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1 Introduction

Fractional differential equations have many applications in modeling of physical and
chemical processes [1, 2]. In its turn, mathematical aspects of fractional differential equa-
tions and methods of their solutions were discussed by many authors; see the text books
[3-5]. Existence of solutions or positive solutions of boundary value problems (BVPs for
short) of fractional differential equations with or without impulse effects have been stud-
ied by many authors; see [6—-16] and [17-19].

In recent years, some authors have studied the solvability or existence of positive solu-
tions of BVPs of fractional differential systems [20—28]. In order to show motivations of
this paper, we address some of them.

In [29], Su investigated the existence of positive solutions (continuous on [0,1]) of the
following boundary value problem of nonlinear multi-term fractional differential system:

D, u+f(t, v(t),Dgw(t)) =0, O<t<l,
Dfy.v+g(t,u(t), Dl u(t) =0, 0<t<l,
u(0) =0, u(l)=0,
v(0) =0, v(1) =0,

where «, B € (1,2), Dy, is the Riemann-Liouville fractional derivative, 0 < p < 8 -1,0 < g <
a—1,yn*t<1,and ynf1<1,f,g:[0,1] x R* x R — R are continuous functions.
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In [30], authors studied the existence of multiple positive solutions (continuous on [0, 1])
of the following boundary value problem of N-dimension nonlinear fractional differential
system:

Dotuy + fi(6us (), Dytus(t)) =0, 0<t<l,

DN unoy + fuo1 (6 un(8), DgNun(8)) =0, 0<t<l,

2
DN un +fn(t, u(£), DyNur () =0, 0<t<l, @
u1(0) = --- = un(0) = 0,
wm(1)=---=uyn(1)=0,

where «; € (1,2), Do, is the Riemann-Liouville fractional derivative, 0 < u;_1 < o; — 1 with
o =pun,fi:[0,1] x R* xR — R (i=1,2,...,N) are continuous functions.

In [31], the authors investigated the existence of positive solutions (continuous on [0, 1])
of the following boundary value problem of nonlinear multi-term fractional differential
system:

D, u+f(t, V(t),Dg+ v()=0, O0<t<l,
DS v+gt,ut), DI, u() =0, 0<t<l,
u(0) =0, u(1) = yu(n),
v(0) =0, v(1) = yv(n),

3)

where «, 8 € (1,2), Do, is the Riemann-Liouville fractional derivative, 0 <p < 8 -1,0<
g<a-1,yn*'<l,and yn®'<1,f,g:[0,1] x R* x R — R are continuous functions.

In [32], the authors studied the existence of solutions of the following four-point coupled
boundary value problem for nonlinear fractional differential equation:

D%, u = f(t,ult), DS ule), v(e), DL (), 0<t<l,
Df.v = g(t, u(t), D& ule), v(e), DL u(e), 0<t<1,
I27%u(0) = 0, u(1) = av(§),
I57Pv0)=0, (1) =bu(y),

where 1 <, 8 <2, Djj+, and I}, are the standard Riemann-Liouville differentiation and
integration, f,g : [0,1] x R* — R are continuous functions, a,b € R, &, € (0,1) with
ab&P-lpel =1,

In [33], the following four-point boundary value problem of multi-term fractional dif-
ferential system:

Dy, u=f(t,v(t),Dyv(t), 0<t<l,
D§+V =g(t,u(t),Dy. u(t)), 0<t<l,
u(0) =yu(§),  u()=3dun),

v(0) =yv(§),  v(1)=3dv(n),

was studied, where 1< o, 8<2,0<m<p-1,0<n<a-1,y>0,6>0,0<& <n<1,Dg
is the standard Riemann-Liouville differentiation, f,g : [0,1] x R* — R are continuous
functions.
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In [34], the authors studied a coupled system of impulsive boundary value problems for
nonlinear fractional order differential equations involving Caputo type fractional deriva-
tives. Sufficient conditions for the existence and uniqueness of positive solutions were es-
tablished by using Banach’s fixed point theorem and Krasnoselskii’s fixed point theorem.

In [35], the authors studied the following 2m-point boundary value problem for a cou-

pled system of impulsive fractional differential equations at resonance:

D, u=f(t v(t),D‘gw(t)), 0<t<1,

Dfj.v=g(t,u(t),Di,ut)), 0<t<l,

Au(ty) = A;(v(t), Db v(ty)), ADY, u(t;) = B;(v(t:), Db v(t)),  i=1,2,...,k,
AV(t;) = Ciu(t;), DY, u(t;)), AD’S+ v(t;) = D»(u(t») Diut)), i=12,...k
D‘;)“Ilu(O) = Zz’:l a;iu(&;), Zl 1bzfl, (n2),

DGW0) = L7 ez, v(l) =Y dief‘ v(ni),

where o, € (1,2), 0 —gq>1,8-p>1,0<& < <&, <, 0<m<-<n,<l,0< <

c<tm<l,and0< 6y <---<B,, <1,f,g:[0,1] x R? — R satisfy Carathéodory conditions,
A;B;, G, D : R x R — R, Aw() = w(t]) — w(t), ADg.w(t;) = Dy w(t]) — Dy w(t;) with
w e {u,v} and r € {p,q}, w(t) and w(t;) denote the right and left limits of w(t) at t = ¢;,
respectively, and the fractional derivative is understood in the Riemann-Liouville sense.
k, m, a;, b, ¢;, d; (i =1,2,...,m) are fixed constants satisfying Y - a; =Y b= rq¢i=
YoM di=land > ", bin; = > ", di6;. This system happens to be at resonance in the sense
that the associated linear homogeneous coupled system

D:u=0, Div=0, 0<t<l,
D' u(0) = 37, aiDg u(&), u(l) =Y by u(ny),
D()+ V( ) Zz lcho+ V(fi); V = Zi:l dieiz ’SV(ﬂi)

has (u(2), v(£)) = (%" + hpt® 2, hgtP1 + hatP~2) (h; € R, i = 1,2,3,4) as a nontrivial solu-
tion.

We find in the papers mentioned that f in fractional differential equations is supposed
to be continuous, the solutions obtained are also continuous on [0,1]. So it is interest-
ing to study the solvability of boundary value problems of singular fractional differential
equations and to obtain discontinuous solutions of this kind of problems.

In this paper, we study the existence of solutions of the following boundary value prob-

lems (BVP for short) for the multi-term impulsive fractional differential system:

DZ. u(t) = p)f (&, v(8), DY v(£), D (1)), t € (i byl i € NG,

Dhv(e) = q(e)g(t, u(t), DY u(®), Dg u(®),  t € (b tial,i € NY,

D&'u(0)=0,  u(l)=0,  DE'w(0)= v(1) =0,

limy ¢ (¢ = )2~ ult) = Lk, v(t), D), v(ty), D§+ W), ieNp, (6)
lim, ¢+ DS u(t) - DY ults) = Ji (6 v(t:), DY, v(t:), Dy v(t)), i e N,

lim, .+ (£ - ;) Py(t) = L(t;, u(t;), DY u(ty), D u(t)), i€ Ny,

lim, .+ D0+ L) - D0+ Y(ty) = ot ult, 1), DYu(ty), DS u(t), i€ Ny,
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where

(a) a,6€(1,2),0<8<a-1,0<0<pB -1, Dﬁ+ is the Riemann-Liouville fractional
derivative of order b > 0 with the start point 4 € R, see Definition 2.2,

(b) m is a positive integer, 0 =ty <ty <ty <+ <ly <byy1 =1, N ={0,1,2,...,m}, and
N ={1,2,...,m},

(c) p,g e C°0,1) thereexists k; > -1, [; <O with2 + k;+[; >0, + [; =8 > 0,
B+l — 6 > 0 such that |p(t)| < tX1(1 — £)1 and |q(¢)| < t*2(1 — ) for all
te€(0,1),

(d) £:(0,1) x R® - Risa (6, B; p)-Carathéodory function, g: (0,1) x R? - R a
(8, t; g)-Carathéodory function, see Definition 2.3, I, /1 : {t;} x R3 — R are
(0, B)-Carathéodory functions, I, J, : {t;} x R® — R (8, a)-Carathéodory functions,
see Definition 2.4.

