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Abstract
This paper is concerned with the following nonlinear fractional boundary value
problem:

{
Dα
0+u(t) + f (t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, Dβ
0+u(1) =

∫ 1
0 Dβ

0+u(t)dA(t),

where 2 < α ≤ 3, 0 < β ≤ 1 are real numbers and
∫ 1
0 Dβ

0+u(t)dA(t) denotes a
Riemann-Stieltjes integral. By means of monotone iterative technique and some
inequalities associated with the Green function, not only the existence of nontrivial
solutions or positive solutions is obtained but also iterative schemes for
approximating the solutions are established, which start off with simple functions,
which are feasible for computational purposes. An example is also included to
illustrate the main results.
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1 Introduction
Differential equations with fractional order are a generalization of ordinary differential
equations to non-integer order. This generalization is not merely one of the mathematical
curiosities but rather has interesting applications in various fields of sciences and engi-
neering such as control, porous media, electromagnetic, and other branches of science.
The need for fractional order differential equations stems in part from the fact that many
phenomena cannot be modeled by differential equations with integer derivatives. For de-
tails, see [–].

In recent years, there has grown a vast literature devoted to the applications of fixed
point theorems focused on solutions or positive solutions of boundary value problems
(BVPs for short) for fractional differential equations, for example, we mention only [–
]. Note that Wang et al. [] studied a fractional BVP with changing sign nonlinearity,

{
Dα

+u(t) + λf (t, u(t)) = , t ∈ (, ),
u() = u′() = u() = ,

(.)
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where  < α ≤ . By means of the Guo-Krasnoselskii fixed point theorem, the existence of
positive solutions was established. In [], Xu and Fei investigated multiple positive solu-
tions of the singular BVP

Dα
+u(t) + λf

(
t, u(t)

)
+ e(t) = , t ∈ (, )

subject to the three-point boundary conditions

u() = , Dβ
+u() = aDβ

+u(ξ ),

where  < α ≤ ,  < β ≤ . Their tool was Schauder’s fixed point theorem.
Recently, iterative methods have been successfully employed to prove the existence

of solutions or positive solutions of nonlinear BVPs. However, only few papers consid-
ered the computational methods of solutions for fractional differential equations; see
[, , –]. In particular, it should be pointed out that Jiang and Zhong [] obtained the
existence of nontrivial sign-changing solutions to fractional differential equations with in-
tegral boundary conditions, the main tool used was monotone iterative method. Sun and
Zhao [] studied the fractional differential equation with integral boundary conditions

{
Dα

+u(t) + q(t)f (t, u(t)) = , t ∈ (, ),
u() = u′() = , u() =

∫ 
 g(s)u(s) ds.

(.)

The existence result of monotone positive solutions was obtained.
Motivated greatly by the above mentioned excellent works, in this paper we investigate

the existence and iteration of nontrivial solutions and positive solutions for the following
BVP:

{
Dα

+u(t) + f (t, u(t)) = , t ∈ (, ),
u() = u′() = , Dβ

+u() =
∫ 

 Dβ
+u(t) dA(t),

(.)

where  < α ≤ ,  < β ≤  are real numbers and A is of bounded variation, the nonlinear
term f (t, u) may change sign on some set and

∫ 
 Dβ

+u(t) dA(t) denotes a Riemann-Stieltjes
integral with a signed measure. This includes both the multi-point and a Riemann integral
in a single framework. For more comments on the Stieltjes integral and its importance, we
refer the reader to the papers by Webb and Infante [–] and their other related works.
To the best of our knowledge, the results are new and BVP (.) is studied in this form
for the first time. The proofs of our main results are based on the monotone iterative
technique, which we present now.

Theorem . [] Let K be a normal cone of a Banach space E and u � v. Suppose that
() T : [u, v] → E is completely continuous;
() T is monotone increasing on [u, v];
() u is a lower solution of T , that is, u � Tu;
() v is an upper solution of T , that is, Tv � v.
Then the iterative sequences un = Tun–, vn = Tvn–, n = , , , . . . , satisfy u � u � · · · �

un � · · · � vn � · · · � v � v, and converge to, respectively, u, v ∈ [u, v], which are fixed
points of T .
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2 Preliminary lemmas
For convenience of the reader, we present here some necessary definitions.

