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Abstract
Our concern is the existence of positive solutions of the discrete Neumann boundary
value problem

{
–�2u(t – 1) = f (t,u(t)), t ∈ [1, T ]Z ,
�u(0) =�u(T ) = 0,

where f : [1, T ]Z ×R
+ → R is a sign-changing function. By using the

Guo-Krasnosel’skĭi fixed point theorem, the existence and multiplicity of positive
solutions are established. The nonlinear term f (t, z) may be unbounded below or
nonpositive for all (t, z) ∈ [1, T ]Z ×R

+.
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1 Introduction
For a, b ∈ Z with a < b, let [a, b]Z = {a, a + , a + , . . . , b – , b}. We consider the following
discrete Neumann boundary value problem:

{
–�u(t – ) = f (t, u(t)), t ∈ [, T]Z,
�u() = �u(T) = ,

(.)

where T >  is a given positive integer, �u(t) = u(t + ) – u(t). Our purpose is to establish
existence results for positive solutions of (.) when the nonlinearity term f : [, T]Z ×
R

+ →R is a sign-changing function.
In recent years, positive solutions of boundary value problems for difference equations

have been widely studied. See [–] and the references therein. However, little work has
been done that has referred to the existence of positive solutions for discrete boundary
value problems with sign-changing nonlinearities (see []).

Usually, in order to obtain positive solutions of semipositone problems for ordinary dif-
ferential equations or difference equations by using fixed point methods, the nonlinearity
terms need to be bounded below and ultimately positive. For example, Anuradha et al.
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[] studied the following problem:

{
(p(t)u′)′ + λg(t, u) = , t ∈ (a, b),
γu(a) – γp(a)u′(a) = , γu(b) + γp(b)u′(b) = ,

where g : [a, b] × R
+ → R is continuous, bounded below (i.e., g(t, z) + M >  for some

M > ), and limz→∞ g(t,z)
z = ∞ uniformly for t ∈ [α,β] ⊂ (a, b). Motivated by the method

in [], the first author and Xu [] discussed its discrete analog and the nonlinearity term
also required boundedness below, as well as a superlinear condition at ∞. We also refer
to [–] for some references.

In this paper, our interest is with the existence and multiplicity of positive solutions of
(.), where f (t, z) may be nonpositive or unbounded below for all (t, z) ∈ [, T]Z ×R

+. For
this purpose, we make our basic assumptions as follows.

(C) f : [, T]Z ×R
+ →R is continuous;

(C) there exists a function h : [, T]Z →R
+ with h(t) �≡  on [, T]Z, and a constant num-

ber L > , such that

f (t, z) + Lz + h(t) ≥ , (t, z) ∈ [, T]Z ×R
+. (.)

Under (C) and (C), we give some sufficient conditions such that (.) has at least one
positive solution and two positive solutions, respectively. Under these conditions, f (t, z)
is allowed to meet one of the following cases:

() f (t, z) may be unbounded below and even be nonpositive for all (t, z) ∈ [, T]Z ×R
+

(see the first parts of Theorems . and ., in which the existence of at least one
positive solution is presented);

() f (t, z) is ultimately nonpositive, i.e., f (t, z) ≤  for all t ∈ [, T]Z and z >  sufficiently
large (see the second part of Theorem ., in which the existence of at least two
positive solutions is presented);

() f (t, z) is ultimately nonnegative, i.e., f (t, z) ≥  for all t ∈ [, T]Z and z >  sufficiently
large, which implies that f (t, z) is bounded below (see the second part of
Theorem ., in which the existence of at least two positive solutions is presented);

() limz→∞ f (t,z)
z =  uniformly for t ∈ [, T]Z, which implies that f (t, z) may be either

bounded or unbounded below, and that f (t, z) may be ultimately nonpositive or
nonnegative or oscillating (see Corollary ., in which the existence of at least two
positive solutions is presented);

() limz→∞ f (t,z)
z = ∞ uniformly for t ∈ [, T]Z, which is a special case of () and implies

that f (t, z) is bounded below (see Corollary ., in which the existence of at least two
positive solutions is presented).

