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Abstract
We establish new results on the existence of positive solutions for the multi-point
boundary value problem at resonance on the half-line. Our results are based on the
Leggett-Williams norm-type theorem due to O’Regan and Zima, which requires
appropriate Banach spaces and proper operators. An example is given to illustrate the
main results.
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1 Introduction
In this paper, we will discuss the existence of positive solutions for the multi-point bound-
ary value problem

⎧
⎨

⎩

u′′(t) + f (t, u(t)) = , t ∈ [, +∞),

u() = , u′(+∞) =
∑m–

i= αiu′(ξi),
(.)

where f ∈ C([, +∞) × R → R), f (t, ) is not always equal to , t ∈ [, +∞), αi > ,
∑m–

i= αi = , i = , , . . . , m – ,  = ξ < · · · < ξm– < ∞.
Boundary value problems of differential equations are applied to more and more disci-

plines, and the existence of one or multiple positive solutions for multi-point BVPs has
been attracting more and more authors, for details see [–]. Generally speaking, the
boundary value problems of differential equations can be roughly divided into two parts.
One is boundary value problems on the finite interval; Infante and Zima [] obtained the
existence of positive solutions for the problem

⎧
⎨

⎩

x′′(t) + f (t, x(t)) = , t ∈ (, ),

x′() = , x() =
∑m–

i= αix(ηi),

with  < η < η < · · · < ηm– < , αi > ,
∑m–

i= αi = . The other is boundary value prob-
lems on the infinite interval, for details see [–]; [] obtained the existence of positive
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solutions for the problem

⎧
⎨

⎩

x′′(t) = f (t, x(t), x′(t)), t ∈ (, +∞),

x() = x(η), limt→+∞ x′(t) = ,

and

⎧
⎨

⎩

x′′(t) = f (t, x(t), x′(t)) + e(t), t ∈ (, +∞),

x() = x(η), limt→+∞ x′(t) = ,

where f : [, +∞) × R → R, e : [, +∞) → R are continuous and η ∈ (, +∞).
To the best of our knowledge, only few authors studied the existence of positive solutions

for boundary value problems at resonance on the half-line. In [], the authors dealt with
the second order boundary value problem with integral boundary conditions on a half-line

⎧
⎨

⎩

(p(t)x′(t))′ + g(t)f (t, x(t)) = , a.e. in (, +∞),

x() =
∫ +∞

 x(s)g(s) ds, limt→+∞ p(t)x′(t) = p()x′().

In [], the authors investigated the existence of positive solutions for the two-point
problem at resonance on the half line,

⎧
⎨

⎩

Dα
+ u(t) = f (t, u(t)), t ∈ [, +∞),

u() = u′() = u′′() = , Dα–
+ u() = limt→+∞ Dα–

+ u(t),

where Dα
+ is the standard Riemann-Liouville fractional derivative.

Inspired by the works above, we will study the existence of positive solutions for the
problem (.).

Define . We call u is a positive solution of the boundary value problem (.), if u ≥ ,
u �= , and satisfies the problem (.).

2 Preliminaries
Let us recall some standard facts and the Leggett-Williams norm-type theorem due to
O’Regan and Zima.

Let X, Y be real Banach spaces. A linear mapping L : dom L ⊂ X → Y is called a Fred-
holm operator of index zero if Im L is closed and dim Ker L = codim Im L < ∞, which im-
plies that there exist continuous projectors P : X → X and Q : Y → Y such that Im P =
Ker L and Ker Q = Im L. Moreover, since dim Im Q = codim Im L, there exists an isomor-
phism J : Im Q → Ker L. Denote by LP the restriction of L to Ker P ∩ dom L → Im L and
its inverse by KP . So KP : Im L → Ker P ∩ dom L and the coincidence equation Lx = Nx is
equivalent to x = (P + JQN)x + KP(I – Q)Nx.

A nonempty convex closed set C ⊂ X is said to be a cone provided that
(i) λx ∈ C, for x ∈ C, λ ≥ ;

(ii) x, –x ∈ C implies x = .
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Note that every cone C ⊂ X induces a partial order in X by x 
 y if and only if y – x ∈ C.
Let γ : X → C be a retraction, i.e. γ is a continuous mapping such that γ (x) = x, x ∈ C.
Let � := P + JQN + KP(I – Q)N and �γ := � ◦ γ .