Definition . [] Let X be the Banach space with norm ‖ · ‖. A nonempty closed set
K ⊂ X is called a cone if K satisfies the following conditions: (i) if x, y ∈ K , then x + y ∈ K ;
(ii) if x ∈ K , then μx ∈ K , for any μ ≥ ; (iii) if  
= x ∈ K , then –x /∈ K . Let x, x ∈ X.
We write x � x, if x – x ∈ K . The cone K is called normal, if there exists ρ >  such
that

‖x + x‖ ≥ ρ, ∀x, x ∈ K ,‖x‖ = ‖x‖ = .

We call the set [x, x] = {x ∈ X, x � x � x} an order interval in X. The operator
T : [x, x] → X is called increasing if Tx̄ � Tx̃ for any x̄, x̃ ∈ [x, x] with x̄ � x̃.

Definition . [] The Riemann-Liouville fractional integral of order α >  of a function
y : (,∞) → R is given by

Iα
+y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

provided the right side is pointwise defined on [,∞).

Definition . [] The Riemann-Liouville fractional derivative of order α >  of a func-
tion y : (,∞) → R is given by

Dα
+y(t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–y(s) ds,

where n = [α] + , [α] denotes the integer part of number α, provided the right side is
pointwise defined on [,∞).

From the definitions of Riemann-Liouville’s derivative, we can obtain the statements.

Lemma . [] Let α > , if we assume u ∈ C(, )∩L(, ), then the fractional differential
equation

Dα
+u(t) = 

has u(t) = Ctα– + Ctα– + · · · + CN tα–N , from some Ci ∈ R, i = , , . . . , N , as a unique
solution, where N is the smallest integer greater than or equal to α.

Lemma . [] Let α > , if we assume u ∈ C(, )∩L(, ), then the fractional differential
equation

Iα
+Dα

+u(t) = u(t) + Ctα– + Ctα– + · · · + CN tα–N ,

from some Ci ∈ R, i = , , . . . , N , where N is the smallest integer greater than or equal to α.
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Lemma . Assume that y ∈ C(, ) ∩ L(, ), α, β are two positive constants with
α – β ≥ . Then

Dβ
+Iα

+y(t) = Iα–β
+ y(t).

Proof Let h(t) =
∫ t

 (t – s)α–y(s) ds. Then by Definition .,

Dβ
+h(t) =


�(n – β)

dn

dtn

∫ t


(t – τ )n––βh(τ ) dτ .

On the other hand, let τ–s
t–s = u, then

∫ t


(t – τ )n––βh(τ ) dτ =

∫ t


(t – τ )n––β

(∫ τ


(τ – s)α–y(s) ds

)
dτ

=
∫ t


ds

∫ t

s
(t – τ )n––β (τ – s)α–y(s) dτ

=
∫ t


(t – s)α–β+(n–)y(s) ds

∫ 


uα–( – u)(n–β)– du

= B(α, n – β)
∫ t


(t – s)α–β+(n–)y(s) ds.

Therefore, we have

Dβ
+h(t) =

B(α, n – β)
�(n – β)

dn

dtn

∫ t


(t – s)α–β+(n–)y(s) ds

=
B(α, n – β)
�(n – β)

∫ t



[
α – β + (n – )

][
α – β + (n – )

] · · · [α – β]

× (t – s)α–β–y(s) ds

=
�(α)

�(α – β)

∫ t


(t – s)α–β–y(s) ds. �

In the remainder of the paper, we always assume that  < α ≤  and  ≤ β ≤ , so we also
easily get  < α – β –  ≤ .

Lemma . Let y ∈ C(, ) ∩ L[, ] and δ :=
∫ 

 tα–β– dA(t) < , the unique solution of

{
Dα

+u(t) + y(t) = , t ∈ (, ),
u() = u′() = , Dβ

+u() =
∫ 

 Dβ
+u(t) dA(t)

(.)

is u(t) =
∫ 

 G(t, s)y(s) ds, in which

G(t, s) = K(t, s) +
tα–

 – δ

∫ 


H(t, s) dA(t),

where

K(t, s) =


�(α)

{
tα–( – s)α–β– – (t – s)α–,  ≤ s ≤ t ≤ ,
tα–( – s)α–β–,  ≤ t ≤ s ≤ 
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and

H(t, s) =


�(α)

{
[t( – s)]α–β– – (t – s)α–β–,  ≤ s ≤ t ≤ ,
[t( – s)]α–β–,  ≤ t ≤ s ≤ .

Proof As deduced from Lemma ., we have

u(t) = –Iα
+y(t) + Ctα– + Ctα– + Ctα–.

Consequently, the solution of (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + Ctα– + Ctα– + Ctα–.