The idea of this paper comes from the method in [] by Henderson and Kosmatov, in
which the Neumann boundary value problem of ordinary differential equation at reso-
nance

{
–u′′(t) = f (t, u(t)),  < t < ,
u′() = u′() = ,

(.)

was first studied. The nonlinear term f (t, z) satisfied a similar inequality as (.). The prob-
lem (.) was transformed into a non-resonant positone problem and an existence result
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for at least one positive solution was obtained by means of the Guo-Krasnosel’skĭi fixed
point theorem. In our results, we present not only the existence, but also the multiplicity
of positive solutions for the discrete Neumann boundary value problem (.).

The remaining part of this paper is organized as follows. In Section , we provide some
preliminary results for later use. Then, in Section , we show and prove the existence and
multiplicity of positive solutions for boundary value problem (.).

2 Preliminaries
For convenience, let

A =


(
L +  +

√
L + L

)
, ρ =

(
AT – A–T)(

A – 
)
.

Consider the linear Neumann boundary value problem

{
–�u(t – ) + Lu(t) = h(t), t ∈ [, T]Z,
�u() = �u(T) = .

(.)

The following lemma is easy to check.

Lemma . Problem (.) has unique solution

u(t) =
T∑

s=

G(t, s)h(s), (.)

where

G(t, s) =

ρ

{
(As + A–s+)(At–T + AT–t+),  ≤ s ≤ t ≤ T + ,
(At + A–t+)(As–T + AT–s+),  ≤ t ≤ s ≤ T .

In addition, G(t, s) >  for all (t, s) ∈ [, T + ]Z × [, T]Z.

Let

q(t) =


AT + A–T+ min
{

At–T + AT–t+, At + A–t+}, t ∈ [, T + ]Z.

It is easy to see that  < q(t) < , t ∈ [, T]Z.

Lemma . q(t)G(t, s) ≤ G(t, s) ≤ G(s, s), (t, s) ∈ [, T + ]Z × [, T]Z.

Proof If s ≤ t, we have, for (t, s) ∈ [, T + ]Z × [, T]Z,

At–T + AT–t+

AT + A–T+ ≤ G(t, s)
G(s, s)

=
At–T + AT–t+

As–T + AT–s+ ≤ .

If t ≤ s, we have, for (t, s) ∈ [, T + ]Z × [, T]Z,

At + A–t+

AT + A–T+ ≤ G(t, s)
G(s, s)

=
At + A–t+

As + A–s+ ≤ .
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Therefore, q(t)G(t, s) ≤ G(t, s) ≤ G(s, s), (t, s) ∈ [, T + ]Z × [, T]Z. The proof is com-
plete. �

Lemma . q(t) ≥ μu(t), t ∈ [, T]Z, where μ = (A–)(AT –A–T )
(AT +A–T+) ∑T

s= h(s)
.

Proof On the one hand, for t ∈ [, T]Z,

q(t) =


AT + A–T+ min
{

At–T + AT–t+, At + A–t+}

≥ min

{
At–T + AT–t+

AT + A–T+ ,
At + A–t+

AT + A–T+

}
· max

{
At–T + AT–t+

AT + A–T+ ,
At + A–t+

AT + A–T+

}

=
(At–T + AT–t+)(At + A–t+)

(AT + A–T+)

=
(A – )(AT – A–T )

(AT + A–T+) G(t, t).

On the other hand,

u(t) =
T∑

s=

G(t, s)h(s) ≤ G(t, t)
T∑

s=

h(s), t ∈ [, T]Z.