Theorem . ([]) Let C be a cone in X and �, � be open bounded subsets of X with
� ⊂ � and C ∩ (� \ �) �= ∅. Assume that L : dom L ⊂ X → Y is a Fredholm operator of
index zero and the following conditions are satisfied.

(C) QN : X → Y is continuous and bounded and KP(I – Q)N : X → X is compact on
every bounded subset of X ;

(C) Lx �= λNx for all x ∈ C ∩ ∂� ∩ dom L and λ ∈ (, );
(C) γ maps subsets of � into bounded subsets of C;
(C) dB([I – (P + JQN)γ ] |Ker L, Ker L ∩ �, ) �= , where dB stands for the Brouwer

degree;
(C) there exists u ∈ C\{} such that ‖x‖ ≤ σ (u)‖�x‖ for x ∈ C(u) ∩ ∂�, where

C(u) = {x ∈ C : μu 
 x for some μ > } and σ (u) is such that
‖x + u‖ ≥ σ (u)‖x‖ for every x ∈ C;

(C) (P + JQN)γ (∂�) ⊂ C;
(C) �γ (�\�) ⊂ C.

Then the equation Lx = Nx has a solution in the set C ∩ (�\�).

Lemma . ([]) Assume that V ⊂ X is bounded. V is compact if { u(t)
+t : u ∈ V } is equicon-

tinuous on [, T], ∀T < ∞, and equiconvergent at infinity.

In this paper, we will always suppose that the following condition holds.
(A) f : [, +∞) × R → R is continuous and f (t, ) is not always equal to . For any r > ,

there exists hr(t) ∈ L[, +∞), hr(t) >  satisfying |f (t, ( + t)u)| ≤ hr(t), t ∈ [, +∞), |u| ≤ r,
αi > ,

∑m–
i= αi = .

3 Main result
Let

X =
{

u : u ∈ C[, +∞), u() = , sup
t∈[,+∞)

|u(t)|
 + t

< ∞
}

,

with the norm ‖u‖ = supt∈[,+∞)
|u(t)|
+t , and

Y =
{

y : y ∈ C[, +∞) ∩ L[, +∞), sup
t∈[,+∞)

∣
∣y(t)

∣
∣ < +∞

}
,

with the norm ‖y‖ =
∫ +∞

 |y(t)|dt + supt∈[,+∞) |y(t)|.
It is easy to prove that (X,‖ · ‖) and (Y ,‖ · ‖) are Banach spaces.
Define L : dom L ⊂ X → Y and N : X → Y as follows:

(Lu)(t) = –u′′(t), (Nu)(t) = f
(
t, u(t)

)
, u(t) ∈ X, t ∈ [, +∞),
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where

dom L =

{

u(t) ∈ X|u′′(t) ∈ Y , u′(+∞) =
m–∑

i=

αiu′(ξi)

}

.

Then the boundary value problem (.) can be written

(Lu)(t) = (Nu)(t), u(t) ∈ dom L.

For convenience, denote the function G(t, s) as follows:

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t = ,
(–

∑m–
i=k αi)( 

 t+e–t–)
t
∑m–

i= αie–ξi
– t–s

t + e–s, s ≤ t, ξk– ≤ s < ξk , k = , . . . , m – ,
(–

∑m–
i=k αi)( 

 t+e–t–)
t
∑m–

i= αie–ξi
+ e–s,  < t < s, ξk– ≤ s < ξk , k = , . . . , m – ,


 t+e–t–

t
∑m–

i= αie–ξi
– t–s

t + e–s, ξm– ≤ s ≤ t,

 t+e–t–

t
∑m–

i= αie–ξi
+ e–s,  < t < s, ξm– ≤ s.

Clearly, G(t, s) ≤ 

∑m–

i= αie–ξi
+ , for t, s ∈ [, +∞).

Lemma . L is a Fredholm operator of index zero.