By u() = u′() = , there is C = C = . Moreover, Dβ
+u() =

∫ 
 Dβ

+u(t) dA(t) and
Lemma . yield

C =


�(α)( – δ)

[∫ 


( – s)α–β–y(s) ds –

∫ 



(∫ t


(t – s)α–β–y(s) ds

)
dA(t)

]
.

Therefore, the solution of (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

�(α)( – δ)

×
[∫ 


( – s)α–β–y(s) ds –

∫ 



(∫ t


(t – s)α–β–y(s) ds

)
dA(t)

]

= –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

�(α)

∫ 


( – s)α–β–y(s) ds

+
tα–

�(α)( – δ)

(∫ 



[∫ 


tα–β–( – s)α–β–y(s) ds

]
dA(t)

–
∫ 



[∫ t


(t – s)α–β–y(s) ds

]
dA(t)

)

=
∫ 



[
K(t, s) +

tα–

 – δ

∫ 


H(t, s) dA(t)

]
y(s) ds. �

Lemma . For any t, s ∈ [, ], H(t, s) has the following property:

min{α – β – , }tα–β–( – t)( – s)α–β–s ≤ �(α)H(t, s) ≤ max{α – β – , }( – s)α–β–.

Proof Case :  < α – β –  ≤ . If s ≤ t, then

�(α)H(t, s) =
[
t( – s)

]α–β– – (t – s)α–β–

= (α – β – )
∫ t(–s)

t–s
xα–β– dx

≥ (α – β – )
[
t( – s)

]α–β–[t( – s) – (t – s)
]

≥ (α – β – )
[
t( – s)

]α–β–s( – t)

= (α – β – )tα–β–( – t)( – s)α–β–s
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and

�(α)H(t, s) =
[
t( – s)

]α–β– – (t – s)α–β–

=
[
t( – s)

]α–β–
[

t( – s) – (t – s) · (t – s)α–β–

[t( – s)]α–β–

]

=
[
t( – s)

]α–β–
[

t( – s) – (t – s) · ( – s
t )α–β–

( – s)α–β–

]

≤ [
t( – s)

]α–β–[t( – s) – (t – s)
]

≤ tα–β–( – t)( – s)α–β–s

≤ sα–β–( – s)( – s)α–β–s

= sα–β–( – s)α–β– ≤ ( – s)α–β–.

If s ≥ t, then

�(α)H(t, s) =
[
t( – s)

]α–β– ≤ sα–β–( – s)α–β– ≤ ( – s)α–β–

and

�(α)H(t, s) =
[
t( – s)

]α–β– ≥ tα–β–( – t)( – s)α–β–s

≥ (α – β – )tα–β–( – t)( – s)α–β–s.

Case :  < α – β –  ≤ . We have

( – t)tα–β–s( – s)α–β– ≤ �(α)H(t, s) ≤ (α – β – )( – s)α–β–.

The proof is similar to Lemma . in [], so it is omitted. �

Lemma . The function K (t, s) satisfies:
(i) �(α)K(t, s) ≤ tα–( – s)α–β–, t, s ∈ [, ];

(ii) �(α)K(t, s) ≥ tα–βs( – s)α–β–, t, s ∈ [, ].

Proof Since (i) holds obviously, we only show that (ii) is true. Here we need the fact  –
( – s)β ≥ βs,  < β ≤ , s ∈ [, ]. In fact,

[
 – ( – s)β – βs

]′ = β
[
( – s)β– – 

] ≥ ,

which implies  – ( – s)β – βs is nondecreasing in [, s], so  – ( – s)β ≥ βs.
If s ≤ t, then

�(α)K(t, s) = tα–( – s)α–β– – (t – s)α–

≥ tα–( – s)α–β– – tα–( – s)α–

= tα–( – s)α–β–[ – ( – s)β
]

≥ tα–( – s)α–β–βs.
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If t ≤ s, then

�(α)K(t, s) = tα–( – s)α–β– ≥ tα–( – s)α–β–βs. �

Lemma . Let


(s) :=


�(α)

[
β +

min{α – β – , } ∫ 
 tα–β–( – t) dA(t)

 – δ

]
s( – s)α–β–

and


(s) :=


�(α)

[
 +

max{α – β – , } ∫ 
 dA(t)

 – δ

]
( – s)α–β–.

Then the function G(t, s) has the following property:

tα–
(s) ≤ G(t, s) ≤ tα–
(s), t, s ∈ [, ].

