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Abstract
In this article, we investigate the existence of solutions for boundary value problems
of fractional differential equations and inclusions with semiperiodic and three-point
boundary conditions. The existence results for equations are obtained by applying
Banach’s contraction mapping principle, Schaefer-type fixed point theorem,
Leray-Schauder degree theory, Krasnoselskii’s fixed point theorem, and
Leray-Schauder nonlinear alternative, whereas the existence of solutions for convex
and nonconvex set-valued maps (inclusion case) is shown via nonlinear alternative of
Leray-Schauder type for multivalued maps and Wegrzyk’s fixed point theorem for
generalized contractions, respectively. We emphasize that a variety of fixed point
theorems are used to obtain different existence criteria for the problems at hand.
Several examples are discussed for illustration of the obtained results. Moreover, an
interesting observation related to symmetric second-order three-point boundary
value problems is presented.
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1 Introduction
In this paper, we study a boundary value problem of nonlinear fractional differential equa-
tions with semiperiodic and three-point boundary conditions given by

cDqx(t) + f
(
t, x(t)

)
= , t ∈ [, ],  < q ≤ ,

x() = x(), ξx′() – ηx′() = ζx(/), (.)

where f is a given continuous function, and ξ , η, ζ are positive real constants with ξ

ζ
>

( 
 + η

ζ
). As a companion problem, we also discuss the inclusion case of problem (.).

Multipoint nonlocal boundary value problems of ordinary, integro-differential, and par-
tial differential equations have been extensively studied, and a variety of results can be
found in the recent literature, for instance, see [–] and the references therein.

The subject of fractional differential equations and inclusions has attracted the atten-
tion of many researchers in the last decade. One of the reasons for popularity of the sub-
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ject is that fractional-order differential and integral operators are nonlocal in nature and
help to trace the past history of several materials and processes. For a detailed account of
the results on nonlocal fractional-order boundary value problems, we refer the reader to
[–] and the references therein. Concerning the application of fractional calculus, we
can notice that fractional differential equations have played a key role in improving the
mathematical modeling of several phenomena occurring in basic technical sciences and
engineering. As a matter of fact, this subject is gaining more and more popularity due to
its widespread applications. For examples and details, see [–].

The paper is organized as follows. Section  contains existence and uniqueness results
for problem (.). These results are new and rely on Banach’s contraction mapping prin-
ciple, a Schaefer-type fixed point theorem, Leray-Schauder degree theory, Krasnoselskii’s
fixed point theorem, and Leray-Schauder nonlinear alternative. In Section , we introduce
a multivalued analog of problem (.) and prove the existence of solutions for convex set-
maps by means of a multivalued version of nonlinear alternative of Leray-Schauder type,
whereas the existence result for nonconvex set-valued maps is established by applying We-
grzyk’s theorem for generalized contractions. It is important to mention that the existence
result obtained by means of Wegrzyk’s theorem holds for several choices of the strictly in-
creasing function involved in its hypothesis, in contrast to that obtained by applying a
fixed point theorem due to Covitz and Nadler []. We emphasize that the exposition of
the standard tools of fixed point theory in the framework of the present work is new.

2 Preliminaries
Definition . ([]) The Riemann-Liouville fractional integral of order r for a continuous
function h is defined as

Irh(t) =


�(r)

∫ t



h(s)
(t – s)–r ds, r > ,

provided that the integral exists.

Definition . ([]) For at least n times absolutely continuously differentiable function
h : [,∞) →R, the Caputo derivative of fractional order r is defined as

cDrh(t) =


�(n – r)

∫ t


(t – s)n–r–h(n)(s) ds, n –  < r < n, n = [r] + ,

where [r] denotes the integer part of a real number r.

Lemma . ([]) Let u ∈ ACm[, ] and v ∈ AC[, ]. Then, for ρ ∈ (m – , m), m ∈N, and
t ∈ [, ],

(a) the general solution of the fractional differential equation cDρu(t) =  is given by

u(t) = b + bt + bt + · · · + bm–tm–,

where bi ∈R, i = , , , . . . , m – ;
(b) Iρ cDρu(t) = u(t) –

∑m–
k=

tk

k! u
k();

(c) cDρIρv(t) = v(t).
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Remark . Let AC[, ] = {x ∈ C[, ] : x′ ∈ AC[, ]}. Then AC[, ] = {x ∈ C[, ] :
x′′ ∈ L[, ]}. Observe that

cDrh(t) =


�( – r)

∫ t


(t – s)(–r)–h′′(s) ds = I–rh′′(t) =

(
I–rh(t)

)′′,  < r < .

Therefore, cDr maps AC[, ] ⊂ L(, ) into L(, ) for r ∈ (, ). For more details on
Riemann-Liouville fractional integrals, see [, ].

The following lemma plays a pivotal role to define the solutions for the given problem.

Lemma . Let g ∈ AC[, ] and x ∈ AC[, ]. Then the problem

cDqx(t) + g(t) = , t ∈ [, ],  < q ≤ , (.)

x() = x(), ξx′() – ηx′() = ζx(/), (.)

is equivalent to the fractional integral equation

x(t) = –
∫ t



(t – s)q–

�(q)
g(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
g(s) ds

+
∫ 





( 
 – s)q–

�(q)
g(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
g(s) ds. (.)

Proof By Lemma ., the solution of the fractional differential equation (.) can be writ-
ten as

x(t) = –
∫ t



(t – s)q–

�(q)
g(s) ds + b + bt, (.)

where b, b ∈R are unknown arbitrary constants. Using the first condition given by (.)
in (.) gives

b =
∫ 



( – s)q–

�(q)
g(s) ds. (.)

From (.), for t ∈ [, ], we have

x′(t) = –
∫ t



(t – s)q–

�(q – )
g(s) ds + b = –Iq–g(t) + b. (.)