Proof It is easy to get

Ker L =
{

u ∈ dom L|u(t) = ct, t ≥ , c ∈ R
}

, (.)

and

Im L =

{

y ∈ Y
∣
∣
∣

m–∑

i=

αi

∫ +∞

ξi

y(s) ds = 

}

. (.)

Define Q : Y → Y by

(Qy)(t) =
e–t

∑m–
i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

y(s) ds, y ∈ Y . (.)

Clearly, Ker Q = Im L, Im Q = {y | y = ce–t , t ≥ , c ∈ R}, and Q : Y → Y is a linear projec-
tor. In fact, for y(t) ∈ Y , we have

(
Qy

)
(t) =

(
Q(Qy)

)
(t) = Q

(
e–t) 

∑m–
i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

y(s) ds = (Qy)(t).

For y ∈ Y , we have y = (y – Qy) + Qy, Qy ∈ Im Q, (I – Q)y ∈ Ker Q = Im L. So we obtain
Y = Im Q + Im L. Take y ∈ Im Q ∩ Im L. y ∈ Im Q means that y can be written y = ce–t ,
c ∈ R. At the same time, by y ∈ Im L and (.), we get

m–∑

i=

αi

∫ +∞

ξi

ce–s ds = ,
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i.e. c = . This implies that y = . Thus, Y = Im Q ⊕ Im L and dim Ker L = codim Im L =  <
+∞. Observing that Im L is closed in Y , L is a Fredholm operator of index zero. �

Define P : X → X as

(Pu)(t) = t
∫ +∞


e–tu(t) dt, u(t) ∈ X. (.)

Clearly, P : X → X is a linear continuous projector and

Im P =
{

u | u(t) = ct, t ≥ , c ∈ R
}

= Ker L.

Thus, X = Im P ⊕ Ker P = Ker L ⊕ Ker P.
Define KP : Im L → Ker P ∩ dom L by

(KPy)(t) = –
∫ t


(t – s)y(s) ds + t

∫ +∞


e–sy(s) ds, y ∈ Im L. (.)

By simple calculations, we have (KPLP)u = u, ∀u ∈ dom L ∩ Ker P, and (LPKP)y = y, ∀y ∈
Im L. So KP = (LP)–, where LP = L |dom L∩Ker P: dom L ∩ Ker P → Im L.

Define the linear isomorphism J : Im Q → Ker L as

J
(
ce–t) = ct, t ≥ , c ∈ R.

Thus, JQN + KP(I – Q)N : X → X is given by

[
JQN + KP(I – Q)N

]
u(t) = t

∫ +∞


G(t, s)f

(
s, u(s)

)
ds. (.)

Lemma . QN : X → Y is continuous and bounded and KP(I – Q)N : � → X is compact,
where � ⊂ X is bounded.

Proof For convenience, denote Mr :=
∫ +∞

 hr (τ ) dτ
∑m–

i= αie–ξi
.

We will prove that QN : X → Y is continuous and bounded.
Since � ⊂ X is bounded, for u ∈ �, there exists a constant r > , such that ‖u‖ < r. By

the condition (A), we have

‖QNu‖ =
∫ +∞



∣
∣
∣
∣
∣

e–s
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

f
(
τ , u(τ )

)
dτ

∣
∣
∣
∣
∣
ds

+ sup
t∈[,+∞)

∣
∣
∣
∣
∣

e–t
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

f
(
τ , u(τ )

)
dτ

∣
∣
∣
∣
∣

≤
∫ +∞



e–s
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

∣
∣f

(
τ , u(τ )

)∣
∣dτ ds

+ sup
t∈[,+∞)

e–t
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

∣
∣f

(
τ , u(τ )

)∣
∣dτ

≤
∫ +∞

 hr(τ ) dτ
∑m–

i= αie–ξi
+

∫ +∞
 hr(τ ) dτ
∑m–

i= αie–ξi
= Mr .
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So QN : X → Y is bounded. By (A) and the Lebesgue dominated convergence theorem,
we see that QN : X → Y is continuous.