Proof For any t, s ∈ [, ], it follows from Lemmas . and . that

G(t, s) = K(t, s) +
tα– ∫ 

 H(t, s) dA(t)
 – δ

≤ 
�(α)

tα–( – s)α–β– +
tα– max{α – β – , } ∫ 

 dA(t)
�(α)( – δ)

( – s)α–β–

≤ tα– 
�(α)

[
 +

max{α – β – , } ∫ 
 dA(t)

( – δ)

]
( – s)α–β–

= tα–
(s).

On the other hand, for any t, s ∈ [, ], we have

G(t, s) = K(t, s) +
tα– ∫ 

 H(t, s) dA(t)
 – δ

≥ 
�(α)

tα–βs( – s)α–β– +
tα– min{α – β – , } ∫ 

 tα–β–( – t) dA(t)
�(α)( – δ)

× s( – s)α–β–

= tα– 
�(α)

[
β +

min{α – β – , } ∫ 
 tα–β–( – t) dA(t)

 – δ

]
s( – s)α–β–

= tα–
(s). �

Lemma . The function G(t, s) is continuous and satisfies

∣∣G(t, s) – G(t, s)
∣∣ ≤ max

≤s≤

∣∣G(t, s) – G(t, s)
∣∣

≤ (α – )
[


�(α)

+
max≤s≤

∫ 
 H(t, s) dA(t)

 – δ

]
(t – t),

for  ≤ t ≤ t ≤ .
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Proof For  ≤ t ≤ t ≤ , we have

∣∣G(t, s) – G(t, s)
∣∣ =

∣∣∣∣K(t, s) – K(t, s) +
(tα–

 – tα–
 )

∫ 
 H(t, s) dA(t)

 – δ

∣∣∣∣
=

∣∣∣∣ 
�(α)

(
tα–
 – tα–


)
( – s)α–β– +


�(α)

[
(t – s)α– – (t – s)α–]

+
(tα–

 – tα–
 )

∫ 
 H(t, s) dA(t)

 – δ

∣∣∣∣
≤

(


�(α)
∣∣tα–

 – tα–


∣∣ +


�(α)
∣∣(t – s)α– – (t – s)α–∣∣

+
|tα–

 – tα–
 |max≤s≤

∫ 
 H(t, s) dA(t)

 – δ

)
.

Note that, applying the mean value theorem, we arrive at tα–
 – tα–

 < (α – )(t – t) and
(t – s)α– – (t – s)α– < (α – )(t – t), which implies that

∣∣G(t, s) – G(t, s)
∣∣ ≤ max

≤s≤

∣∣G(t, s) – G(t, s)
∣∣

≤ (α – )
[


�(α)

+
max≤s≤

∫ 
 H(t, s) dA(t)

 – δ

]
(t – t),

for  ≤ t ≤ t ≤ . �

3 Main results
Let E = C[, ] be equipped with the norm ‖u‖ = ‖u‖∞, where ‖u‖∞ is the usual supre-
mum norm in C[, ].

Define the cone K by

K =
{

u ∈ E : u(t) ≥ , t ∈ [, ]
}

.

Then it is easy to verify that K is a cone in E. For u, v ∈ C[, ], u � v if and only if u(t) ≤ v(t),
t ∈ [, ]. Moreover, the cone K is normal on account of ‖u + v‖ ≥ ‖u‖ =  for any u, v ∈ K
and ‖u‖ = ‖v‖ = .

Define the operator T : K → K as follows:

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds,  ≤ t ≤ .

It is clear that the existence of a solution for BVP (.) is equivalent to the existence of a
fixed points of T in K .

Theorem . Assume that there exist two real numbers a, b such that a < b and the fol-
lowing conditions are satisfied:

(H) There exists a nonnegative function h ∈ C(, ) ∩ L[, ] such that one of the following
conditions is satisfied:



Zhang Boundary Value Problems  (2016) 2016:3 Page 9 of 13

(i) a ≥ , f : (, ) × [, b] → R is continuous, |f (t, u)| ≤ h(t), (t, u) ∈ (, ) × [, b]
and increasing with respect to u in [, b];

(ii) b ≤ , f : (, ) × [a, ] → R is continuous, |f (t, u)| ≤ h(t), (t, u) ∈ (, ) × [a, ]
and increasing with respect to u in [a, ];

(iii) a <  < b, f : (, ) × [a, b] → R is continuous, |f (t, u)| ≤ h(t),
(t, u) ∈ (, ) × [a, b] and increasing with respect to u in [a, b].