A pair of functions u,v: (0,1] — R is called a solution of (6) if

0 B-1 0 .
V|(tivti+1]’D0+V|(tivti+1]’D0+ Vgt € C (titin], i€ Ngn’

S -1 0 .
ul(ti,tm]’DO*”'(tiﬂfz‘u]’Dg* ul(tt:01 € C (titinl, i€ Ngn’

lim (¢ — &) Pv(¢), lim (¢ — ti)z"g_ﬂng(t), lim Dgflv(t) are finite, e N,
t~>t;r

L=t} t—tf

lim (£ — £;)*u(t), im (¢ — £;)**~* D). u(t), lim D% u(t) are finite, i e NI,
t—t} t—t} t—t}

D§.uand Dg+ v are an or-well integrable function and a S-well integrable function, respec-
tively, and all equations in (6) are satisfied. Here the definitions of an «-well integrable
function and a 8-well integrable function may be found in Definition 2.5.

The purpose of this paper is to obtain the results on the existence of solutions of BVP
(6) by using the Schauder fixed point theorem [16] under some suitable assumptions. The
solutions obtained may be discontinuous on [0, 1].

The main features of our paper are as follows. First of all, compared with the well-known
papers [29-33], we construct a new Banach space and establish the existence results of
solutions of (6). Second, boundary conditions are different from the known ones and im-
pulse effects are imposed. Third, boundary conditions and impulse effects in (6) imply
that solutions obtained in this paper are continuous on (¢;, ¢:,1] (i € NiJ’) but they may be
unbounded on (0, 1). Finally, both pf : (¢, %, y) > p(£)f (t,x,y) and qg : (¢,%,y) — q()g(t, %, )
may be singular at ¢ = 0,1 while in the well-known papers mentioned nonlinearities are
supposed to be continuous.

The remainder of the paper is organized as follows: In Section 2, we present some
preliminary results. In Section 3, the existence results for solutions of BVP (6) are
established. Finally, in Section 4, we present an example to illustrate the main theo-

rems.

2 Preliminary results
In this section, we present some necessary definitions from the fractional calculus theory

which can be found in the literature [1-5].
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Definition 2.1 [1] The Riemann-Liouville fractional integral of order « > 0 of a function

h:(a,+00) — Ris given by

I%h(t) = ﬁ / (t - 5)* " h(s) ds, 7)

provided that the right-hand side exists.

Definition 2.2 [1] The Riemann-Liouville fractional derivative of order « > 0 of a function

h:(a,+00) — R is given by

" 1 h(s)
Darh(®) = (n- T(n-a)dt" / (t—s)* CEnr=T ®)

where n —1 < « < n, provided that the right-hand side exists.

Lemma 2.1 (Schauder fixed point theorem) Let Q2 be a closed convex subset of the Banach
space X. Suppose T : Q> Q and T is compact (i.e., bounded sets in Q are mapped into
relatively compact sets). Then T has a fixed point in Q.

Remark 2.1 Let a < b. From (2.106) in [5], we have D, I, h(t) = h(t), t € [a,b], y > 0 if f
satisfies some suitable assumptions. For example we know ( f; h(s)ds)’ = h(¢) for all con-
tinuous function / : [4, b] — R. From (2.108), in [5], for a function / : [4, b] — R, if D%, h(z)
(D, h(t), D*7*h(¢)) is integrable, then we have A, B, C, D € R such that

I%.D% h(t) = h(t) + A(t —a)*™ + B(t - a)%,  tel(ab),
I.D3,h(t) = h(t) + C(t —a)®™, te(ab],

I5'DEh(e) = h(t) + D(t - a)* %, te(a,bl.

These results are generalizations of [ /'(s)ds = h(¢) + C and [ [ () dt]’ = h(¢) if h is an ab-
solutely continuous function. If / is a piecewise continuous function, what are the results?

We give the following lemma.

Lemma 2.2 Let « € (1,2). Suppose that h : (0,1] — R satisfies h|,,,,1, Di'h € CO(;, tis]
(i € N§), lim, ¢ (£ - £)2h(t), and lim, .+ DEh(t) exist for all i € N'. We can prove that
there exist constants c;j € R (i € Ny, j = 1,2) such that

i

[g+Dg+h(t) = h(t) + Z(Cl’j(t - t]‘)a_l + Cz,j(t - tj)a—Z), te (tl‘, t,'+1],i € Ng’, (9)
j=0
and
DX I h(t) = he), ¢ e (0,1]. (10)

Proof Step 1. We first of all prove (10). Since lim,_, o+ t>"*h(t) = Ay exists, for any € > 0, we
have A — € < t2%h(t) < Ao + € for sufficiently small ¢ € (0, #]. Then there exists A > 0 such
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that |k(t)| < At*~2 for all £ € (¢, t1]. We have for ¢ € (¢, 4]

- v)* ) dv| < /t(t )" Hh)| dv
0

t
< A/ (t-v)* v 2dv by ; =w
0
1
= A?*? / 1 —w)* w2 dw.
0

Then fot(t —1)*h(v) dv is convergent for all £ € (£,#]. So for ¢ € (0,], we have

o o _ 1 _t_l—as_ot—l !
DOJWh(t)_—F(Z—a)I‘(a) /(t s) /(s V) h(v)dvds]

_ 1 a Ot 1 !
S T2-a)l(e) / / dSh(V)dv}
_ 1 1-« at 1 !
= 4”2_0()”“) _/0 (t- v)/o 1-w) dwh(v)dv :|

[/t(t —V)h(v) dv] ’ = h(t).
0

Then Dg. If. h(t) = h(t), t € (to, t1]. For t € (i1, tiv2] (i > 0), similar to above discussion, use
that lim, (t - £)**h(2) exists, we know that ft’” t—v)* 1 h(v)dv and ft t=v)*Th(v)dv
are convergent. So fot (t=v)*h(v) dv is convergent. Then similarly to the above discussion
D§. 15 h(t) = h(¢). The proof of (10) is complete.

Step 2. We prove (9). Let D§, h(t) = H(t). Since lim;_, o+ t2h(t) = A, exists, for any € > 0,
we have Ay — € < t2°%h(t) < Ag + € for sufficiently small £ € (0, #41]. Then for sufficiently small

t € (0,t], we have
t t
(Ag—e)BR -, —1) < (Ap — 6)/ (t—9)s* 2 ds < / (£ —5)1"h(s) ds
0 0
t
< (Ap + e)f (t—9)"%*2ds= (Ao +€)BQ2 —a,x — 1).
0
Then

(Ag—€)B2 -, —1) < lim [ (¢t-3s)%h(s)ds

t—0* JO

< lim /t(t — ) h(s)ds < (Ag + €)B(2 — o, — 1).

t—0* Jo

Let ¢ — 0, we get lim;_ o+ fot(t — ) n(s)ds = AoB(2 — a,« — 1). Furthermore, since
lim;_.o+ D§*h(t) = B exists, limH(y(fOt(t — s)1"%h(s)ds) = T'(2 — «)B exists by Defini-
tion 2.2. So