Now, we will prove that KP(I – Q)N : � → X is compact.
First of all, by the condition (A) and u ∈ �, we have

∣
∣
∣
∣
KP(I – Q)Nu(t)

 + t

∣
∣
∣
∣

=
∣
∣
∣
∣–

∫ t



t – s
 + t

(I – Q)Nu(s) ds +
t

 + t

∫ +∞


e–s(I – Q)Nu(s) ds

∣
∣
∣
∣

≤
∫ t



∣
∣(I – Q)Nu(s)

∣
∣ds +

∫ +∞



∣
∣(I – Q)Nu(s)

∣
∣ds

≤ 
∫ +∞



∣
∣Nu(s)

∣
∣ds + 

∫ +∞



∣
∣QNu(s)

∣
∣ds

≤ 
∫ ∞


hr(s) ds + Mr ≤ Mr < +∞,

i.e. KP(I – Q)N : � → X is bounded.
Second, for u ∈ �,  < t < t < T < ∞,

∣
∣
∣
∣
KP(I – Q)Nu(t)

 + t
–

KP(I – Q)Nu(t)
 + t

∣
∣
∣
∣

=
∣
∣
∣
∣–

∫ t



t – s
 + t

(I – Q)Nu(s) ds +
t

 + t

∫ +∞


e–s(I – Q)Nu(s) ds

–
(

–
∫ t



t – s
 + t

(I – Q)Nu(s) ds +
t

 + t

∫ +∞


e–s(I – Q)Nu(s) ds

)∣
∣
∣
∣

≤
∫ t



∣
∣
∣
∣

t – s
 + t

–
t – s
 + t

∣
∣
∣
∣

∣
∣(I – Q)Nu(s)

∣
∣ds +

∫ t

t

t – s
 + t

∣
∣(I – Q)Nu(s)

∣
∣ds

+
∣
∣
∣
∣

t

 + t
–

t

 + t

∣
∣
∣
∣

∫ +∞


e–s∣∣(I – Q)Nu(s)

∣
∣ds

≤
∫ t



∣
∣
∣
∣

t – s
 + t

–
t – s
 + t

∣
∣
∣
∣hr(s) ds +

∫ t



∣
∣
∣
∣

t – s
 + t

–
t – s
 + t

∣
∣
∣
∣

∣
∣QNu(s)

∣
∣ds

+
∫ t

t

t – s
 + t

hr(s) ds +
∫ t

t

t – s
 + t

∣
∣QNu(s)

∣
∣ds

+
∣
∣
∣
∣

t

 + t
–

t

 + t

∣
∣
∣
∣

∫ +∞


hr(s) ds +

∣
∣
∣
∣

t

 + t
–

t

 + t

∣
∣
∣
∣

∫ +∞



∣
∣QNu(s)

∣
∣ds

≤
∫ t



∣
∣
∣
∣

t – s
 + t

–
t – s
 + t

∣
∣
∣
∣hr(s) ds + Mr

∫ t



∣
∣
∣
∣

t – s
 + t

–
t – s
 + t

∣
∣
∣
∣e

–s ds

+
∫ t

t

hr(s) ds + Mr

∫ t

t

e–s ds + 
∣
∣
∣
∣

t

 + t
–

t

 + t

∣
∣
∣
∣Mr .

By the uniform continuity of t–s
+t in [, T] × [, T] and t

+t in [, T], and the absolute
continuity of the integral, we see that KP(I – Q)N : � → X is equicontinuous on [, T],
∀T > .
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Third, for ε > , there exists a constant l > , such that

∫ +∞

l
hr(s) ds <

ε


,

∫ +∞

l
e–s ds <

ε

Mr
.

Since limt→+∞ t–l
+t = , limt→+∞ t

+t = , there exists a constant T > l such that

∣
∣
∣
∣ –

t – l
 + t

∣
∣
∣
∣ <

ε

Mr
,

∣
∣
∣
∣ –

t
 + t

∣
∣
∣
∣ <

ε

Mr
, t ≥ T .

