dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

+ CC(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

d
dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

�d(x)
]

= (p – )
(

(p – )C

m +  – p

)p–(
K

(
d(x)

))– (p–)(m+p–)
m+–p kp–(d(x)

)[ k(d(x))
K(d(x))

·
(

(p – )(m + p – )C

(m +  – p) –
(p – )C

(m +  – p)
( – Ck)

)

+ CC(N – )
(
H(x) + ε

)((p – )(m + p – )
(m +  – p) –

(p – )
(m +  – p)

( – Ck)

–
(p – )Ck

(m +  – p)

)
–

(p – )C

(m +  – p)
�d(x) –

(p – )C

(m +  – p)

(
K(d(x))k′(d(x))

k(d(x))

– ( – Ck)
)

k(d(x))
K(d(x))

–
(p – )CC

(m +  – p)

(
K(d(x))k′(d(x))

k(d(x))
– ( – Ck)

)

· (N – )
(
H(x) + ε

)
–

(p – )CC

(m +  – p)
(N – )

(
H(x) + ε

)

·
(

d
dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

– Ck

)

–
(p – )CC

(m +  – p)
�d(x)(N – )

(
H(x) + ε

)K(d(x))
k(d(x))

+ CC(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

d

dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

+ CC(N – )
(
H(x) + ε

)K(d(x))
k(d(x))

d
dt

(
K(t)
k(t)

)∣∣∣∣
t=d(x)

�d(x)
]

.

By the value of C, C from Theorem  and (.) we know that

(p – )(m + p – )C

(m +  – p) –
(p – )C( – Ck)

(m +  – p)
=

Cm


p – 

(
(p – )C

m +  – p

)–(p–)

,

(p – )(m + p – )CC

(m +  – p) –
(p – )CC( – Ck)

(m +  – p)
–

(p – )CCCk

(m +  – p)

+
(p – )C

(m +  – p)
=

mCm
 C

p – 

(
(p – )C

m +  – p

)–(p–)

,

and by Lemmas  and  we get that there exists δε ∈ (, δ
 ) sufficiently small such that, for

(x, t) ∈ �δε × (, δε),

–
(p – )C

(m +  – p)

(
K(t)k′(t)

k(t)
– ( – Ck)

)
k(t)
K(t)

–
(p – )CC

(m +  – p)

(
K(t)k′(t)

k(t)
– ( – Ck)

)

· (N – )
(
H(x) + ε

)
–

(p – )CC

(m +  – p)
(N – )

(
H(x) + ε

)( d
dt

(
K(t)
k(t)

)
– Ck

)

–
(p – )CC

(m +  – p)
�d(x)(N – )

(
H(x) + ε

)K(t)
k(t)
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+ CC(N – )
(
H(x) + ε

)K(t)
k(t)

d

dt

(
K(t)
k(t)

)

+ CC(N – )
(
H(x) + ε

)K(t)
k(t)

d
dt

(
K(t)
k(t)

)
�d(x) ∓ cCm


p – 

(
(p – )C

m +  – p

)–(p–)

· (K(t)
)– (m+m)(p–)

m+–p –k(t)L̂
(
�(t)

)(
 + C(N – )

(
H(x) + ε

)K(t)
k(t)

)m

≤ C(N – )
m +  – p

ε,

where �(t) is given in Lemma  with h(t) = ±C(N – )(H(x) + ) K (t)
k(t) .

Thus, for x ∈ D–
ρ , we have

�puε(x) – Kp–(d(x)
)
kp(d(x)

)
f
(
uε(x)

)

≤ (p – )
(

(p – )C

m +  – p

)p–(
K

(
d(x)

))– (p–)(m+p–)
m+–p

· kp–(d(x)
)(

–
C(N – )
m +  – p

ε +
C(N – )
m +  – p

ε

)

≤ ,

i.e., uε(x) is a supersolution of Eq. (.) in D–
ρ .

Similarly, we can show that uε is a subsolution of Eq. (.) in D+
ρ .

By (.) and letting ρ → , we have that, for x ∈ D–
ρ ∩ D+

ρ ,

C
(
K

(
d(x)

))– (p–)
m+–p

(
 + C(N – )

(
H(x) + ε

)K(d(x))
k(d(x))

)
+ C(δε) ≥ u(x), (.)