As argued in [], for q –  ∈ (, ), Iq– maps L(, ) into Fq–
 (, ), and thus x′ ∈ Fq–

 (, ),
where Fq–

 (, ) = {w ∈ L(, ) : I–qw ∈ AC[, ] and I–qw() = }. Thus, Iq–g() = , and
hence x′() = b. Further, for g ∈ AC[, ] with ‖g‖ = sup{|g(t)|, t ∈ [, ]}, we have

∣∣
∣∣

∫ t



(t – s)q–g(s)
�(q – )

ds
∣∣
∣∣ ≤ ‖g‖ tq–

�(q)
< ∞ for each t ∈ [, ],
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which, together with finiteness of b, implies that max{x′(t) : t ∈ [, ]} is finite. Next, using
the second condition given by (.) in (.) together with (.), we find that

b =
(

–



+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
g(s) ds

+
∫ 





( 
 – s)q–

�(q)
g(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
g(s) ds. (.)

Substituting the values of b and b into (.) completes the solution (.). Conversely,
in view of Lemma .(b), (c) and using the condition that g ∈ AC[, ], we have cDqx(t) =
I–qx′′(t) = –I–qD–qg(t) = –g(t), where we have used Remark . and Lemma .(ii) of
[]. By direct computation it follows that (.) satisfies the boundary conditions (.).
Thus, (.) satisfies problem (.)-(.). This completes the proof. �

In view of Lemma ., the solution of problem (.) can be expressed in terms of Green’s
function as

x(t) =
∫ 



[
G(t, s) + G(t, s)

]
f
(
s, x(s)

)
ds, (.)

where

G(t, s; q) =

{
t(–s)q–

�(q) if  ≤ t ≤ s ≤ ,
– (t–s)q–

�(q) + t(–s)q–

�(q) if  ≤ s ≤ t ≤ ,

and

G(t, s; q) =

⎧
⎨

⎩
(– 

 + ξ–η

ζ
) (–s)q–

�(q) + η

ζ

(–s)q–

�(q–) + ( 
 –s)q–

�(q) if  ≤ s ≤ 
 ,

(– 
 + ξ–η

ζ
) (–s)q–

�(q) + η

ζ

(–s)q–

�(q–) if 
 ≤ s ≤ .

Remark . For q = , the expressions G(t, s; q) and G(t, s; q) correspond to the ones
associated with a second-order three-point problem discussed in [].

Let D = C([, ],R) denote the Banach space of all continuous functions from [, ] into
R endowed with the usual norm ‖x‖ = sup{|x(t)|, t ∈ [, ]}.

In order to transform problem (.) to a fixed point problem, we define the operator
W : D →D as

(Wx)(t) = –
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f
(
s, x(s)

)
ds

+
∫ 





( 
 – s)q–

�(q)
f
(
s, x(s)

)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
f
(
s, x(s)

)
ds. (.)

In the sequel, we use

σ =
 + ξ /ζ + –q

�(q + )
+

η

ζ�(q)
. (.)
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2.1 Existence results
In this subsection, we present our main results. The first result relies on Banach’s contrac-
tion mapping principle.

Theorem . Let f : [, ] ×R →R be a continuous function satisfying the Lipschitz con-
dition:

(H) |f (t, x) – f (t, y)| ≤ �|x – y|, ∀t ∈ [, ], x, y ∈R, � > .

Then problem (.) has a unique solution if �σ < , where σ is given by (.).

Proof Let us set supt∈[,] |f (t, )| = υ and show that WBr ⊂ Br , where Br = {x ∈ D :
‖x‖ ≤ r} with r > συ( – σ�)– and W is defined by (.). For x ∈ Br and t ∈ [, ], using
|f (s, x(s))| = |f (s, x(s)) – f (s, ) + f (s, )| ≤ �r + υ , we get

∥∥(Wx)
∥∥ ≤ sup

t∈[,]

{∫ t



(t – s)q–

�(q)
∣∣f

(
s, x(s)

)
– f (s, ) + f (s, )

∣∣ds

+
∣∣
∣∣t –




+
ξ – η

ζ

∣∣
∣∣

∫ 



( – s)q–

�(q)
∣
∣f

(
s, x(s)

)
– f (s, ) + f (s, )

∣
∣ds

+
∫ 





( 
 – s)q–

�(q)
∣
∣f

(
s, x(s)

)
– f (s, ) + f (s, )

∣
∣ds

+
η

ζ

∫ 



( – s)q–

�(q – )
∣∣f

(
s, x(s)

)
– f (s, ) + f (s, )

∣∣ds
}

≤ (�r + υ) sup
t∈[,]

{∫ t



(t – s)q–

�(q)
ds +

∣∣
∣∣t –




+
ξ – η

ζ

∣∣
∣∣

∫ 



( – s)q–

�(q)
ds

+
∫ 





( 
 – s)q–

�(q)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
ds

}

≤ (�r + υ)σ ≤ r,

which implies that WBr ⊂ Br , where we have used (.). Now, for x, y ∈ D and for each
t ∈ [, ], we obtain

‖Wx – Wy‖ ≤ sup
t∈[,]

{∫ t



(t – s)q–

�(q)
∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
∣∣
∣∣t –




+
ξ – η

ζ

∣∣
∣∣

∫ 



( – s)q–

�(q)
∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
∫ 





( 
 – s)q–

�(q)
∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
η

ζ

∫ 



( – s)q–

�(q – )
∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds
}

≤ �σ‖x – y‖.

Since �σ <  by the given assumption, the operator W is a contraction. Thus, by Banach’s
contraction mapping principle there exists a unique solution for problem (.). This com-
pletes the proof. �
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The next existence result is based on the following fixed point theorem.