—; ' _ o)1 : o 3\l-a "
- F(Z—oe)F(a)/o(t s) </0 (s —u) h(u)du> ds
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s fo-orwe)]
+(a-1) /0 (t—s)"‘_2< / (s—u)l_“h(u)du> ds:|
¥ ( /0 (t—s)“"l( /0 (s—u)l‘o‘h(u)du) ds)]
¥ [At(t—s)ald(/s(s— 1) h(u) du)ﬂ

T Te- i)r( [ e 13351*([ (5 =) hia )

- ( £ lim s( — )" "‘h(u)du)

s—>0% Jo

+ (o — 1)(/()£(t 5)*2 /3( W) h(u )duds>/:|
_ 1 a -1 1 —-a
" Te- a)F(a)|: 5. (/ ok )

—(a—1)%? lirg / (s — )" h(u) du
s—>0F 0

+ (o - 1)(f0t/t(t—s)“2(s — ) dsh(u) du) ] by ﬁ -w

_; al a2
P )|: '2-o)B-(a-1)t"""AB2-a,a-1)

+ (o — 1)(// 1 - w)* 2w dwh(u )du>:|

=: Cl()ta_l + Czota_z + h(t)
So
I$. D% h(t) = IS H () = h(t) + 1ot + cpot*2,  te(0,4]. (11)

It follows from (11) that (9) holds for i = 0. Now we suppose that (9) holds for i =
0,1,2,...,n < m. We will prove that (9) holds for i = n + 1. Then by the method of mathe-
matical induction, we know (9) holds for all i € Nj".

In fact, suppose that

n

I8 D& h(t) = h(t) + Z(cl JE=8) T et —15)%) + D@), £ E (buar, busa)- (12)
j=0
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Use the assumption, we get for £ € (£,,1, £y42]

H(t) = DI H(¢) = Dy 1§ DY h(t)

1

_ [ [f _ o o !
_—F(Z—a) _/(; (t—3s) 10+D0+h(s)ds:|

1 [ n /‘641 - t = "
|| -9 LD ds+ | (E-5) L% D h(s)ds
re-oa) L=y

tnil

1

[ o j
“fama| %, (’“@ + 3 (sl =)+ eauls- tvw)) ds
L j=0 V4 o

+ /t (t—s)t™ (h(s) + Z(cl,v(s —t,) ey, (s— tj)“’z) + <I>(s)> dsi|

v=0
noj
= D(:;Aq)(t) + D h(t) + |:Z ZCI v / (t _ S)l—a(s _ tv)a_l ds
j=0 v=0
+ZZC2V/ (t—9)"(s—1,)"ds
j=0 v=0
" ¢ n t "
+ Z Ly (t—s)"(s—t,)" " ds+ Z Co (t—9)"(s— ;)" ds
v=0 27851 b=0 tael
Gs1—ty
—ty
:D(: () + Do h(2) re- a) [ZZCM Ly /,_U 1-w)l*w*ldw
j=0 v=0 —ty
iy1—tv
Tty
Sy e Ju ammeea
j=0 v=0 -

+Zc1,)t—t)/ (1 w) W dw
ltu
1 1
+Zczvﬁ 1tu(l w4 w2 dw

v=0 t—ty
]+1 v
= l-a  a-1
A -w)y“w* dw

*tv

=D, (1) + DG h(®) [chu(z Z/

+Zc2v2ﬁ . 1 -w)l w2 dw

1
+Zc1,)t t,) :1z(1 w)l w1t dw
v=0 Tty

—ty
" 1 1"
l-o -2
+E Cz,v‘/ A -w)y " *w*“dw
tnyl -ty
v=0 t—ty

= D”‘ d)(t) +H(t) * T |:Z c(t—t) / 1-w)lw*tdw
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n 1 "
+ Z Co /o (1-w)lon2 dw:|

=Dy, 1<I>(t) + H(¢).
It follows that D, 1<I>(t) =0 on (f41, Lys2]. Similarly to the proof of (11), there exist con-
Stants ¢1 41, Coni1 € R such that ®(£) = ¢y 1 (t — £41)* ! + o (t — 1) 2. Substituting
®(t) into (12), we know that (9) holds for i = n + 1. This completes the proof of (9). O

Remark 2.2 Let § € (0,1). Suppose that / : (0,1] — R satisfies &|y,,,] € Co(t;, tis1]
(i e N§') and limHtlfr (¢ =) h(t) exists for all i e N7'. We can prove that there exist con-

stants ¢; € R (i € Nj') such that

13D, h(t) = h(t) + Zc,(t—t)“ L te(tytia)ieNT,
j=0

DY IS h(t) = h(t), te(0,1].
Proof The proof is similar to that of Lemma 2.2 and is omitted. O

Definition 2.3 Let b > 0, ¢,d € R with ¢ < d be fixed. A function /4 : (¢,d) — R is called
a b-well integrable function on (¢, d) if both fo 8)b h(s)| ds and fo (¢ — )" h(s) ds are
convergent for all ¢ € [¢,d].

Definition 2.4 Let b € (1,2) and 2 € (0,b—1) and p:(0,1) = R. k:(0,1) x R® = R is
called a (a, b; ,u)—Carathéodory function if
(i) t—~ u(t)h(t 2 —A ()m,xg) is a b-well integrable function on (0,1] for every
(xl)xZ)xS) € R
(ii) (x1,%0,%3) — A(t, = t)2 — W,xg) is continuous on R? for each ¢ € (¢, ti11)
(i e Ny,
(iii) for each r > 0, there exists M, > 0 such that |x;| <r (i =1,2,3) imply that

X1 X2
hl ¢t ) )
} < (l’ _ ti)Z—b (t _ ti)2+“_b x3>

Definition 2.5 Let b € (1,2) and a € (0,b—1). I : {t;: i € N} x R® - R is a (a,b)-
Carathéodory function if

= Mr; te (ti) ti+1)yi € Ngl~

(i) (x1,%0,x3) > I(t;, s 11)2 T s IQ)M 5,%3) is continuous on R? for each i € NJ”,

(ii) foreach r> 0, there exists M;, > 0 such that |x;| <r (i =1,2,3) imply that

It d 2
i) ) 3 X
U ) (- b2t

Choose

fMI,r, ie N;ﬂ

Xso = {u :(0,1] = R, u, D’u, D" 'u € C°(t;, t;,1],i € N7,

the following limits exist: lim+ (t—t)"u(t),ieN o
t— tz’

lim (¢ — £)2*D3, u(t), i € NI, lim D% u(t), i € Ng”}.
t—t} t—t}
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For u € Xs,, define

sup (t—t;)>™ |u(t)|

te(titisl

2+6— )
o = Nl = max §  SUP (= 807|620 1 e g
€litiv1

sup | D u(t)]

te(ttisl

Lemma 2.3 X;, is a Banach space with the norm defined.