(H) The following inequalities hold:

∫ 



(s) max

{
f
(
s, asα–), 

}
ds +

∫ 



(s) min

{
f
(
s, asα–), 

}
ds ≥ a,

∫ 



(s) max

{
f
(
s, bsα–), 

}
ds +

∫ 



(s) min

{
f
(
s, bsα–), 

}
ds ≤ b.

(H) f (t, ) 
≡ , for  ≤ t ≤ .

Then the problem (.) has two nontrivial solutions u∗, v∗ ∈ C[, ] ∩ C(, ) (u∗, v∗

may be coincident) such that atα– ≤ u∗ ≤ v∗ ≤ btα–, t ∈ [, ], and limn→∞ un = u∗,
limn→∞ vn = v∗, where the two iterative sequences are generated by

u(t) = atα–, un+ =
∫ 


G(t, s)f

(
s, un(s)

)
ds, n = , , , . . . ,

v(t) = btα–, vn+ =
∫ 


G(t, s)f

(
s, vn(s)

)
ds, n = , , , . . . .

Proof Consider the order interval [u, v] in C[, ], then T : [u, v] → C[, ] is com-
pletely continuous. In fact, let u ∈ [u, v], then atα– ≤ u ≤ btα–,  ≤ t ≤ . By the as-
sumption (H), we have

‖Tu‖ = max
≤s≤

∫ 


G(t, s)

∣∣f (s, u(s)
)∣∣ds ≤

∫ 


tα–
(s)

∣∣f (s, u(s)
)∣∣ds

≤ 
�(α)

[
 +

max{α – β – , } ∫ 
 dA(t)

 – δ

]∫ 



∣∣f (s, u(s)
)∣∣ds

≤ 
�(α)

[
 +

max{α – β – , } ∫ 
 dA(t)

 – δ

]∫ 



∣∣h(s)
∣∣ds,

which shows that T([u, v]) is uniform bounded in C[, ].
On the other hand, for any u ∈ [u, v] and  ≤ t ≤ t ≤ , by Lemma .,

∣∣(Tu)(t) – (Tu)(t)
∣∣

≤
∫ 



∣∣G(t, s) – G(t, s)
∣∣∣∣f (s, u(s)

)∣∣ds

≤ max
≤s≤

∣∣G(t, s) – G(t, s)
∣∣ ∫ 



∣∣f (s, u(s)
)∣∣ds

≤ (α – )
[


�(α)

+
max≤s≤

∫ 
 H(t, s) dA(t)

 – δ

]
(t – t)

∫ 



∣∣f (s, u(s)
)∣∣ds

≤ (α – )
[


�(α)

+
max≤s≤

∫ 
 H(t, s) dA(t)

 – δ

]
(t – t)

∫ 



∣∣h(s)
∣∣ds.



Zhang Boundary Value Problems  (2016) 2016:3 Page 10 of 13

This shows that the set T([u, v]) is equicontinuous in C[, ]. Furthermore, for u ∈
[u, v], the operator T is continuous obviously. By the Arzelá-Ascoli theorem, the op-
erator T : [u, v] → C[, ] is completely continuous.

Now, we divide our proof into the following steps.
Step . We assert that T is monotone increasing on [u, v]. By the assumption (H), it

is easy to know T is an increasing operator.
Step . We prove that u is a lower solution of T .
In view of the assumption (H), (H), and Lemma ., we have

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds =

∫ 


G(t, s)f

(
s, asα–)ds

=
∫ 


G(t, s) max

{
f
(
s, asα–), 

}
ds +

∫ 


G(t, s) min

{
f
(
s, asα–), 

}
ds

≥ tα–
∫ 



(s) max

{
f
(
s, asα–), 

}
ds + tα–

∫ 



(s) min

{
f
(
s, asα–), 

}
ds

≥ atα– = u(t).

It shows

u =
∫ 


G(t, s)f

(
s, u(s)

)
ds = Tu ≥ u.

Step . We prove that v is an upper solution of T . We have

(Tv)(t) =
∫ 


G(t, s)f

(
s, v(s)

)
ds =

∫ 


G(t, s)f

(
s, bsα–)ds

=
∫ 


G(t, s) max

{
f
(
s, bsα–), 

}
ds +

∫ 


G(t, s) min

{
f
(
s, bsα–), 

}
ds

≤ tα–
∫ 



(s) max

{
f
(
s, bsα–), 

}
ds + tα–

∫ 



(s) min

{
f
(
s, bsα–), 

}
ds

≤ btα– = v(t).