Theorem . Let X be a Banach space. Assume that T : X → X is a completely continuous
operator and the set

V = {u ∈ X|u = μTu,  < μ < }

is bounded. Then T has a fixed point in X.

Theorem . Let f : [, ] ×R → R be a continuous function. Suppose that there exists a
positive constant M such that |f (t, x)| ≤ M for t ∈ [, ], x ∈ R. Then problem (.) has at
least one solution.

Proof We first show that the operator W is completely continuous. Obviously, the conti-
nuity of the operator W follows from the continuity of f . Let B ⊂D be a bounded set. By
the assumption |f (t, x)| ≤ M for x ∈ B we have

∣∣(Wx)(t)
∣∣ ≤

∫ t



(t – s)q–

�(q)
∣∣f

(
s, x(s)

)∣∣ds +
∣
∣∣
∣t –




+
ξ – η

ζ

∣
∣∣
∣

∫ 



( – s)q–

�(q)
∣∣f

(
s, x(s)

)∣∣ds

+
∫ 





( 
 – s)q–

�(q)
∣∣f

(
s, x(s)

)∣∣ds +
η

ζ

∫ 



( – s)q–

�(q – )
∣∣f

(
s, x(s)

)∣∣ds

≤ M
[∫ t



(t – s)q–

�(q)
ds +

∣
∣∣∣t –




+
ξ – η

ζ

∣
∣∣∣

∫ 



( – s)q–

�(q)
ds

+
∫ 





( 
 – s)q–

�(q)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
ds

]

≤ Mσ = M, (.)

which implies that ‖(Wx)‖ ≤ M. Further, we find that

∣
∣(Wx)′(t)

∣
∣ ≤

∫ t



(t – s)q–

�(q – )
∣
∣f

(
s, x(s)

)∣∣ds +
∫ 



( – s)q–

�(q)
∣
∣f

(
s, x(s)

)∣∣ds

≤ M
[∫ t



(t – s)q–

�(q – )
ds +

∫ 



( – s)q–

�(q)
ds

]

≤ M(q + )
�(q + )

= M. (.)

Hence, for t, t ∈ [, ], we have

∣∣(Wx)(t) – (Wx)(t)
∣∣ ≤

∫ t

t

∣∣(Wx)′(s)
∣∣ds ≤ M(t – t).

This implies that W is equicontinuous on [, ]. Thus, by the Arzelà-Ascoli theorem the
operator W : D →D is completely continuous.

Next, we consider the set

A = {x ∈D|x = νWx,  < ν < }
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and show that the set A is bounded. Let x ∈ A; then x = νWx,  < ν < . For any t ∈ [, ],
we have

x(t) = –
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f
(
s, x(s)

)
ds

+
∫ 





( 
 – s)q–

�(q)
f
(
s, x(s)

)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
f
(
s, x(s)

)
ds (.)

and |x(t)| = ν|(Wx)(t)| ≤ |(Wx)(t)| ≤ Mσ = M for any t ∈ [, ]. So, the set A is bounded.
Thus, the conclusion of Theorem . applies, and the operator W has at least one fixed
point. This, in turn, implies that problem (.) has at least one solution on [, ]. �

Now we show the existence of solutions for problem (.) by means of Leray-Schauder
degree theory.

Theorem . Let f : [, ] × R → R be a continuous function. Suppose that there exist
constants  ≤ � < /σ and N >  such that |f (t, x)| ≤ �|x| + N for all t ∈ [, ], x ∈D. Then
problem (.) has at least one solution.

Proof Define a ball BR ⊂D with radius R >  by

BR =
{

x ∈D : max
t∈[,]

∣
∣x(t)

∣
∣ < R

}
,

where R will be fixed later. Then, it is enough to show that the operator W : BR →D (given
by (.)) is such that

x 
= λWx, ∀x ∈ ∂BR and ∀λ ∈ [, ]. (.)

Now we set

K(λ, x) = λWx, x ∈ C(R),λ ∈ [, ].

Then, by the Arzelà-Ascoli theorem, ωλ(x) = x – K(λ, x) = x – λWx is completely contin-
uous. If the condition (.) holds, then the following Leray-Schauder degrees are well
defined, and by the homotopy invariance of topological degree we have that

deg(ωλ, BR, ) = deg(I – λW , BR, ) = deg(ω, BR, )

= deg(ω, BR, ) = deg(I, BR, ) =  
= ,  ∈ BR,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree,
ω(t) = x – λWx =  for at least one x ∈ BR. In order to justify condition (.), we assume
that x = λWx for some λ ∈ [, ] and for all t ∈ [, ], so that

∣∣x(t)
∣∣ =

∣∣λWx(t)
∣∣

≤
∫ t



(t – s)q–

�(q)
∣
∣f

(
s, x(s)

)∣∣ds +
(

t –



+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
∣
∣f

(
s, x(s)

)∣∣ds
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+
∫ 





( 
 – s)q–

�(q)
∣
∣f

(
s, x(s)

)∣∣ds +
η

ζ

∫ 



( – s)q–

�(q – )
∣
∣f

(
s, x(s)

)∣∣ds

≤ (
�‖x‖ + N

)
{∫ t



(t – s)q–

�(q)
ds +

∣
∣∣
∣t –




+
ξ – η

ζ

∣
∣∣
∣

∫ 



( – s)q–

�(q)
ds

+
∫ 





( 
 – s)q–

�(q)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
ds

}
,

which, on taking the norm over the interval [, ], yields

‖x‖ ≤ (
�‖x‖ + N

)
σ ,

where σ is given by (.). In consequence we have

‖x‖ ≤ σN
 – �σ

.

Letting R = σN/( – �σ ) + , (.) holds. This completes the proof. �

The next result is based on Krasnoselskii’s fixed point theorem [].