Proof In fact, it is easy to see that X is a normed linear space with the norm || - ||. Let {x,}

be a Cauchy sequence in X;,. Then ||x, —x,|| = 0, u,v — +o0. It follows that

sup (£ —t;)*|wu(®) - x,(&)| > 0, v,u— +o0,i e Ny,
te(tistivil

sup (¢ —t;)*0 |Dg+xu(t) —Dg+xv(t)| -0, v,u— +00,i€ N,
te(titisl

sup | Dg'xu(6) = D tx,(0)] = 0, v,u— +o0,i € Nj.
te(titisl

Denote x,,; = x4l (1,,,,1- Since

lim (¢ — £;)* (), lim (¢ — £;)**°7*D), x(¢), lim D& w,(2)
t—t}

t—t} t—t}
exist, we know that £ — (£—£;)2x,,;(£) are continuous on [t;, £;,1]. Thus ¢ — (£—£;)>"%x,,;(£)
are Cauchy sequences in C[t;, t;,1]. So (¢ — £;)*%x,,;(t) uniformly converges to some xp; in
Clt;, tis1] as u — +00. It follows that

sup | (t = £)* “wui(t) — %0,(£)| = 0, u— +00,i € Njj.
L€t tin]

That is,

sup (t—t)*™ |xu,i(t) —(t- ti)“’lxo,,»(t)| — 0, u— +o0,ieNg.
teltitisl

Let xo(2) = (£ — £:)*2x0,(¢) for t € (t;, ;1] (i € Ng'). It is easy to see that xg € C°(£;, ;1]
(i € N7') and the limit lim,_, ;+ (£ —t;)*x0(t) exists for all i € Np'.
Similarly there exist o, 2o, : (0,1] = R such that

sup [(t — £)** DY xui(t) — y0,(8)| — 0, u— +00,i e Ny,
teltitivl

sup |D‘5:1xu,i(t) —zo,,-(t)| — 0, u— +00,i€Nf.
te(titiv]

Let yo(t) = (t — £;)*°2y0,(t) and zo(t) = zo,(t) for t € (t;ti1) (i € Ng'). Then yo,20 €
COt;, t;1) (i € NI) and the limits lim, .+ (¢ - £:)%*5%y,(t) and lim, .+ zo(2) exist for all
ie Ny.
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Furthermore, using Lemma 2.2, for ¢ € (£, ¢;,1] there exists c,; € R such that

xu() + eyt =) = I yo(t)
j=0

= |Ig+Dg+xu(t) ~ I3 y0(t)|

t 5
<[ =9 D0 )30l ds

F(8)
i i1 _ )1
:Z/ (tF(SS)) ( —t a82| )2+5 aD8+x”() (s— )2+50t (S)’ds
8-
/ (t- S) 1 s — 1) 5 2| 2+8 "‘D5+xu() (s_ti)2+5—ayo(s)|ds

t+1 §— l
_ Z / Z S) 5= 5)%7072|(s — ) > D 2, (5) - y0,(5) | ds

5—
/ (t- s) 1( 1) 8- 2| 2+8 aD5+xu(5)—yo,i(s)|ds

t1+1 —S)‘S -1 s _S)S—l s
5(2[ o) ———(s—1)*" P ds + / ) (s—t) 2d5)

X max{ sup |(t - ti)2+‘s_°‘Df)+xu(t) —yo,i(t)| RS No}
te(tistisal

0 0

X max{ sup |(t - ti)2+5’°‘Dg+xu(t) —yo,i(t)| (i€ No}

te(ttil

B(6, §-1)
<—" 6o - Z(t t)‘)‘2 x[ sup |(t—ti)2+‘3_°‘Dg+xu(t)—yo,,v(t)|:ieNo

I'(8) te(titisl

— 0 asu— +o0.
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'+1_t 5-1 1 51
(Z(t 5)*" 2/ %w“‘5‘2dw+(t—ti)a_2/ Q-w ;g)) w02 dw)

Then 1imy . yo0 [6(¢) + 3j o €yt = )] = 31 0(8). S0 (¢ = 1) 0,(8) + o) g cojlt = )" =
I3.y0(t) (i € Ng). It follows that xo(¢) + Z;zo coj(t — £;)°1 = I3, y0(¢). Thus yo(t) = D}, x0 ()

fort e (lfi, ti+1].
We have similarly for ¢ € (¢;, £;,1]

i
xu(8) + Y eyt —5)" 7 — 15 20(2)
j=0

= 167 D () — 157 20 ()|

Lt —s)*?
- 0 F((X —1)

Lis —
_Z/]l " |Da+1xu,(s) 20,i(s) |ds

|D0+ x,(8) — zo(s)| ds
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f (Ut Dg+ L (5) — 204(5)| i

(t )a -2

< | Taoy dsmax{ sup. [ D57 1,(6) = 20,(6)| 1 € No |

te(tptisal
ta—l

= max{ sup |D L, i(t) — zol(t)| ieNO}—>0 as u — +00.
F((X) te(tptisal

Then iy oo b6 (8) + ) g (¢ = )] = I 20(2). So (= 1) x0,(8) + ) g coj(t=1))* 7 =
I8 20(2) (i € N). It follows that x (2) + Z _o Coj(t =) = I 20(2). Thus 2o (¢) = Dg %0 ()
for t € (¢, ti1].

From the above discussion, we know that x, — x as u — +00 in Xj,. It follows that

X;,« is a Banach space. The proof is complete. g

Denote E = X;, x Xy, g. Define || (x, ) || max{||x||sq> [|¥ll6,s}. Then E is a Banach space. For
y € Xgp and x € X; 4, denote

Fy(t) = p(O)f (£,3(8), Dy y(0), DYy 5(0)),
G.(t) = q(t)g(t,x(8), DY x(t), D3 x(2)),
Dy (&) = (6 y(&), DG (8, Dy y(8:),
Ty () = 1 (8 y(&:), DY y(&:), DY y(8:))
La(t) = L(t,x(t:), Dy x(t:), D x(81)),

Jox(t;) = Jo (i, (t;), Dy x(t;), D x(81)).

Lemma 2.4 Suppose that (a)-(d) hold and (x,y) € E. Then (u,v) € E is a solution of

Di.u(t) = p(t)f (&, 9(8), Dy (), DY 9(®),  t € (tirtina],i € NG,
D§+V(t)=q(t)g(t,x(t),D x(t), D§T'x(8),  t e (b tinl i€ Ny,

D'u(0)=0,  u(l)= DE'w0)=0,  w(1)=0,

lim, ¢ (¢ — £ u(t) = Il(tl,y(t) D}.y(t:), Dy y()), i e Ny, (13)
lim, ;s D37 u(t) - DY ults) = Ji(t, y(8:), Dy y(8:), DY y(8:)), i € N,

limy ¢ (£ - ¢ 6)*7Pu(t) = (4, x(t), D x(6:), D3 x(t;)), i€ Ny,

lim, ¢+ DY; v(t) = Do; ' v(t) = Ja(ti, 2(8), DY 2(t), D x(t:), i€ NJ,

if and only if

~ t (t_s)a—l
t) —/(; WFJ,( )dS

|:f (1 s)otl o) ds+ Z(l t)olljly +i1 tazll j|ot—2

j=1

i i £
£y Ly)E-5) 7+ ];y((a’)) (L=, teltutinlie Ny, (14)
j=1 j=1
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and

F(ﬁ Gl

—5)P- E : 4
|:/ -5 S) 1 Gus)ds+ > Iu(t) (1 — £)P2 Z %C((g)) (1- ff/)/-"l:| (B2
=1

j=1
d B-2 ]2x(t) B- 1 . m
+ Y b))t - 1) Z g 0 telotlieNy. (15)
j=1

Proof From x € X and y € Y, we see that there exists a constant r > 0 such that ||x| =7 <
+00. Then there exist constants M, s, M, ¢, M1 .1, Ma .1, My,,,j, Mo,y > 0 such that

[E,@)] = [p@)]|f (530, D, (2, D5 5(0)]|

- t)7Py(t) (t-t)*PDhy(t) 4.
-l “W(t’ (t—ti)Z-yﬂ ’ (t—ti)2+9?ﬂy ’Dg*lx(t))'

<My (1-t)h, te(tytin)ieNy, (16)

and similarly

|Gx(t)| = Mr,gtk2 (1 - t)lzr te (tir ti+1),i € N;(,)n;

L (8 y(8:), DY y(8:), D y(8)) | < Mayy, i€ NP,
| (¢, %(2:), DY x(8:), D§'%(t)) | < Moy, i€ NT, 17)
U (698, D5 (8, Dy 9(8)) | < My, i €N,