For u ∈ �, T ≤ t < t, we have

∣
∣
∣
∣
KP(I – Q)Nu(t)

 + t
–

KP(I – Q)Nu(t)
 + t

∣
∣
∣
∣

=
∣
∣
∣
∣–

∫ t



t – s
 + t

(I – Q)Nu(s) ds +
t

 + t

∫ +∞


e–s(I – Q)Nu(s) ds

–
(

–
∫ t



t – s
 + t

(I – Q)Nu(s) ds +
t

 + t

∫ +∞


e–s(I – Q)Nu(s) ds

)∣
∣
∣
∣

≤
∫ l



∣
∣
∣
∣

t – s
 + t

–
t – s
 + t

∣
∣
∣
∣

∣
∣(I – Q)Nu(s)

∣
∣ds +

∫ t

l

t – s
 + t

∣
∣(I – Q)Nu(s)

∣
∣ds

+
∫ t

l

t – s
 + t

∣
∣(I – Q)Nu(s)

∣
∣ds +

∣
∣
∣
∣

t

 + t
–

t

 + t

∣
∣
∣
∣

∫ +∞


e–s∣∣(I – Q)Nu(s)

∣
∣ds

≤
[(

 –
t – l
 + t

)

+
(

 –
t – l
 + t

)]∫ +∞



∣
∣(I – Q)Nu(s)

∣
∣ds + 

∫ +∞

l

∣
∣(I – Q)Nu(s)

∣
∣ds

+
[(

 –
t

 + t

)

+
(

 –
t

 + t

)]∫ +∞



∣
∣(I – Q)Nu(s)

∣
∣ds

≤
[(

 –
t – l
 + t

)

+
(

 –
t – l
 + t

)]

Mr + 
∫ +∞

l
hr(s) ds + Mr

∫ +∞

l
e–s ds

+
[(

 –
t

 + t

)

+
(

 –
t

 + t

)]

Mr < ε.

Thus, KP(I – Q)N : � → X is equiconvergent at infinity.
By Lemma ., we see that KP(I – Q)N : � → X is compact. �

Theorem . Assume that (A) and the following conditions hold.
(A) For u ≥ , there exist three nonnegative functions μ(t), βi(t), i = , , such that

–μ(t)ue–t ≤ f (t, u) ≤ –β(t)ue–t + β(t), G(t, s)f (s, u) ≥ –e–su, t, s ∈ [, +∞),

where μ(t)ue–t ,β(t),β(t)ue–t ∈ L[, +∞), inft∈[,+∞) β(t) := β >  and μ(t) satisfying
(i) supt∈[,+∞) μ(t) := μ < 

∑m–
i= αie–ξi

+
∑m–

i= αie–ξi
,

(ii) there exists t ∈ [, +∞), such that d := t
+t

∫ +∞
 [ – G(t, s)μ(s)]( + s)e–s ds > ,

G(t, s) ≥ .
(A) There exists R > μ+αβ+

αβ

∫ ∞
 β(s) ds, such that f (t, Rt) < , t ∈ [, +∞).

Then the problem (.) has at least one positive solution.
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Proof Take a cone

C =
{

u(t) ∈ X|u(t) ≥ , t ∈ [, +∞)
}

.

Set

� =
{

u ∈ X
∣
∣
∣


d

‖u‖ <
|u(t)|
 + t

< r < R, t ∈ [, +∞)
}

, � =
{

u ∈ X | ‖u‖ < R
}

,

where d is given by the condition (A) and R > μ+αβ+
αβ

∫ ∞
 β(s) ds. Clearly, �,

� are open and bounded sets of X, � = {u ∈ X| 
d

‖u‖ ≤ |u(t)|
+t ≤ r < R} ⊂ �, and

C ∩ (� \ �) �= ∅.
In view of Lemmas . and ., L is a Fredholm operator of index zero and the condition

(C) of Theorem . is fulfilled.
Suppose that there exist u(t) ∈ C ∩ ∂� ∩ dom L and λ ∈ (, ) such that Lu = λNu,

i.e. u′′
 (t) + λf (t, u(t)) = . By u(t) ∈ dom L, we have

u′
(+∞) –

m–∑

i=

αiu′
(ξi) = ,

i.e. –λ

∫ +∞


f
(
s, u(s)

)
ds +

m–∑

i=

αiλ

∫ ξi


f
(
s, u(s)

)
ds = .