Thus, q(t) ≥ μu(t), t ∈ [, T]Z. The proof is complete. �

Define

f̃ (t, z) =

{
f (t, z) + Lz + h(t), (t, z) ∈ [, T]Z × (,∞),
f (t, ) + h(t), (t, z) ∈ [, T]Z × (–∞, ),

and consider
{

–�v(t – ) + Lv(t) = f̃ (t, v(t) – u(t)), t ∈ [, T]Z,
�v() = �v(T) = .

(.)

It is easy to check that the following lemma holds.

Lemma . u is a positive solution of the boundary value problem (.) if and only if v =
u + u is a solution of the boundary value problem (.) with v(t) > u(t) in [, T]Z.

The proofs of our main results are based on the Guo-Krasnosel’skĭi fixed point theorem
[].

Lemma . Let X be a Banach space and K ⊂ X be a cone. Assume �, � are open sets
of X with � ⊂ �, and let T : K ∩ (� \ �) −→ K be a completely continuous operator
such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (� \ �).
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3 Main results
In this section, we show the existence and multiplicity of positive solutions for (.). Let
q = mint∈[,T]Z q(t) and define

φ(r) = max
{

f̃ (t, z) : t ∈ [, T]Z, z ∈ [, r]
}

, for r > ,

and

ψ(r) = min

{
f̃ (t, z) : t ∈ [, T]Z, z ∈

[(
r –


μ

)
q, r

]}
, for r >


μ

.

Theorem . Assume that (C) and (C) hold. Suppose that there exist r, R >  such that

μ

< r < R and

(C) φ(r) ≤ r
maxt∈[,T]Z

∑T
s= G(t,s)

and ψ(R) ≥ R
maxt∈[,T]Z

∑T
s= G(t,s)

.

Then problem (.) has at least one positive solution. In addition, if

(C) f (t, z) ≤  for all t ∈ [, T]Z and z >  sufficiently large, and
(C) L < 

maxt∈[,T]Z
∑T

s= G(t,s)
,

then problem (.) has at least two positive solutions.

Proof Assume (C) holds. We first prove by Lemma . that problem (.) has at least one
positive solution v. In the Banach space E = {v : [, T + ]Z → R} endowed with the norm
‖v‖ = max[,T+]Z |v(t)|, define

Fv(t) =
T∑

s=

G(t, s)f̃
(
s, v(s) – u(s)

)
. (.)

Then by (C), F : E→ E is completely continuous. Define the cone

P =
{

v ∈ E : v(t) ≥ q(t)‖v‖, t ∈ [, T]Z
}

. (.)

By Lemma ., F(P) ⊂ P. Thus, a fixed point of F in P is a positive solution of problem
(.).

Let

� =
{

v ∈ E : ‖v‖ < r
}

, � =
{

v ∈ E : ‖v‖ < R
}

. (.)

For v ∈ P ∩ ∂�, we have v(s) – u(s) ≥ q(s)‖v‖ – u(s) ≥ (μr – )u(s) > , s ∈ [, T]Z. It
follows that f̃ (s, v(s) – u(s)) ≤ φ(r), s ∈ [, T]Z. Notice that G(, s) = G(, s) and G(T , s) =
G(T + , s), s ∈ [, T]Z. Then, by (C), we have

‖Fv‖ = max
t∈[,T+]Z

T∑
s=

G(t, s)f̃
(
s, v(s) – u(s)

)

≤ max
t∈[,T]Z

T∑
s=

G(t, s)φ(r)

≤ r.

That is, ‖Fv‖ ≤ ‖v‖ for v ∈ P ∩ ∂�.
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For v ∈ P ∩ ∂�, we have by Lemma ., for s ∈ [, T],

R ≥ v(s) – u(s) ≥ q(s)‖v‖ –
q(s)
μ

≥
(

R –

μ

)
q. (.)

This implies f̃ (s, v(s) – u(s)) ≥ ψ(R) for s ∈ [, T], v ∈ P ∩ ∂�. Then, by (C), we have, for
v ∈ P ∩ ∂�,

‖Fv‖ = max
t∈[,T+]Z

T∑
s=

G(t, s)f̃
(
s, v(s) – u(s)

)

≥ max
t∈[,T]Z

T∑
s=

G(t, s)ψ(R)

≥ R.