Theorem . Let f : [, ] ×R →R be a continuous function satisfying (H) and

(H) |f (t, x)| ≤ μ(t), ∀(t, x) ∈ [, ] ×R, and μ ∈ C([, ],R+).

Then problem (.) has at least one solution on [, ] if

 + ξ /ζ + –q

�(q + )
+

η

ζ�(q)
< . (.)

Proof For r ≥ ‖μ‖ρ , let us define a closed set (ball) Br = {x ∈ D : ‖x‖ ≤ r} and introduce
the operators W and W on Br defined as

(Wx)(t) = –
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds,

(Wx)(t) =
(

t –



+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f
(
s, x(s)

)
ds

+
∫ 





( 
 – s)q–

�(q)
f
(
s, x(s)

)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
f
(
s, x(s)

)
ds.

For x, y ∈ Br , it is easy to show that ‖(Wx) + (Wy)‖ ≤ ‖μ‖σ ≤ r, where σ is given by
(.). This implies that Wx + Wy ∈ Br .

In view of condition (.), the operator W is a contraction. The continuity of the op-
erator W follows from that of f . Also, ‖Wx‖ ≤ ‖μ‖/�(q + ) implies that W is uniformly
bounded on Br . Furthermore, with sup(t,x)∈[,]×Br |f (t, x)| = fb < ∞ and t, t ∈ (, ], we
have

∥
∥(Wx)(t) – (Wx)(t)

∥
∥ ≤ fb

�(q + )
(∣∣tq

 – tq

∣
∣ + 

(|t – t|
)q) → ,
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independent of x as t → t. This shows that W is relatively compact on Br . Hence, we
infer by the Arzelà-Ascoli theorem that W is compact on Br . Thus, all the conditions
of Krasnoselskii’s fixed point theorem are satisfied. Hence, problem (.) has at least one
solution on [, ]. This completes the proof. �

Finally, we apply the Leray-Schauder nonlinear alternative to show the existence of so-
lutions for problem (.).

Lemma . (Nonlinear alternative for single-valued maps []) Let E be a Banach space,
E a closed, convex subset of E, V an open subset of E, and  ∈ V . Suppose that U : V → E

is a continuous compact (that is, U (V ) is a relatively compact subset of E) map. Then
either

(i) U has a fixed point in V , or
(ii) there are an x ∈ ∂V (the boundary of V in E) and κ ∈ (, ) with x = κU (x).

Theorem . Let f : [, ] ×R →R be a continuous function. Further, assume that

(H) there exist a function p ∈ C([, ],R+) and a nondecreasing function ψ : R+ →R
+ such

that |f (t, x)| ≤ p(t)ψ(‖x‖), ∀(t, x) ∈ [, ] ×R;
(H) there exists a constant M >  such that

M
ψ(M)‖p‖σ > ,

where σ is given by (.).

Then problem (.) has at least one solution on [, ].

Proof As a first step, we show that the operatorW : D →D defined by (.) maps bounded
sets into bounded sets in D. For a positive number r, let Br = {x ∈ D : ‖x‖ ≤ r} be a
bounded set in D. Then, for x ∈ Br together with (H) and (H), we obtain

∣
∣(Wx)(t)

∣
∣ ≤

∫ t



(t – s)q–

�(q)
p(s)ψ

(‖x‖)ds +
∣∣
∣∣t –




+
ξ – η

ζ

∣∣
∣∣

∫ 



( – s)q–

�(q)
p(s)ψ

(‖x‖)ds

+
∫ 





( 
 – s)q–

�(q)
p(s)ψ

(‖x‖)ds +
η

ζ

∫ 



( – s)q–

�(q – )
p(s)ψ

(‖x‖)ds

≤ ‖p‖σψ(r) < r.

Next, we will show that W maps bounded sets into equicontinuous sets of D. Let t, t ∈
[, ] and x ∈ Br . Then

∣∣(Wx)(t) – (Wx)(t)
∣∣

=
∣∣
∣∣–

∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds +

∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds

+ (t – t)
∫ 



( – s)q–

�(q)
f
(
s, x(s)

)
ds

∣
∣∣
∣

≤ ψ(r)‖p‖
�(q + )

(∣∣tq
 – tq


∣
∣ + 

(|t – t|
)q + |t – t|

)
.
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Clearly, the right-hand side of this inequality tends to zero independently of x ∈ Br as
t → t. Thus, by the Arzelà-Ascoli theorem, the operator W is completely continuous.

Let x be a solution for the given problem. Then, for λ ∈ (, ), as before, we obtain

‖x‖ = sup
t∈[,]

∣∣λ(Wx)(t)
∣∣ ≤ ψ

(‖x‖)‖p‖σ .

In view of (H), there exists M such that ‖x‖ 
= M. Let us choose P = {x ∈D : ‖x‖ < M + }.
Notice that the operator W : P → D is continuous and completely continuous. From

the choice of P , there is no x ∈ ∂P such that x = λW(x) for some λ ∈ (, ). Consequently,
the conclusion of Lemma . applies, and hence the operator W has a fixed point x ∈P ,
which is a solution of problem (.). This completes the proof. �

2.2 Examples
Consider the three-point boundary value problem of nonlinear fractional differential
equations

cD/x(t) + f
(
t, x(t)

)
= , t ∈ [, ],  < q ≤ , (.)

x() = x(),



x′() –



x′() =



x(/), (.)

where q = /, ξ = /, η = /, ζ = /. Clearly, ξ /ζ > (/ + η/ζ ) and

σ =
 + ξ /ζ + –q

�(q + )
+

η

ζ�(q)
� .. (.)