It follows from (A) that

 =
m–∑

i=

αi

∫ +∞

ξi

f
(
s, u(s)

)
ds ≤

m–∑

i=

αi

∫ +∞

ξi

[
–β(s)u(s)e–s + β(s)

]
ds.

So

α

∫ +∞


β(s)u(s)e–s ds ≤

∫ +∞


β(s) ds. (.)

Considering (A), (.), and

u(t) = (I – P)u(t) + Pu(t) = KPL(I – P)u(t) + Pu(t) = KPLu(t) + Pu(t)

= –λ

∫ t


(t – s)f

(
s, u(s)

)
ds + λt

∫ +∞


e–sf

(
s, u(s)

)
ds + t

∫ +∞


e–su(s) ds,

we obtain

u(t)
 + t

= –
λ

 + t

∫ t


(t – s)f

(
s, u(s)

)
ds

+
λt
 + t

∫ +∞


e–sf

(
s, u(s)

)
ds +

t
 + t

∫ +∞


e–su(s) ds

≤ λ

∫ t



(t – s)
 + t

μ(s)u(s)e–s ds

+
λt
 + t

∫ +∞


e–s[–β(s)u(s)e–s + β(s)

]
ds +

t
 + t

∫ +∞


e–su(s) ds
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≤
∫ t



β(s)e–sμ(s)u(s)
β(s)

ds +
∫ +∞


β(s) ds +

∫ +∞



β(s)e–su(s)
β(s)

ds

≤ μ + αβ + 
αβ

∫ +∞


β(s) ds < R,

u(t)
 + t

= –
λ

 + t

∫ t


(t – s)f

(
s, u(s)

)
ds

+
λt
 + t

∫ +∞


e–sf

(
s, u(s)

)
ds +

t
 + t

∫ +∞


e–su(s) ds

≥ λ

∫ t



t – s
 + t

[
β(s)u(s)e–s – β(s)

]
ds

+
λt
 + t

∫ +∞


e–s[–μ(s)u(s)e–s]ds +

t
 + t

∫ +∞


e–su(s) ds

≥ –
∫ t


β(s) ds –

∫ +∞



β(s)μ(s)e–su(s)
β(s)

ds

≥ –
αβ + μ

αβ

∫ +∞


β(s) ds > –R.

These contradict u(t) ∈ C ∩ ∂� ∩ dom L. So (C) is satisfied.
Let (γ u)(t) = |u(t)|, u(t) ∈ X. Then γ : X → C is a retraction and maps subsets of � into

bounded subsets of C, i.e. (C) holds.
Let u(t) ∈ Ker L ∩ ∂�, then u(t) = ct, t ≥ . Define

H(ct,λ) =
[
I – λ(P + JQN)γ

]
(ct)

= ct – λt
∫ +∞


e–t|c|t dt –

λt
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

f
(
t, |c|t)dt,

where c ∈ {–R, R} and λ ∈ [, ]. Suppose H(ct,λ) = , by (A), we obtain

c = λ

(

|c| +


∑m–
i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

f
(
t, |c|t)dt

)

≥ λ|c|
(

 –


∑m–
i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

μ(t)te–t dt

)

≥ λ|c|
(

 –
μ

∑m–
i= αie–ξi

m–∑

i=

αi

∫ +∞


te–t dt

)

= λ|c|
(

 –
μ

∑m–
i= αie–ξi

)

≥ .

Hence H(ct,λ) =  implies c ≥ . Furthermore, if H(Rt,λ) = , we have

R( – λ) =
λ

∑m–
i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

f (t, Rt) dt ≥ ,

which is a contradiction to the condition (A).
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Thus, H(u,λ) �= , for u ∈ Ker L ∩ ∂�, and λ ∈ [, ]. Therefore

dB
([

I – (P + JQN)γ
] |Ker L, Ker L ∩ �, 

)

= dB
(
H(·, ), Ker L ∩ �, 

)

= dB
(
H(·, ), Ker L ∩ �, 

)
= dB(I, Ker L ∩ �, ) =  �= .