(
(tl,x 0+x Dg t,))| SMQ,«], ZENT

12
Hence
¢ (t_s)a—l t (L‘
/0 WFy(s)ds 5/0 F( ) |F (s)|ds

(t S)a 1 L
/ F(Ot) 1(1-3s) M, rds

(E—8)*" 4 .
_Mryfisl(t—s)lds
4 o I
W)ot+ll—l

1
= Mrfta+ll+k1f (1_—1/1/‘1 dw
0 (o)

B(a + I,k +1)
—_— <

=M tot+11+/<1
o I(o)

oo, te(0,1].
This means F, is an a-integral function. Similarly we get

/(;tFy(s) ds

<M, Bl + 1Lk +1) <00, te(0,1].
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From u € X and (9) in Lemma 2.3, we know that there exist constants A;, B; (i € Nf')
such that

t (t— )a—l i . o
u(t) = /o ﬁa(s) ds + ;[A,(t— )+ Bi(t - )°7?],
te (ti, t,url],i € Ngt (18)
So

i

t a—5—
ng(t):/ wzfy(s G ZA t—)*
0

I'a-29) F(a 3)
M —1) is(t 52, te (b tin)ie NI (19)
F(Ol S — 1) j ) i bi+lly 0
and
¢ i
Dgilu(t) = / Fy(S) ds + F(Ol) ZA]', te (Ifl', ti+1],i € Ng’ (20)
0 ;
j=0

From Dg:'u(0) = 0 and (1) = 0 imply that Ao = 0 and

/ T s+ 3 [A - ) 4 B 7] 0 @D
. T 7 Z j j j j =0.

Now we get by using the impulse conditions

Bi = L (£, (&), Dy y(t:), D y()), i € NI,

T(a)A; = Ji(t9(8:), Db y(t:), Dy 9(t), i e Ny

Together with (21), we obtain

1— )1 (1- ) N
/(F(S)) Ey(s)ds - ]ZI[ - () + (L 620 (¢ )}

Substitute A;, B; into (19), we get (14). Similarly we get (15).
Now we suppose that u satisfies (14) and v satisfies (15). We will prove that u € X and
veY,u,visasolution of BVP (13).
It is easy to see that u € X, v € Y. Furthermore, by direct computation, we get
Dg+u(t) =Fy(t)¢ te (tirti+l]1i€ NS”:
D&'u(0)=0,  u(l)=0,
DRv(t) = G(t),  te(titinl i e NG,
DET'w0)=0,  w(1)=0,

lim (¢ — ;)>“u(t) = Ly(t:), ieN},
t—tf
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Jim Dy u(t) - DE ulty) = hy(t), i€ NY,

i

lim (£ - £;)*Pv(t) = Ly (t;), ie N},

t—t}

Jlim D§+ W) - D) = oy (t), i€ NI,

Then (u,v) is a solution of BVP (13). The proof is completed. d

For (x,y) € E, define T'(x,y) by T'(x, y)(£) = (T1y)(£), (Tox)(£)) with
t (t _ S)ot—l
(Ti)(®) = /0 S Bds

'
_[/(; (F()) F()ds+Z F() hy(t;)+2(1 5)* 211y(t1)}a2

i i £
Y LyH)E-5) 7+ ];y((a’)) (-5, tetalieNy,  (22)
j=1 j=1

and

(Tyx) f - s) 71Gx(s)ds

1(1—s>ﬂ-1 - po N~ J2B) e | peo
—[/0 WGx(s)dH;IZx(t;)(l—@) +2 T -

Y L)t -t)P 7+ Z I 12“96((;)) -6, te(tytinlieNj. (23)
j=1 J=1

Lemma 2.5 Suppose that (a)-(d) hold. Then T : E — E is well defined and is completely
continuous, (x,y) is a solution of BVP (6) if and only if (x,y) = T(x,y).

Proof By Lemma 2.4, we know that Ty € X and Tox € Y. Then T': E — E is well defined.
It is easy to show from Lemma 2.4 that (x,y) is a solution of BVP (6) if and only if (x,y) =

T(x,y).

Now, we prove that T is completely continuous. It suffices to prove that 77 : ¥ — X
and T : X — Y are completely continuous. We divide the proof of completely continuous
property of T; into four steps. Similarly we can prove the completely continuous property
of T.

Step 1. Prove that T) is continuous.

Lety, €Y (n=0,1,2,...) with y, = yo as n — +00. We will prove that T1y, — T1yo as
n — +o00. It is easy to show that there exists r > 0 such that ||y,|| <r,n=0,1,2,..., and
Iy — yoll = 0 as n — +00. Then there exist constants M,.r, My ,.;, M1,y > 0 such that

|E,, ()] <M1 -0, te @t tin)ieNy0O,n=0,12,...,

|1 (690 (8), Dy (), Dl ya(8))| < My, i €NPm=0,1,2,..., (24)

ljl(tz:yn(t) Do‘ryn(t) D0+ yn(t ))| =< Ml,r,]) ie N;n’n =0, 172;~~~
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Using the definition in (22), one sees for ¢ € (t;, ;1] that

(¢ = 8> [(T1y)(8) = (Thyo)(2)|

t S Ot -1
<(t-t)"™ /0 | - £, (s)| ds

2—a ! (1 - S)OFI ¢ a-2
+ (t - tl) ‘/(; W |F}’n (S) - F}’O (S)| ds + Z(l - t]) |11}’n (t]) - 11}’0 (t])i

j=1

(1 t ot O( o o
+ZT;)|]U,J) hyot)l} 2+ (t—t) Z(t )| Iy, (&) — Ly, (5)|

j-1

+(t_ti)2_az |]1$Vn( ll( ])13’0( )l(t t})a -1

j=1

t (t _ S)oc—l
<2M, t—tiz_"‘/ S M —s)hds
rE—1)  Tw (1-5)

1 1-— a-1 1-— ti a-1
+2M,,f/ ﬁs"l( )llds+2M1,IZ —t)” +2M1,,Z( ’)
0

o) o
+2mMy . +2M b — G
1,r1 1,rJ F(O{)
~ (1 _ W)oz+ll—1
< OM. (t -t 2 ottot+1q+11 / k1 d
= rf( l) F(O[) w w
B(a + I, ki +1) s —t)“ '
+ ZMVJT + 2M1,y,1 Z(l - t/) 2M1 ] Z
+2mM . + 2M h b
1Ll 1rJ F(O{)

Blo + 1,k +1) “ _
= 4MVJT +2My, ;(1 )" +m

/+1_t
+2M“’Z< r(a) r@ )

Similarly we can prove for ¢ € (¢;, ¢;,1] that

(¢ = £)*" | Dy (T1y)(£) — Dy (T1y0) (1) |

B(Ol+ll—8,k1+1) F(Ot—l) B((X+ll,k1+1)
SZM”f( F@-38) T@-6-1 T )

Fa-1) ~0-5)"" T@) ha-t
2Mu\ e Tso Z T@)  T(@-3) Z ')
Jj=1 j=1

m

Tl 1) vy T-1)
+2M1’r’1([‘(a—5—1)/=21(1_tj) +F(a—8—1)m)
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and
| D& Ty (®) — DS (Tiyo)(8)|

/ |Fy,(s) = Fyy(s)| ds + ZUW (&) = iyo (8)] < 2M,/B(ly + 1L, ky + 1) + 2mM,,,,y
0 i1