(a) In (.), let us choose any continuous function f (t, x(t)) such that |f (t, x) – f (t, y)| ≤
�|x – y|, ∀t ∈ [, ], x, y ∈ R with � < /σ , where σ is given by (.). Then problem (.)-
(.) has a unique solution on [, ] by Theorem .. For instance, for f (t, x) = e–t(–t)(|x| +
tan– x + )/, it is clear that � = / < /σ � ..

(b) We take f (t, x) in (.) such that |f (t, x)| ≤ p(t)ψ(‖x‖) with ‖p‖ = p and ψ(‖x‖) =
 + a‖x‖, where p and a are appropriate real numbers. Then, by condition (H) we find
that

M >
pσ

( – paσ )
,

where σ is given by (.). Then the conclusion of Theorem . applies, and hence prob-
lem (.)-(.) with the given value of f (t, x) has at least one solution on [, ]. In par-
ticular, by taking f (t, x) = 

 ( + t – t)[(cos(t( – t)) + ) sin |x|/ + e–t(–t)] we find that
|f (t, x)| ≤ 

 ( + t – t)( + ‖x‖/), p = /, a = /, and M > ..

3 Multivalued case
In this section, we consider the multivalued variant of problem (.)

cDqx(t) ∈ –F
(
t, x(t)

)
, t ∈ [, ],  < q ≤ ,

x() = x(), ξx′() – ηx′() = ζx(/), (.)
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where F : [, ] × R → P(R) is a compact-valued map, and P(R) is the family of all
nonempty subsets of R. We discuss the existence of solutions for problem (.) when the
multivalued map F(t, x(t)) is convex or nonconvex set-valued by using the nonlinear alter-
native of Leray-Schauder type and a fixed point theorem for generalized contractions due
to Wegrzyk.

3.1 Some definitions
This subsection is devoted to some basic definitions on multivalued maps [, ].

Definition . Let (X ,‖·‖) be a normed space, and let P(X ) = {Y ⊆ X : Y 
= ∅}, Pb(X ) =
{Y ∈ P(X ) : Y is bounded}, and Pcl(X ) = {Y ∈ P(X ) : Y is closed}. Then a multivalued
map H : X →P(X )

(a) is convex (closed) valued if H(x) is convex (closed) for all x ∈X ;
(b) is bounded on bounded sets if H(B) = ∪x∈BH(x) is bounded in X for all B ∈ Pb(X )

(i.e., supx∈B{sup{|y| : y ∈H(x)}} < ∞);
(c) is called upper semicontinuous (u.s.c.) on X if for each x ∈X , the set H(x) is a

nonempty closed subset of X and if for each open set N of X containing H(x),
there exists an open neighborhood N of x such that H(N) ⊆ N ;

(d) is said to be completely continuous if H(B) is relatively compact for every B ∈ Pb(X );
(e) has a fixed point if there is x ∈X such that x ∈H(x).

The fixed point set of a multivalued operator H will be denoted by FixH.

Remark . It is known that if a multivalued map H is completely continuous with
nonempty compact values, then G is u.s.c. if and only if H has a closed graph, that is,
xn → x∗, yn → y∗, yn ∈H(xn) imply y∗ ∈H(x∗).

Definition . A multivalued map H : [; ] → Pcl(R) is said to be measurable if for every
y ∈ R, the function t �−→ d(y,H(t)) = inf{‖y – z‖ : z ∈H(t)} is measurable.

Definition . A multivalued map F : [, ] ×R→P(R) is said to be Carathéodory if (a)
t �−→ F(t, x) is measurable for each x ∈R and (ii) x �−→ F(t, x) is upper semicontinuous for
almost all t ∈ [, ]. Further, a Carathéodory function F is called L-Carathéodory if

(iii) for each a > , there exists ϕa ∈ L([, ],R+) such that

∥
∥F(t, x)

∥
∥ = sup

{|v| : v ∈ F(t, x)
} ≤ ϕa(t)

for all ‖x‖ ≤ a and for a.e. t ∈ [, ].

For each y ∈ C([, ],R), define the set of selections of F by

SF ,y :=
{

v ∈ L([, ],R
)

: v(t) ∈ F
(
t, y(t)

)
for a.e. t ∈ [, ]

}
.

We denote by C([, ]) the Banach space of continuous functions from [, ] into R

with the norm ‖x‖∞ = supt∈[,] |x(t)|. Let L([, ],R) be the Banach space of Lebesgue-
measurable and integrable functions x : [, ] →R with norm ‖x‖L =

∫ 
 |x(t)|dt.

Definition . A function x ∈ AC([, ],R) is a solution of problem (.) if there exists a
function f ∈ L([, ],R) such that f (t) ∈ F(t, x(t)) a.e. on [, ] and
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x(t) = –
∫ t



(t – s)q–

�(q)
f (s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f (s) ds

+
∫ 





( 
 – s)q–

�(q)
f (s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f (s) ds.

3.2 Convex set-valued case
In our first result, we need the following lemmas.

Lemma . (Nonlinear alternative of Leray-Schauder type []) Let C be a convex set in a
normed space, and U ⊂ C be open with  ∈ U . Then each compact and upper semicontin-
uous mapping � : U → P(C) with compact convex values that is fixed point free on ∂U has
at least one of the following two properties: (a) � has a fixed point; (b) there exist x ∈ ∂U
and λ ∈ (, ) such that x ∈ λ�(x).

Lemma . (Arzelà-Ascoli theorem []) A subset of C([, ],R) is relatively compact if
and only if it is bounded and equicontinuous.

Lemma . ([]) Let X be a Banach space. Let F : [; ] × R → Pcp,c(X) be an L-
Carathéodory multivalued map, and let � be a linear continuous mapping from
L([, ], X) to C([, ], X). Then the operator

� ◦ SF : C
(
[, ], X

) → Pcp,c
(
C

(
[, ], X

))
, x �→ (� ◦ SF )(x) = �(SF ,x),

is a closed graph operator in C([, ], X) × C([, ], X), where Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}.