That is, ‖Fv‖ ≥ ‖v‖ for v ∈ P ∩ ∂�.
Therefore, by Lemma ., F has a fixed point v ∈ P satisfying r ≤ ‖v‖ ≤ R, which is a

positive solution of problem (.). By Lemma ., u(t) = v(t) – u(t) ≥ q(t)‖v‖ – u(t) ≥
(μr – )u(t) > , t ∈ [, T]Z. Therefore, by Lemma ., u is a positive solution of problem
(.).

Now, let (C) and (C) also hold. We prove that problem (.) has a distinct second
positive solution u(t). By (C), there exists D >  such that, for z > D,

f̃ (t, z) = f (t, z) + Lz + h(t) ≤ Lz + h(t), t ∈ [, T]Z.

By (C), we can choose R∞ > max{R, D
q

+ 
μ
} such that

L +
h̄

R∞
≤ 

maxt∈[,T]Z
∑T

s= G(t, s)
, (.)

where h̄ = maxt∈[,T]Z h(t). Let � = {v ∈ E : ‖v‖ < R∞}. For v ∈ P ∩ ∂�, similar to (.), we
have

v(t) – u(t) ≥
(

R∞ –

μ

)
q > D, t ∈ [, T]Z, (.)

which implies that

f̃
(
t, v(t) – u(t)

) ≤ L
(
v(t) – u(t)

)
+ h(t) ≤ LR∞ + h̄, t ∈ [, T]Z.

Thus, by (.), we have, for v ∈ P ∩ ∂�,

‖Fv‖ = max
t∈[,T]Z

T∑
s=

G(t, s)f̃
(
s, v(s) – u(s)

)

≤ (LR∞ + h̄) max
t∈[,T]Z

T∑
s=

G(t, s)

≤ R∞.

That is, ‖Fv‖ ≤ ‖v‖ for v ∈ P ∩ ∂�.



Bai et al. Boundary Value Problems  (2015) 2015:231 Page 7 of 9

Therefore, by Lemma ., F has a fixed point v ∈ P such that R ≤ ‖v‖ ≤ R∞. By
Lemma ., u(t) = v(t) – u(t) is a second positive solution of problem (.). The proof
is complete. �

Corollary . Let (C) and (C) hold. Assume that there exist 
μ

< r < R such that (C)
hold. Then, if limz→∞ f (t,z)

z =  uniformly for t ∈ [, T]Z and L < 
maxt∈[,T]Z

∑T
s= G(t,s)

, problem

(.) has at least two positive solutions.

Proof Let F , P, and �, � be defined as (.), (.), and (.), respectively. From the proof
of Theorem ., we know by (C) that F has a fixed point v such that r ≤ ‖v‖ ≤ R and
u(t) = v(t) – u(t) is a positive solution of (.). Now, we prove that F has a second fixed
point v ∈ P.

Take ε >  sufficiently small such that L+ε ≤ 
maxt∈[,T]Z

∑T
s= G(t,s)

. Note that limz→∞ f (t,z)
z =

 implies

lim
z→∞

f̃ (t, z)
z

= L

uniformly for t ∈ [, T]Z. Then there exists D >  such that, for z > D, f̃ (t, z) ≤ (L + ε)z
holds for all t ∈ [, T]Z. Choose R∞ = max{R, D

q
+ 

μ
} +  and � = {v ∈ E : ‖v‖ < R∞}. For

v ∈ P ∩ ∂�, we see that (.) holds and hence f̃ (t, v(t) – u(t)) ≤ (L + ε)(v(t) – u(t)) ≤
(L + ε)R∞ for t ∈ [, T]Z. Thus, for v ∈ P ∩ ∂�,

‖Fv‖ = max
t∈[,T]Z

T∑
s=

G(t, s)f̃
(
s, v(s) – u(s)

)

≤ (L + ε)R∞ max
t∈[,T]Z

T∑
s=

G(t, s)

≤ R∞.