By Lebesgue’s dominated convergence theorem, we can show that

tiv]

lim sup (t—t)*" 0‘|(Tx) t)— (Txo)(t)|=0
n=>00 e (s

lim sup (¢£—t)*"" 0‘|D (Tx,)(t) — DY (Txo (t)|

te(tptil
lim sup |DgII(Tx,,)(t) —Dgil(Txo)(t)| =
00 te(titi

Hence || Tx,, — Txo|| — 0 as n — oo. Then T is continuous

Let ©2; € X and 2, C Y be bounded sets of X and Y, respectively. Then there exists r > 0

such that [lx|, [lyll <r,x € Q1,7 € Q5. So there exist constants M,.r, M,.g, My,r.1, My, 1.1, M1,
M,,; > 0 such that (16) and (17) hold for all x € Q;, y € Q5

Step 2. Prove that {T1y : y € Q} is bounded.
We have similarly to Step 1 for ¢ € (¢, £41]

j=1

+1V[1r/2:((1 i tﬁl—)t/),

'«
(t -7 |D). (Toy)(®)|

Ba+h -8k +1) C(a-1)
SMrf( ' - 3)

B(Ol + 11,/(1 + 1)
"T@-5-1 TI( )

Ma-1 <« 1-:“1 r "t
+M1,r,}< ((ig )1 Z( @ b l)

P () F(a 8) ' (e)

M F(a 1) < SR Mo -1) .
I\ Ta-6-1) ]:1 Ta-6-1) )

IDEA(Tyy) ()| < MyfB(y + 1,k +1) + mMy

It follows that there exists a constant M > 0 such that || 71y|| < M; for all y € Q5. Similarly

we see that there exists a constant M; > 0 such that || Tox|| < M, for all x € ;. From the

above discussion, we see that {T'(x,y) : x € Q1,y € Q5} is bounded
Step 3. Prove that

{t — (t—t)>(Ty)(t):y € Q},

{t—> (- 0*" Dy (Tiy) (1) :x € @},

Page 17 of 29
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{t—) DgII(le)(t) 1y € Q}

are equi-continuous on each (t;, £,1] (i € NjJ).
Since T : X — X, we can take

(t — ) (Tx)(O) o=y, = limt — £/ (¢ — ;) (Tx)(2),

(= )7 D (Tx)(0) =g, = lim (¢ = &> D5 (T)(0),

DEHTH) ()] 1=y, = tnn; DN (T) ().

Then

(¢ = 8> (T) (), (¢ — 1:)**** Dy (Tx) (), D (T)(2)
are continuous on [¢;, t;,1] for each x € Q. So

27 (Tx)(2), 477 DY (Tx) (¢), DE (Tx) (2)

are uniformly continuous, for any ¢ > 0, there exists 8o > 0, when 1,8 € [t;, 1], |51 — $2| <
80, and x € 2, we can get

(51— £:)>(Tx)(51) — (52 — £:)*~*(T%)(s2)| < &,

|(s1 = £:)**°7 D) (Tx)(s1) — (52 — 6)* " *(Tx)(s2)| < &,

[DG (Tx)(s1) ~ D (Tx)s2)| <.
This shows us that

{t — 7Y Tx)(t) :x € Q},
{t—> 277 DE L (Tx)(t) 1 x € Q},
{t — D‘(’)‘Il(Tx)(t) ‘X € Q}

are equi-continuous on any closed subinterval of [t;, £;11] (i € Nf').
It follows from Steps 1-3 that T is completely continuous. The proof is ended. O

3 Main results
In this section, we prove the main theorem. Suppose that o, 7; > 0 (j = 1,2, 3) are constants.
We need the following assumptions:
(H1) there exist nonnegative constants A;, B; (j = 1,2, 3) and two functions ¢, /o such
that py is an o-well integrable function and g¢¢ a S-well integrable function and

Yy Y
P(t’ (¢- tj)2—ﬂ (- ti)ZZ—;ne ’yS) - 1/fo(t)‘

3
< ZA]D]]'G/r te (ti; ti+1];yj €R (] = 1) 21 3)1l € N(r)no’
j=1
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’g <t’ (t —2)2% - tx)225 ”‘3> } ¢°(t)’

< ZB]'|xj|Tj¢ te (ti’ ti+l];xj ER (] = 1’27 3);i€ Ng’l’

(H2) there exist constants I, Ji;, 12i, Ji (i € N), C;, D; > 0 (j = 1,2, 3) such that

3
<> Glyl7, ieNy,

Y2
Il(t“ P ﬁ+"’y3> ~h

3

)2 o; . m

]1<t’ (t- t)2 B’ (t - t;)% ﬁ+9’y3) ~hi| =) Dilyl% ieNy,
j=1

3
I <D Elxl%, ieNp,

t * I
) » K - [
Ut -t 1)“ (6= ti)>e ™)

J> <t, 2 ) —Jai

(t tl)Z—a (t t)2 —a+d’ *3

3

<D Elglv, ieNy.
j=1

Denote

t (t _ S)a—l
o) = [ EE—pnods

(1_ )ot ! 1) 71 Dl 2
-1/ Iﬂ(S)t/fo(S)dHZ @ Z(l Ly

NG

+Zt )20 + Z Ty t-t)"", tet,timlic Ny,

()
and
(a9
W - /0 e 1) ds
1-s)P? B2, Jaj g1 |2
_[/o ) q(s)¢0(s)ds+212,(1 ) ler(ﬂ)u—tj) ¢
Y ht-5)f2e ) L (t-6)P,  te(tytilic Ny
. 2-T(p)
Denote

2B(Ol+ll,/(1+1)+B(Ot—5+ll,k1+1)+ F(Ot—l) B(O{+ll,k1+1)
I'(x) I'(a —8) IMNa-58-1) I'a)

1=

+B(l; + 1,k +1),

P, :m+2:(1—tj)"“2 (F(a 5 1)1)< +Z(1—t)a 2)
i1

P=2m +m< 1 + (- 1) )+m
" T() Ma-68) ()l a-6-1) ’

Page 19 of 29
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and
2B(B + I, ky +1) . B(B -0 +1,k +1) . -1 BB +h,k+1)
I'(B) r'(Bg-0) rp-0-1) I'(B)
B(lg + 1, kz + 1),

Qy=m+ Z(l —5)P 7+ ﬁ (m + Z(l - tj)ﬁ_z),
j=1

J=1

Q3= 2m +m< 1 + Fe-1 >+m
*TT(B) T(B-6) T(BL(B-6-1) ’

P;=PiA; + P,Cj + P3Dj, Qj = QiB; + Q:E; + QsF;.

Q =

Theorem 3.1 Let o = max{o; (i =1,2,3)} and t = max{z; (i = 1,2,3)}. Suppose that (a)-(d)
and (H1)-(H2) hold. Then BVP (6) has at least one solution if

(i) ot €[0,1) or

(ii) ot =1 with

3 1 1/o 3 1 1/t
Q@7 < (—) or Y PIW7T < (—)
,Zl YL Bl ,Zl YL Qe

or
(i) ot >1 with
o 3 T
”\p” Zo,nebn’f [ncbn ( > > B ] <1, or

j=1

o D)\ & ’
w-{nxpu ( > S Qo) ] <1
j=1

j=1

||<I>||

Proof 1t is easy to see that (&, V) € E. For r,r, > 0, denote €2, ,, = {(x,y) € E: [[x — ®|| <
ri, |y = W[l < r2}. One sees that ||x[| < [[x - @[+ [|®|| <71+ [P and [[y[| < ra + || W]| forall
(%, 9) € 2,y