C
(
K

(
d(x)

))– (p–)
m+–p

(
 + C(N – )

(
H(x) – ε

)K(d(x))
k(d(x))

)
– C(δε) ≤ u(x). (.)

The proof is complete. �

Appendix
In this appendix, we prove the existence and uniqueness of the solution for problem (.).

A.1 The existence of solutions for problem (1.1)
In the first part, we give the existence of solutions for problem (.).

Theorem  Let f satisfy (f) and the Keller-Osserman condition (.), and b satisfy (b).
Then problem (.) has at least one solution u ∈ W ,p

loc (�) satisfying

u(x) ≥ ψ
(
v(x)

)
, ∀x ∈ �. (A.)

Furthermore, if f satisfies
∫ 

 f – 
p– (s) ds = ∞, then

u > , ∀x ∈ �, (A.)
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where ψ is the solution of problem (.) and v ∈ W ,p
 (�) is the unique solution for problem

–�pv = b(x), v(x) > , x ∈ �, v|∂� = . (A.)

Remark  By Lemma (), we can see that f satisfies the Keller-Osserman condition under
our hypotheses on f in Theorem .

Remark  By the similar argument in [], we show that (f) and the Keller-Osserman
condition imply (f). Indeed, if we can prove that there exist two positive numbers ρ and
M such that

f p′–(s)
s

≥ ρp′ for s ≥ M, (A.)

then it will be done since

F(s) =
∫ s


f (t) dt ≤ sf (s) ≤ f p′ (s)

ρp′ for s ≥ M,

which, in turn, yields [F(s)]– 
p ≥ ρ


p–

f


p– (s)
, so that the Keller-Osserman condition implies

(A.). Then, we will prove (A.) by contradiction. Assume that there exists an increasing
sequence sj of real numbers such that limj→∞ sj = ∞ and f (sj)

sj
< 

j for all j. Since f is increas-
ing, we have f (s) ≤ f (sj) for all s ∈ [, sj], which, in turn, produces F(s) ≤ sf (s) ≤ sf (sj) → ∞
for s ∈ [, sj]. Hence,

∫ sj

s

[
F(s)

]– 
p ds ≥

∫ sj

s

[
F(s)

]– 
p ds ≥

[
j
sj

] 
p′ ∫ sj

s

s– 
p ds

=
p

p – 
j


p′

(
 –

(
s

sj

))
→ ∞

as j → ∞, which contradicts the Keller-Osserman condition (.). Thus, (A.) must be
true, and then (f) holds.

Proof Let

v = φ(u) =
∫ ∞

u
f – 

p– (v) dv, u > . (A.)

We see that problem (.) is equivalent to the following problem:

–�pv + g(v)|∇v|p = b(x), v > , x ∈ �, v|∂� = , (A.)

where g(v) = f ′(ψ(v)), and φ is also the inverse function of ψ .
Now let v ∈ W ,p

loc (�) ∩ L∞
loc(�) be any solution of problem (A.). We claim that

v(x) ≤ v(x), ∀x ∈ �. (A.)
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Indeed, assume on the contrary that {x ∈ � : v(x) > v(x)} �= ∅. Then, on its arbitrary con-
nected component D, we have –�p(v – v)(x) ≤ , x ∈ D, since g(v) ≥ . It follows by
(v – v)|∂� =  and the maximum principle that v(x) ≤ v(x) for all x ∈ D. This is a contradic-
tion. Thus, (A.) holds, i.e., any weak solution u of problem (.) satisfies (A.). Moreover,
by the definition of ψ and the condition

∫ 


ds
f (s) = ∞ we see that ψ(v(x)) > , ∀x ∈ �, and

(A.) holds. Next, we consider the perturbed problem

�pu = b(x)f (u), x ∈ �, u|∂� = m ∈ N . (A.)