It yields

v =
∫ 


G(t, s)f

(
s, v(s)

)
ds = Tv ≤ v.

Step . We claim that the BVP (.) has monotone nontrivial solutions.
In fact, if we construct sequences {un}∞n= and {vn}∞n= as follows:

un = Tun– and vn = Tvn–, n = , , , . . . ,

then it follows from Theorem . that

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v,
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and {un}∞n= and {vn}∞n= converge to, respectively, u∗ and v∗ ∈ [u, v], which are monotone
solutions of the BVP (.). Moreover, in view of f (t, ) 
≡ , we know that the zero function
is not a solution of BVP (.). Thus u∗ and v∗ are nontrivial. �

Remark . We do not require that f : (, ) × R → R is continuous and increasing, we
only require the local continuity and local monotonicity; f (t, u) in our case may change
sign. If a > , then the two nontrivial solutions u∗, v∗ (u∗, v∗ may be coincident) satisfy
 < atα– ≤ u∗ ≤ v∗ ≤ btα– < b,  ≤ t ≤ , which implies that u∗, v∗ are positive solutions
of BVP (.).

Corollary . Assume that there exist two positive constants a, b such that a < b and the
following conditions are satisfied:

(C) f : (, ) × [, b] → R+ is continuous and there exists a nonnegative function h ∈
C(, ) ∩ L[, ] such that |f (t, u)| ≤ h(t), (t, u) ∈ (, ) × [, b] and increasing with
u in [, b];

(C)
∫ 

 
(s)f (s, asα–) ds ≥ a and
∫ 

 
(s)f (s, bsα–) ds ≤ b;
(C) f (t, ) 
≡ , for  ≤ t ≤ .

Then the problem (.) has two positive solutions u∗, v∗ ∈ C[, ] ∩ C(, ) such that
 < atα– ≤ u∗ ≤ v∗ ≤ btα–, t ∈ [, ] and limn→∞ un = u∗, limn→∞ vn = v∗ (u∗, v∗ may be
coincident), where the two iterative sequences are generated by

u(t) = atα–, un+ =
∫ 


G(t, s)f

(
s, un(s)

)
ds, n = , , , . . . ,

v(t) = btα–, vn+ =
∫ 


G(t, s)f

(
s, vn(s)

)
ds, n = , , , . . . .

4 Example
In this section, we give an example to illustrate our main results.

Consider the BVP
{

Dα
+u(t) + f (t, u(t)) = , t ∈ (, ),

u() = u′() = , Dβ
+u() =

∫ 
 Dβ

+u(t) dA(t),
(.)

where α = 
 , β = 

 , A(t) = t,

f (t, u) =

⎧⎪⎨
⎪⎩

t – 
 , u ∈ (–∞, ), t ∈ (, ),

t – 
 + u – u, u ∈ [, ], t ∈ (, ),

t + 
 , u ∈ (, +∞), t ∈ (, ).

A simple calculation shows that


(s) :=


�( 
 )

[



+
∫ 

 ( – t)t dt
 –

∫ 
 t dt

]
s( – s) ≈ .s( – s)

and


(s) :=


�( 
 )

[
 +

∫ 
 dt

 –
∫ 

 t dt

]
( – s) ≈ .( – s).
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Let a = , b = , so f (t, u) is continuous and nondecreasing with respect to u. Thus, the
condition (H) holds and f (t, ) = t – 

 , f (t, t 
 ) = t 

 – 
 . By direct calculation, we

have
∫ 



(s) max

{
f
(
s, asα–), 

}
ds +

∫ 



(s) min

{
f
(
s, asα–), 

}
ds

=
∫ 

( 
 )




.s( – s)
(

s –




)
ds +

∫ ( 
 )





.( – s)

(
s –




)
ds

≈ . ≥ 

and
∫ 



(s) max

{
f
(
s, bsα–, 

)}
ds +

∫ 



(s) min

{
f
(
s, bsα–, 

)}
ds

=
∫ 

( 
 )




.( – s)
(

s

 –




)
ds +

∫ ( 
 )





.s( – s)

(
s


 –




)
ds

≈ . ≤ ,

which show that the condition (H) holds. So, it follows from Theorem . that BVP (.)
has two nontrivial solutions u∗ and v∗ (u∗, v∗ may be coincident), such that  ≤ u∗ ≤ v∗ ≤
t 

 ≤ ,  ≤ t ≤ , and which start off with the zero function or t 
 , which are very feasible

for computational purposes.
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