That is, ‖Fv‖ ≤ ‖v‖ for v ∈ P ∩ ∂�. Therefore, by Lemma ., F has a fixed point v ∈ P
such that R ≤ ‖v‖ ≤ R∞, and hence u(t) = v(t) – u(t) is a second positive solution of
problem (.). The proof is complete. �

Theorem . Assume that (C) and (C) hold. Suppose that there exist r, R >  such that

μ

< r < R and

(C)∗ φ(R) ≤ R
maxt∈[,T]Z

∑T
s= G(t,s)

and ψ(r) ≥ r
maxt∈[,T]Z

∑T
s= G(t,s)

.

Then problem (.) has at least one positive solution. In addition, if

(C)∗ f (t, z) ≥  for all t ∈ [, T]Z and z >  sufficiently large, and
(C)∗ L > 

q maxt∈[,T]Z
∑T

s= G(t,s)
,

then problem (.) has at least two positive solutions.

Proof Let F , P, and �, � be defined as (.), (.), and (.), respectively. Consider the
fixed point of operator F in the cone P. Similar to the arguments in the proof of The-
orem ., if (C)∗ holds, then we have ‖Fv‖ ≥ ‖v‖ for v ∈ P ∩ ∂� and ‖Fv‖ ≤ ‖v‖ for



Bai et al. Boundary Value Problems  (2015) 2015:231 Page 8 of 9

v ∈ P ∩ ∂�. Thus, by Lemma ., F has a fixed point v ∈ P satisfying r ≤ ‖v‖ ≤ R, which
is a positive solution of problem (.) and satisfies v(t) – u(t) > , t ∈ [, T]Z. Therefore,
by Lemma ., u = v(t) – u(t) is a positive solution of problem (.).

Now, let (C)∗ and (C)∗ hold. By (C)∗, there exists D >  such that, for z > D,

f̃ (t, z) = f (t, z) + Lz + h(t) ≥ Lz + h(t), t ∈ [, T]Z.

By (C)∗, one can choose R∞ > R + max{ D
q

, 
μ
} such that




qL +
h

R∞
≥ 

maxt∈[,T]Z
∑T

s= G(t, s)
, (.)

where h = mint∈[,T]Z h(t). Let � = {v ∈ E : ‖v‖ < R∞}. Then, for v ∈ P ∩ ∂�, we have

v(t) – u(t) ≥
(

R∞ –

μ

)
q ≥ 


qR∞ > D, t ∈ [, T]Z,

which implies that

f̃
(
t, v(t) – u(t)

) ≥ L
(
v(t) – u(t)

)
+ h(t) ≥ 


LqR∞ + h, t ∈ [, T]Z.

Thus, by (.), we have, for v ∈ P ∩ ∂�,

‖Fv‖ = max
t∈[,T]Z

T∑
s=

G(t, s)f̃
(
s, v(s) – u(s)

)

≥
(




LqR∞ + h

)
max

t∈[,T]Z

T∑
s=

G(t, s)

≥ R∞.

That is, ‖Fv‖ ≥ R∞ = ‖v‖ for v ∈ P ∩ ∂�. Therefore, F has another fixed point v ∈ P such
that r ≤ ‖v‖ ≤ R ≤ ‖v‖ ≤ R∞. By Lemma ., problem (.) has two positive solutions
u(t) = v(t) – u(t) and u(t) = v(t) – u(t). The proof is complete. �

The following result can be obtained directly from Theorem ..

Corollary . Let (C) and (C) hold. Assume that there exist 
μ

< r < R such that (C)∗

hold. Then, if limz→∞ f (t,z)
z = ∞ uniformly for t ∈ [, T]Z and L > 

q maxt∈[,T]Z
∑T

s= G(t,s)
, prob-

lem (.) has at least two positive solutions.
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