Thus, (C) holds.
Let u(t) = t, t ∈ [, +∞), then u ∈ C \ {}, C(u) = {u ∈ C|u(t) ≥ μt for some μ >

, t ∈ [, +∞)}, and we take σ (u) = . Let u ∈ C(u) ∩ ∂�, we have 
d

‖u‖ ≤ |u(t)|
+t ≤ r,

t ∈ [, +∞).
For u ∈ C(u) ∩ ∂�, by (A), we get

�u(t)
 + t

=
t

 + t

∫ +∞


e–su(s) ds +

t

 + t

∫ +∞


G(t, s)f

(
s, u(s)

)
ds

≥ t

 + t

∫ +∞



(
e–su(s) – G(t, s)μ(s)u(s)e–s)ds

=
t

 + t

∫ +∞



[
 – G(t, s)μ(s)

]
( + s)e–s u(s)

 + s
ds

≥ t

 + t

∫ +∞



[
 – G(t, s)μ(s)

]
( + s)e–s ds


d

‖u‖ = ‖u‖.

Thus, ‖u‖ ≤ σ (u)‖�u‖, for u ∈ C(u) ∩ ∂�. So (C) holds.
For u(t) ∈ ∂�, t ∈ [, +∞), by the condition (A), we have

(P + JQN)γ (u) = t
∫ +∞


e–s∣∣u(s)

∣
∣ds +

t
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

f
(
s,

∣
∣u(s)

∣
∣
)

ds

≥ t
∫ +∞


e–s∣∣u(s)

∣
∣ds –

t
∑m–

i= αie–ξi

m–∑

i=

αi

∫ +∞

ξi

μ(s)
∣
∣u(s)

∣
∣e–s ds

≥ t
∫ +∞


e–s∣∣u(s)

∣
∣ds –

t
∑m–

i= αie–ξi

∫ +∞


μ(s)

∣
∣u(s)

∣
∣e–s ds

= t
∫ +∞


e–s∣∣u(s)

∣
∣

(

 –
μ(s)

∑m–
i= αie–ξi

)

ds ≥ ,

which means that (P + JQN)γ (∂�) ⊂ C. Hence, (C) holds.
For u(t) ∈ � \ �, t ∈ [, +∞), by the condition (A), we have

(�γ u)(t) = t
∫ +∞


e–s∣∣u(s)

∣
∣ds + t

∫ +∞


G(t, s)f

(
s,

∣
∣u(s)

∣
∣
)

ds

≥ t
∫ +∞


e–s∣∣u(s)

∣
∣ds – t

∫ +∞


e–s∣∣u(s)

∣
∣ds

= .

So �γ (� \ �) ⊂ C, i.e. (C) is satisfied.
By Theorem ., we confirm that the equation Lu = Nu has a positive solution u, i.e. the

problem (.) has at least one positive solution. �
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4 Examples
Let us consider the following boundary value problem:

⎧
⎨

⎩

u′′(t) + te–t – 
 u(t)e–t = , t ∈ [, +∞),

u() = , u′(+∞) = .u′() + .u′(.) + .u′(.).
(.)

Here, f (t, u(t)) = te–t – 
 u(t)e–t , α = ., α = ., α = ., ξ = , ξ = ., ξ =

.. Take hr(t) = te–t + r
 (+ t)e–t , μ(t) = 

 , β(t) = 
 , β(t) = te–t , t ∈ [, +∞), t = .,

R = , r = .
Obviously, |f (t, ( + t)u)| ≤ hr(t), t ∈ [, +∞), r > , |u| < r. By our calculations, we can

get . ≤ G(t, s) ≤ . and

–μ(t)ue–t ≤ f (t, u) ≤ –β(t)ue–t + β(t),

G(t, s)f (s, u) > –e–su, u ≥ , t ∈ [, +∞),

μ = supt∈[,+∞) μ(t) = 
 , β = inft∈[,+∞) β(t) = 

 , β(t) ∈ L[, +∞); f (t, Rt) < , t ∈
[, +∞). By simple calculations, we can get that . < G(., s) < ., so

G(., s) > , d :=
.

 + .

∫ +∞



[
 – G(., s)μ(s)

]
( + s)e–s ds ≥ . > .

So the conditions (A)-(A) hold. By Theorem ., we can conclude that the problem
(.) has at least one positive solution.
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