Theorem . Assume that

(H) F : [, ] ×R →P(R) is L-Carathéodory and has compact and convex values;
(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function

p ∈ C([, ],R+) such that

∥∥F(t, x)
∥∥
P := sup

{|y| : y ∈ F(t, x)
} ≤ p(t)ψ

(|x|) for all (t, x) ∈ [, ] ×R;

(H) there exists a number M >  such that

M
ψ(M)‖p‖∞

[
( + ξ /ζ + –q)

�(q + )
+

η

ζ�(q)

]–

> .

Then the boundary value problem (.) has at least one solution on [, ].

Proof Define the operator � : C([, ],R) →P(C([, ],R)) by

�(x) =
{
h ∈ C

(
[, ],R

)
: h(t) = –

∫ t



(t – s)q–

�(q)
f (s) ds

+
(

t –



+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f (s) ds

+
∫ 





( 
 – s)q–

�(q)
f (s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f (s) ds, f ∈ SF ,x

}
. (.)
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We will show that the operator � satisfies the assumptions of Lemma .. The proof con-
sists of several steps. In the first step, we show that �(x) is convex for each x ∈ C([, ],R).
For that, let h,h ∈ �(x). Then there exist f, f ∈ SF ,x such that for each t ∈ [, ], we have

hi(t) = –
∫ t



(t – s)q–

�(q)
fi(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
fi(s) ds

+
∫ 





( 
 – s)q–

�(q)
fi(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
fi(s) ds, i = , .

Let  ≤ λ ≤ . Then, for each t ∈ [, ], we have

[
λh + ( – λ)h

]
(t) = –

∫ t



(t – s)q–

�(q)
[
λf(s) + ( – λ)f(s)

]
ds

+
(

t –



+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
[
λf(s) + ( – λ)f(s)

]
ds

+
∫ 





( 
 – s)q–

�(q)
[
λf(s) + ( – λ)f(s)

]
ds

+
η

ζ

∫ 



( – s)q–

�(q – )
[
λf(s) + ( – λ)f(s)

]
ds.

Since SF ,x is convex (F has convex values), it follows that λh + ( – λ)h ∈ �(x).
Next, we show that � maps bounded sets into bounded sets in C([, ],R). For a positive

number r, let Br = {x ∈ C([, ],R) : ‖x‖∞ ≤ r} be a bounded set in C([, ],R). Then, for
each h ∈ �(x), x ∈ Br , there exists f ∈ SF ,x such that

h(t) = –
∫ t



(t – s)q–

�(q)
f (s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f (s) ds

+
∫ 





( 
 – s)q–

�(q)
f (s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f (s) ds,

and, as in Section , we can get

‖h‖∞ ≤
[

( + ξ /ζ + –q)
�(q + )

+
η

ζ�(q)

]
‖p‖∞ψ(r).

Now we show that � maps bounded sets into equicontinuous sets in C([, ],R). Let
τ, τ ∈ [, ] with τ < τ and x ∈ Br , where Br is a bounded set in C([, ],R). For each
h ∈ �(x), we obtain

∣
∣h(τ) – h(τ)

∣
∣ ≤ ψ(r)‖p‖∞

�(q + )
(∣∣τ q

 – τ
q

∣
∣ + 

(|τ – τ|
)q + |τ – τ|

)
.

Obviously the right-hand side of this inequality tends to zero independently of x ∈ Br as
τ – τ → . In view of the above three steps, it follows by Lemma . that � is completely
continuous.

Now we show that � has a closed graph. Let xn → x∗, hn ∈ �(xn), and hn → h∗. Then
we need to show that h∗ ∈ �(x∗). Associated with hn ∈ �(xn), there exists fn ∈ SF ,xn such
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that for each t ∈ [, ],

hn(t) = –
∫ t



(t – s)q–

�(q)
fn(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
fn(s) ds

+
∫ 





( 
 – s)q–

�(q)
fn(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
fn(s) ds.

Thus, we have to show that there exists f∗ ∈ SF ,x∗ such that for each t ∈ [, ],

h∗(t) = –
∫ t



(t – s)q–

�(q)
f∗(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f∗(s) ds

+
∫ 





( 
 – s)q–

�(q)
f∗(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f∗(s) ds.

Consider the continuous linear operator � : L([, ],R) → C([, ],R) given by

f �→ �(f )(t) = –
∫ t



(t – s)q–

�(q)
f (s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f (s) ds

+
∫ 





( 
 – s)q–

�(q)
f (s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f (s) ds.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥
∥∥∥–

∫ t



(t – s)q–

�(q)
(
fn(s) – f∗(s)

)
ds

+
(

t –



+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
(
fn(s) – f∗(s)

)
ds

+
∫ 





( 
 – s)q–

�(q)
(
fn(s) – f∗(s)

)
ds

+
η

ζ

∫ 



( – s)q–

�(q – )
(
fn(s) – f∗(s)

)
ds

∥
∥∥
∥ →  as n → ∞.

Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ �(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) = –
∫ t



(t – s)q–

�(q)
f∗(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f∗(s) ds

+
∫ 





( 
 – s)q–

�(q)
f∗(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f∗(s) ds

for some f∗ ∈ SF ,x∗ .
In the last step, we discuss a priori bounds on solutions. Let x be a solution of (.). Then

there exists f ∈ L([, ],R) with f ∈ SF ,x such that, for t ∈ [, ], we have

x(t) = –
∫ t



(t – s)q–

�(q)
f (s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
f (s) ds

+
∫ 





( 
 – s)q–

�(q)
f (s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
f (s) ds.
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In view of (H), for each t ∈ [, ], we obtain

∣∣x(t)
∣∣ ≤

[
( + ξ /ζ + –q)

�(q + )
+

η

ζ�(q)

]
‖p‖∞ψ

(‖x‖∞
)
.