Use (H1), for (x,y) € Q,,,r,, we have

If (£, 3(2), Dy y(2), D= 5(8)) — 0 2)|

) P(f (t-t:)*Py(t) (t-1t)*0PDf.y(t)
B e N (R

,Dﬁ:ly(t)> - wo(t)‘

< At - t)* Py + Ax| (¢ - 8)* P Dl y(®)|” + As| D y(0)|

3
Z r+ W7, te(tti)icNo.
It follows that
3
If (£, 7(2), Df. y(£), Dy 9(8) = wo(O] < Y Aj[ra + 1W]]7. (25)

j-1
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Similarly using (H1)-(H2), we get for (x,y) € @,

3
|g(£,x(0), Dy x(2), D x(2)) — do(t)| < Y By[ra + @11]7,

j=1

3
| (8, 9(8), Dl y(8), Dy (&) = 1| < D C[ra + 1911]7, i e Ny,
j=1
3 .
Vi (£ y(8), Dy y(8), Dy (&) = il < D Dy[ra + 191]7,

j=1

~.

e Ny, (26)

| (8, 2(8), D x(t:), D' (8:)) - L] < Y Ef[r+ | @[1]7, ieN},
j=1
3 Y

o (8 2(t:), DY x(8:), DY a(t:)) = Jai] < Y Fi[r + | @11]7, i e Ny
j=1

Use (c) and (22), (25), (26), we get for ¢ € (£, t;11]

(t - )*|(Tuy)(2) - D(1)|

_ a-1
- | T ) - b)) ds
')

a-1 o1
+(t—t>“[f - S’ ~|F(s) - p(s)wo(s>|ds+z ” (&) =1y

m
+ Z(l - tl')a72 |11y(t]‘) - 11]|:| ta72
j=1

He= 0 Y Dy () — Iy (£ =) + (e =1 ) 7|]1y?3a; Pil e - gy
j=1 J=1
t (t _ S)a—l

3
e A=)t ds Yy Ajlry + 1W]]7

j=1

1(1_ o1 3 .
- (- 1) Ue (lrii) 11=s1ds ) A+ 191]7

j=1

<(t-1)*"

0(13

+Z F() ZD ra+[|W]”
m 3
£y A=) Glr+ ||\11||]"’]t“-2

j=1 j=1

i

3
(=8 (=52 CGlra +1W]]”

j=1 j=1

i 0113

+(t_ti)z_az(tr( ) ZD [r2 + 1W]]7

j=1
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<(t-t;)*™ /t (t_S)—WHSkl ds XB:A'[rz +w]”
N l 0 I"(er) !

j=1

1 a+h-1 3
(1_5) 1 k aj
+/0 Wslds E A,[r2+||\I/||]’

Jj=1

11— 3 .
+ Z( F(”) Dfrs + 19117
j=1

m 3 3
> A=) 23 Glr+ 1w1]7 40> Glr + 1w]]7
1 1

j=1
i b —t 3
i+1 — 4 oj
D; w1
+; @ Zl [ra+ 191]
_ =
B(o + I, ki +1) B(o + b, ki +1)
<—" " ° A \Il A \If
= Z [ra+ 1]7 —Tw Z [ra+ 1w11]”

3

%ZD,mHI\PII +Z(1—t Z;[r2+||\IJ||]"’
j=1 j=1

3

3
+m ¥ Glr+ 1w’ FﬂZD, ry + 1w

j=1 J

j=1

j=1
One has from (22)
5 ~ t (t_s)a—ﬁ—l Ol) t t a—5-1 '
Dy (Thy)(¢) = /0 mFy(S) ds + ) 4 Z r@) Ty(t)
B MNa-1) 55
MNa-6-1)

x /1(1 il 1F()ds+z 6" 111 (t)+Z(1—t)°‘ 21y(5)
o r( ) F( ) YY) ] Y\

Me-1) ¢ as-2 N
+ m ;(t - tj) Ily(tj): te (t,‘,lfi+1],l S NO ,

DTy = / F6)ds+ Y (6 e (tntli €N

j=1

Similarly we have

(t - ;)| D). (T1y)(t) — Db ()|

[ /Bla-8+hk+1) Tl@-1) Bla+hk+1)
= ;[( Fa-0) T@-6-1 T )A’

j=1
3 2B(o + i,k + 1 “ @2 2m
Z[TAj+ m+ Y (1-t) C+F() i [[r2 + 11w 11]7.

Page 22 of 29
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MNa-1)

+F(a I 1)(m+Z(1 t)a2>

1 MNa-1) D, v
””(r(a_) M) (@ -6 - 1)> [r2+ 1]

and

3

Dg (Tiy)(e) - DG @) < D [B(h + 1, ky + DA; + mDj][ra + [ W]]]7.

j=1
It follows that

3
Ty = @Il <Y (PAj + PoC + PsDy)[ra + | ]|]”
j=1
[ra + 11W11]°
j=1

Similarly we can get
3

ITox - Wl <D (QiBj + QaE; + QsF)[ry + | @]

j=1

3
<[+ 1®1]" Y (QB; + QE + Q:F) @7

j=1
From (27), (28), we will seek r1, 5 > 0 such that

3
[r2+ 11W1] Z W <r,

3

[+ 1@1]" D Q@7 <.

j=1

3
D (PiA; + PyCj + P3D))|| W |7

Page 23 of 29

(27)

(28)

Then one has TQ,, , € ,, . By Schauder’s fixed point theorem, T has at least one fixed
point (x,y) € ,,,r, which is a solution of BVP (6). It suffices to get positive solutions of the

following inequality:

3 1/o
- n
[r1+||<1>||]’ZQ,»||<I>||fffsrzs(f> — i

j=1 2 Pl
or

3

1/t
o ry
[r2+ ||‘1’||]a ZP;'H‘I’HG’ “<n< (ﬁ) -1 ®].

j=1 Yl

Casel.ot <1.

(30)
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It is easy to see that

3 1/o
151
[ +l12)]" Y " Qlle|7 < (—) ~ v

j=1 SLPIvIT

has a positive solution r; > 0 sufficiently large. Choose r; satisfying

3 1/o
n
[n+l@1] > Q |d>||f/f<rzs(ﬁ) — .

j=1 Z,‘:lpj”q’”(r’ 7

Then (29) has positive solutions r; > 0 and r, > 0. Then T'(x,y) € @,,,, for (x,9) € Q.
By Schauder’s fixed point theorem, T has at least one fixed point (x,y) € @, ,,. Then (x,y)
is a solution of BVP (6).

Case2.1.0t=1and Y0, Q|7 (L1, Pl W[7)" <1

Since

[+ 1207 L QN7 Zle,'llfbll’f‘f

m Gl o =
r1—>+00 —_— - || Vo
! (Z,-szleH\I’H"’ 7) Il (23 TG =)V

’

we know that there exists r; > 0 sufficiently large such that

3 1/o
n
[+ @] D Qlle)7™ < (—) — . (32)

= AL

Choose 7, satisfying

3 1/o

n

[r1+®]l] QN7 <rpy < (—) = [ (33)
Z P e

Then (29) has a positive solution ry, r,. Then T'(x, y) € 2, r, for (x,%) € Q,, . By Schauder’s
fixed point theorem, T has at least one fixed point (x,y) €
of BVP (6).

Case2.2. 0t =1and Y7 B W[ (0, Q5" < 1.