By (b) and (f) we see that um = m is a supersolution of problem (A.). To construct a
subsolution u of problem (A.), we let v ∈ C+α(�) be the unique solution of the problem

–�pv = b(x), v(x) > , x ∈ �, v|∂� =
∫ ∞


f – 

p– (s) ds, (A.)

and u = ψ(v). Then we see that u|∂� =  ≤ m and

–�pv =
�pu
f (u)

–
f ′(u)
f (u)

|∇u|p = b(x), x ∈ �,

which yields

�pu ≥ b(x)f (u), x ∈ �,

i.e., u is a subsolution of problem (A.). Moreover, u ≤  ≤ m, x ∈ �, due to the maximum
principle. Thus, problem (A.) has one solution um ∈ W ,p

 in the order interval [u, m],
and the maximum principle again yields that the map m → um is increasing. On the other
hand, the classical Keller-Osserman condition guarantees that the problem

�pu = bf (u), x ∈ �, u|∂� = ∞, (A.)

has one solution u� ∈ W ,p
loc (�) for each � ⊂⊂ �, where b = minx∈� b(x). By the maxi-

mum principle we have um ≤ u� (x), x ∈ �, and u(x) := limm→∞ um(x) exists for x ∈ �.
Thus, u is the desired solution for problem (.) by the standard bootstrap argument, the
arbitrariness of �, and (A.). �

A.2 The uniqueness of the solution for problem (1.1)
In the second part, we prove the uniqueness of the solution for problem (.). The method
is similar to the idea in [, ].

Theorem  Under the hypotheses in Theorem , problem (.) admits a unique solution.

Proof Since f (s)
sq is increasing in [S,∞) for some q > p –  and S large enough, by

Lemma () we have

f (s)
s

is also increasing in [S,∞). (A.)
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Let u be the minimal solution for problem (.), and u be another solution for problem
(.). We prove that u = u in �. In fact, by the maximum principle we have

u ≤ u in �. (A.)

Moreover, by the asymptotic behavior (.) we deduce that

lim
d(x)→

u(x)
u(x)

= . (A.)

For any ε > , setting w = ( + ε)u, we have

lim
d(x)→

(
w(x) – u(x)

)
= lim

d(x)→

(
( + ε)u(s)

u(s)
– 

)
= +∞. (A.)

Now, for small ε > , we define the open set

Dε =
{

x ∈ � : w(x) < u(x)
}

. (A.)

We may assume that Dε is nonempty for ε small enough; otherwise, there is nothing to
prove. Indeed, notice that Dε increases as ε → . Moreover, we may also assume that
Dε → � as ε → ; if there exists x ∈ � and a sequence εn →  such that x ∈ Dεn for all
n, then we have ( + εn)u(x) ≥ u(x). Then the strong maximum principle yields u ≡ u

in �. Finally, we have Dε ⊂ � by (A.).
Next, we choose η >  such that u ≥ S in �η and define Dε,η = Dε ∩ Dη . Notice that

Dε,η is a nonempty open set for small ε. Moreover, by (A.) we have

�pw = ( + ε)b(x)f (u) ≤ b(x)f (w), x ∈ Dε,η. (A.)

It follows by (f) that

�p(u – w) ≥ b(x)
(
f (u) – f (w)

) ≥ , x ∈ Dε,η. (A.)

Thus, by the maximum principle we obtain

u(x) – w(x) ≤ max
∂Dε,η

(u – w), x ∈ Dε,η. (A.)

Since ∂Dε,η = (∂Dε ∩ Dη) ∪ (Dε ∩ ∂Dη), Dε ∩ ∂� = ∅, and (u – w)|∂Dε = , we see that the
maximum of u – w is achieved on Dε ∩ ∂Dη = (Dε ∩ x : d(x) = η). Hence,

u(x) – w(x) ≤ max
(Dε∩x:d(x)=η)

(u – w), x ∈ Dε,η. (A.)

Letting ε →  in (A.), we obtain

u – u ≤ max
d(x)=η

(u – u) := θ in �η. (A.)
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On the other hand, by (A.) and (f) we have

�p(u – u) = b(x)
(
f (u) – f (u)

) ≥ , x ∈ �η = x ∈ �: d(x) > η. (A.)

The maximum principle implies that u–u ≤ θ in �η , and hence u–u ≤ θ in the whole �.
Then the strong maximum principle gives u – u ≡ θ . We obtain that f (u) = f (u + θ ) in �,
which can only hold if θ = . Thus, u = u, which shows the uniqueness. �
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