Consequently, it follows that

M
ψ(M)‖p‖∞

[
( + ξ /ζ + –q)

�(q + )
+

η

ζ�(q)

]–

≤ .

By (H) there exists M such that ‖x‖∞ 
= M. Let us set

U =
{

x ∈ C
(
[, ],R

)
: ‖x‖∞ < M

}
.

Note that the operator � : U → P(C([, ],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ μ�(x) for some μ ∈
(, ). Consequently, by Lemma . we deduce that � has a fixed point x ∈ U , which is a
solution of problem (.). This completes the proof. �

3.3 Nonconvex set-valued case
In this subsection, we show the existence of solutions for the inclusion problem (.) with
the right-hand side being nonconvex set-valued map by applying Wegrzyk’s fixed point
theorem. We first introduce the necessary background material.

Let (X , d) be a metric space, and Pb,cl(X ) = {Y ∈P(X ) : Y is bounded and closed}.
Consider Hd : P(X ) ×P(X ) →R∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

,

where d(a, B) = infb∈B d(a, b). The map Hd is the (generalized) Pompeiu-Hausdorff func-
tional. It is known that (Pb,cl(X ), Hd) is a metric space and (Pcl(X ), Hd) is a generalized
metric space (see []).

Definition . A function δ : R+ → R+ is said to be a strict comparison function (see
[]) if it is continuous strictly increasing and

∑∞
n= δn(t) < ∞ for each t > .

Definition . A multivalued operator Q : X → Pcl(X ) is called
(a) ε-Lipschitz if and only if there exists ε >  such that

Hd
(
Q(x),Q(y)

) ≤ εd(x, y) for each x, y ∈X ;

(b) a contraction if and only if it is ε-Lipschitz with ε < ;
(c) a generalized contraction if and only if there is a strict comparison function

δ : R+ →R+ such that

Hd
(
Q(x),Q(y)

) ≤ δ
(
d(x, y)

)
for each x, y ∈X .

Lemma . (Wegrzyk’s fixed point theorem []) Let (X, d) be a complete metric space.
If Q : X → Pcl(X) is a generalized contraction, then FixQ 
= ∅.
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Theorem . Assume that the following conditions hold:

(H) F : [, ] × R → Pcp(R) is such that F(·, x) : [, ] → Pcp(R) is measurable for each
x ∈ R.

(H) Hd(F(t, x), F(t, x̄)) ≤ κ(t)δ(|x – x̄|) for almost all t ∈ [, ] and x, x̄ ∈ R with a function
κ ∈ C([, ],R+) and d(, F(t, )) ≤ κ(t) for almost all t ∈ [, ], where δ : R+ → R+ is
strictly increasing.

Then problem (.) has at least one solution on [, ] if εδ : R+ →R+ is a strict comparison
function, where

ε =
(

( + ξ /ζ + –q)
�(q + )

+
η

ζ�(q)

)
‖κ‖∞.

Proof Suppose that εδ : R+ → R+ is a strict comparison function. It follows by assump-
tions (H) and (H) that F(·, x(·)) is measurable and has a measurable selection v(·) (see
Theorem III. []). Also, κ ∈ C([, ],R) and

∣∣v(t)
∣∣ ≤ d

(
, F(t, )

)
+ Hd

(
F(t, ), F

(
t, x(t)

))

≤ κ(t) + κ(t)δ
(∣∣x(t)

∣
∣)

≤ (
 + δ

(‖x‖∞
))

κ(t).

Thus, the set SF ,x is nonempty for each x ∈ C([, ],R). Now we show that the oper-
ator � defined by (.) satisfies the assumptions of Lemma .. To show that �(x) ∈
Pcl((C[, ],R)) for each x ∈ C([, ],R), let {un}n≥ ∈ �(x) be such that un → u (n → ∞)
in C([, ],R). Then u ∈ C([, ],R), and there exists vn ∈ SF ,x such that, for each t ∈ [, ],

un(t) = –
∫ t



(t – s)q–

�(q)
vn(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
vn(s) ds

+
∫ 





( 
 – s)q–

�(q)
vn(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
vn(s) ds.

Since F has compact values, we pass onto a subsequence to obtain that vn converges to v
in L([, ],R). Thus, v ∈ SF ,x, and for each t ∈ [, ],

un(t) → u(t) = –
∫ t



(t – s)q–

�(q)
v(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
v(s) ds

+
∫ 





( 
 – s)q–

�(q)
v(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
v(s) ds.

Hence, u ∈ �(x).
Next, we show that

Hd
(
�(x),�(x̄)

) ≤ εδ
(‖x – x̄‖∞

)
for all x, x̄ ∈ C

(
[, ],R

)
.
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Let x, x̄ ∈ C([, ],R) and h ∈ �(x). Then there exists v(t) ∈ SF ,x such that, for each t ∈
[, ],

h(t) = –
∫ t



(t – s)q–

�(q)
v(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
v(s) ds

+
∫ 





( 
 – s)q–

�(q)
v(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
v(s) ds.

By (H) we have

Hd
(
F(t, x), F(t, x̄)

) ≤ κ(t)δ
(∣∣x(t) – x̄(t)

∣
∣).

So, there exists w ∈ F(t, x̄(t)) such that

∣
∣v(t) – w

∣
∣ ≤ κ(t)δ

(∣∣x(t) – x̄(t)
∣
∣), t ∈ [, ].

Define V : [, ] →P(R) by

V (t) =
{

w ∈R :
∣
∣v(t) – w

∣
∣ ≤ κ(t)δ

(∣∣x(t) – x̄(t)
∣
∣)}.