Similarly to Case 2.1, use (31), we get solutions of BVP (6) by using the Schauder fixed

rr- Then (x,y) is a solution

point theorem.
Case3.o01 > 1.
Choose

3

ot .
(W%,
= (01_ § v

3 3 T
ot -1 -1 || oj—0
T Z Qllo|7- [|d>||+( ) Z AN ] <1,

we know that (32) has a positive solution r; > 0. Choose r, such that (33) holds. Then we
have T'(x,y) € 2,,,, for (x,9) € Q,,,,. By Schauder’s fixed point theorem, T has at least one
fixed point (x,y) € Q,, ,,. Then (x,y) is a solution of BVP (6).
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If

3 3

"”TQD_H 37 |wn”f{nwn+( )Z Qo) ] <1,

j=1 j=1

we choose

3
za bl ~
cD‘L'/‘[
(ot_ Z ]

j=1

It is easy to verify that r, satisfies

3 ry 1/t
[+ W] Bllw)7 < (7> — .

j=1 > QY

Choose r; such that

3 1/t
o ry
[r2+ 1%1]] W77 <m < (_7) ~ @]
27 Y2 QlelT

j=1

Page 25 of 29

Then we have T'(x,y) € Q,, », for (x,y) € Q,,,. By Schauder’s fixed point theorem, T has

at least one fixed point (x,y) € Q,,,. Then (x,y) is a solution of BVP (6).

The proof of Theorem 3.1 is completed.

O

Theorem 3.2 Suppose that (a)-(d) hold and there exist constants My, My, Mp, My, My,

Mjy > 0 such that

N )2
f<t’ (t—t)> P (t—t;)>P+0 ’y3>

? t tl)2 o’ (t t)2 a+8’x3

y2
(& _tllz B (t; —tia

)2
h(t’ P M’”)

t; *
) X
Y-t 1)2 U T

X1 X2 .
o\ £, ) , X <M, ieN/.
BT e R P T ? !

oy

L, Vs JB)‘ <Mp, ieNy,

<Mjp, iEN;n,

fMIZ: S Niﬂr

Then BVP (6) has at least one solutionin X x Y.

EMf) te (ti’tHl)yyjeR(j:112:3);i€N6n;

g<t X2 ) ‘ <M te(titin)x €R(=123)ieNy,

Proof In Theorem 3.1, choose ¢o(t) = Yo(t) =0, 01 =0y =03 =11 =Ty =13 = 0, A; = M,
By =My, Ci=Mp, D1 =My, Ey =Mp, FF=Mjp,and Ay =A3 =By =B3=C, =C3 =D =
D3 =E; = E3 = F, = F3 = 0. It is easy to see that (H1) and (H2) hold. We get Theorem 3.2

from Theorem 3.1. The proof is completed.

O
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4 An example

In this section, we present an example to illustrate main theorems.

Example 4.1 Consider the following boundary value problem for the impulsive multi-
term fractional differential equation:

D§+u(t) =ri(- t) (a0 + ar(t - )3 O] + ax(t - 1) 3 [D§+ V()]

+ ag[D0+V(t)] ), te(tytin)ieNY,
DI () = 8 (L= 1) 6 (bo + bu(t = £) 3 [w(D)]” + ba(t — £) ¥ (DL, ul®)]

¢ b DL u®)),  t€ (bytin)ie N, (34)
DLu(0)=0, uw()=0, DLv(0)=0,  W1)=0

. 1 . 3 .
lim_ (¢~ 6)2u() =Ly lime Doou(t) = Ju, i €N,

. 1 . ) .
limy_, ¢+ (£ = 2:) 2 u(t) = L lim, .+ Dy, u(t) =Joi, 1€ N,

where a;,b; e R (i =0,1,2,3), L1, [hi, 1, Joi € R(ieN)and o >0,7>0,0=¢p < f; = 1—11 <

c<tp=3<m=1,N={0,1,2,...,10},and N{° = {1,2,...,10}.
; 3 5 1 1 1 _1
Correspondlng to BVP (6), wesee thata = 5, 8 =3,8=5,0 =3, p(t) =t 72 (1 - 1)7%,
q(t) =t 6(1 t)” 5 ,withky =1 = k2 =1l =—%.\X/eﬁndthat2+k,»+li>0and
T 2t .

f(trylty%y?)) =ap t+ al(t - tt)gyf + ﬂZ(t - tt)?y; + a3y§7 te (ti’ ti+1]7l € N})(),

&(t,x1,%2,%3) = bo + by (¢t - fi)%xf +by(t - ti)%axg +b3x3, te(t,tialic Néo,

Il(ti,_ylryZ!yf)') = Il; ]l(ti’ylxery?)) :]1! le Nioy

L(t;, %1,%2,%3) = I, Jo(tiyx1,%2,%3) = Jo, i € NP°.
One sees that (a)-(d), (H1), (H2) hold with

Yo () = ao, $o(t) = bo, hi=1, i =/, L =D, J2i =),
Al = |al'|1 Bi = |bi|’ i= 1: 213;
C;=D;=E;=F;=0, i=12,3,

01 =09=03=0 =T, T1=T=7T3=T=0

It is easy to get

/ (t—s)zs 1 s)_%ds
'(3/2)

L(1-9)? -1 -1 (1- t)’ S !
_|:A0 ; ms 1-ys) ds+IZ TG2) 1+21 %) 11:|

,;;

1

+Zt 1) 211+ZF(3/2) -4)?, te(ttimlieNy,
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and

9% 4k
‘-IJ(t):BO/O F(S/B)S 1-s)"6ds

Bo [ b gt S nao e 3 2 g o
- 0/0 I (5/3) : “22 I +;1“(5/3) Y

j=1

i i
+212(t—t,»)‘%+zrj2 (t-£)3, te(tytilieN.

Jj=1 Jj=1

By direct computation, using Mathlab 7.0, we have

2B(1/4,3/4) B(1/8,3/4) T(1/2) B(5/4,3/4)
rG2) | Ta/8)  TGB) TGR)

2B(3/2,5/6) _ B(7/6,5/6) T'(2/3) B(3/2,5/6)
r'(5/3) T@/3) | T@/3) T(6/3)

1= B(3/4,3/4) <22.2,

1= +B(5/6,5/6) < 5.1,
P; = PA; = Pi|aj| <22.2|aj],
Qj = QiB; = Qi|bj| <5.1]b;].

One sees that

1/t

3 3 1o 3 3
5.12|b,»|(22.22|a,|) <1 or 22.2Z|u,|(5.12|b,|> <1 (35)
j=1 j=1 j=1 j=1

implies

j=1

Furthermore
3 T
o[\’
1 1@l +22.2 1 <1
T ,[n I+ (01_1 ,.:Zl'“" <1 or
, . (37)
II<I>|| 7
222W2|a][|W|| 51( bl | <1
j=1
implies
3 o 3 T
otV —
P| <1
||\1r| Z [ (at—l L=t ot
j=1 j=1
(38)

oT-1¢ P\’ < ’
P 1| + Q:| <1, respectively.
o7 ,[n I (M_l) ;Q,} < pectively

j=

It follows from Theorem 3.1 that BVP (10) has at least one solution if
(i) ot €[0,1) or
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(ii) ot =1 with (35) or
(iii) ot >1 with (37).

Remark 4.1 It is easy to see that BVP (34) has at least one solution for any a;, b; (i =
0,1,2,3), Li, Jii» Ii» J2i (i =1,2,3) if ot < 1. Since sufficiently small |a;, |b;] (i =1,2,3) and
fixed ao, bo, L, hi> Ioi> Joi (i = 1,2,3) imply (35) holds, BVP (34) has at least one solution
for any ag, by, L, Jii» i, J2i (i =1,2,3) and sufficiently small |a;], |b;] (i =1,2,3) if ot = 1.
Since sufficiently small |a;|, |b;] (i = 1,2,3) and fixed ay, by, Li, 11> I2i> J2: (i =1,2,3) imply
(37) holds, BVP (34) has at least one solution for any ay, by, L, Jii» I, Joi (i = 1,2,3) and
sufficiently small |a;], |b;| (i =1,2,3) ifot > 1.
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