Since the nonempty closed set-valued operator V (t) ∩ F(t, x̄(t)) is measurable (Propo-
sition III. []), there exists a function v(t) that is a measurable selection for V (t) ∩
F(t, x̄(t)). So v(t) ∈ F(t, x̄(t)), and for each t ∈ [, ], we have |v(t) – v(t)| ≤ κ(t)δ(|x(t) –
x̄(t)|).

For each t ∈ [, ], let us define

h(t) = –
∫ t



(t – s)q–

�(q)
v(s) ds +

(
t –




+
ξ – η

ζ

)∫ 



( – s)q–

�(q)
v(s) ds

+
∫ 





( 
 – s)q–

�(q)
v(s) ds +

η

ζ

∫ 



( – s)q–

�(q – )
v(s) ds.

Thus,

∣
∣h(t) – h(t)

∣
∣ ≤

∫ t



(t – s)q–

�(q)
∣
∣v(s) – v(s)

∣
∣ds

+
∣∣∣
∣t –




+
ξ – η

ζ

∣∣∣
∣

∫ 



( – s)q–

�(q)
∣∣v(s) – v(s)

∣∣ds

+
∫ 





( 
 – s)q–

�(q)
∣
∣v(s) – v(s)

∣
∣ds +

η

ζ

∫ 



( – s)q–

�(q – )
∣
∣v(s) – v(s)

∣
∣ds

≤
(

( + ξ /ζ + –q)
�(q + )

+
η

ζ�(q)

)
‖κ‖∞δ

(‖x – x‖∞
)
.

Hence,

‖h – h‖∞ ≤
(

( + ξ /ζ + –q)
�(q + )

+
η

ζ�(q)

)
‖κ‖∞δ

(‖x – x‖∞
)
.
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Analogously, interchanging the roles of x and x, we obtain

Hd
(
�(x),�(x̄)

) ≤ εδ
(‖x – x̄‖∞

)
=

(
( + ξ /ζ + –q)

�(q + )
+

η

ζ�(q)

)
‖κ‖∞δ

(‖x – x‖∞
)

for all x, x̄ ∈ C([, ],R). Therefore, � is a generalized contraction. Thus, it follows by
Lemma . that � has a fixed point x, which is a solution of (.). This completes the
proof. �

Remark . It is interesting to note that Theorem . holds for several values of the
strictly increasing function δ : R+ → R+. In particular, by choosing δ(y) = y in Theo-
rem . we obtain its conventional Lipschitz form.

3.4 Examples
Consider the following multivalued boundary value problem

cD/x(t) ∈ –F
(
t, x(t)

)
, t ∈ [, ],

x() = x(),



x′() –



x′() =



x(/), (.)

where q = /, ξ = /, η = /, ζ = /. With the given data, we find that

 + ξ /ζ + –q

�(q + )
+

η

ζ�(q)
� .. (.)

(a) Convex set-valued case. In this case, we choose F(t, x) in (.) as

F(t, x) =
[ |x|

(|x| + )
+




[
sin(t( – t)

)
+ 

]
,




e–t(–t) cos x
]

. (.)

For f ∈ F , we have

|f | ≤ max

{ |x|
(|x| + )

+



[
sin(t( – t)

)
+ 

]
,




e–t(–t) cos x
}

, x ∈R, t ∈ [, ].

Thus,

∥
∥F(t, x)

∥
∥
P := sup

{|y| : y ∈ F(t, x)
} ≤ 


, x ∈R,

with p(t) = , ψ(‖x‖) = /. Further, using condition (H), we find that M > M � ..
Clearly, all the conditions of Theorem . are satisfied. So there exists at least one solution
of problem (.) with F(t, x) given by (.) on [, ].

(b) Nonconvex set-valued case. Let F : [, ] ×R →P(R) in (.) be given by

F(t, x) =
[

,
tan– x

[ + t( – t)] + /
]

, (.)

so that

sup
{|u| : u ∈ F(t, x)

} ≤ / +
π

[ + t( – t)] ,
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Hd
(
F(t, x), F(t, x̄)

) ≤ 
[ + t( – t)] |x – x̄|.

Fixing κ(t) = 
[+t(–t)] , we find that

ε =
(

( + ξ /ζ + –q)
�(q + )

+
η

ζ�(q)

)
‖κ‖∞ � .

and

Hd
(
F(t, x), F(t, x̄)

) ≤ κ(t)|x – x̄|,

where δ(y) = y. Thus, all the conditions of Theorem . are satisfied, and hence its con-
clusion applies to problem (.) with F(t, x) given by (.).

Remark . (An important consequence) In the limit q → –, our results correspond to
the ones for a symmetric three-point second-order boundary value problem by taking the
nonlinear functions f (t, x) and F(t, x) to be symmetric on [, ] and for all x ∈R. In [], the
authors discussed the symmetric positive solutions for a singular three-point boundary
value problem. However, our (deduced) results in case of q → – are new.

Remark . Replacing the condition ξx′()–ηx′() = ζx(/) with ξx′()–ηx′() = ζx(β),
 < β <  in (.), we get a more flexible problem, which allows the unknown function x
to take its value at an arbitrary position β ∈ (, ). In this case, the integral solution of the
resulting problem is

x(t) = –
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds +

(
t – β +

ξ – η

ζ

)∫ 



( – s)q–

�(q)
f
(
s, x(s)

)
ds

+
∫ β



(β – s)q–

�(q)
f
(
s, x(s)

)
ds +

η

ζ

∫ 



( – s)q–

�(q – )
f
(
s, x(s)

)
ds.

Existence results for this new nonlocal problem can be obtained by following the proce-
dure used in Sections  and .
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