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Abstract
We investigate the existence of mild solutions for abstract semilinear measure driven
equations with nonlocal conditions. We first establish some results on Kuratowski
measure of noncompactness in the space of regulated functions. Then we obtain
some existence results for the abstract measure system by using the measure of
noncompactness and a corresponding fixed point theorem. The usual Lipschitz-type
assumptions are avoided, and the semigroup related to the linear part of the system is
not claimed to be compact, which improves and generalizes some known results in
the literature.
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1 Introduction
In this paper, we consider the following semilinear measure driven differential system with
nonlocal condition:

dx(t) = Ax(t) + f
(
t, x(t)

)
dg(t), t ∈ J ,

x() = p(x),
()

where J = [, a] with a > . The state variable x(·) takes values in a Banach space X. A :
D(A) ⊆ X → X is the infinitesimal generator of a C-semigroup T(t), t ≥ , and g : J → R is
a nondecreasing left-continuous function; the functions f : J ×X → X and p : G(J ; X) → X
will be specified later, where G(J ; X) denotes the space of regulated functions on J in which
we consider the problem. By dx and dg we denote the distributional derivatives of the
solution and the function g , respectively [, ].

Measure driven differential equations are also called differential equations with mea-
sures or measure differential equations; they arise in many areas of applied mathematics
such as nonsmooth mechanics, game theory, etc. (see [–]). This type of systems cov-
ers some well-known cases up to the difference of g . When g is an absolutely continuous
function, a step function, or the sum of an absolutely continuous function with a step func-
tion, the system corresponds to ordinary differential equations, difference equations, or
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impulsive differential equations, respectively. On the other hand, since measure differen-
tial equations admit discontinuous paths that may exhibit infinitely many discontinuities
in a finite interval, they can model some complex behaviors in dynamic systems, for ex-
ample, Zeno trajectories [].

The nonlocal problem was considered by Byszewski []. This type of systems is more
appropriate than the classical initial value problem to describe real phenomena because
it allows us to consider additional information. In the past few years theorems about the
existence and controllability of differential and functional differential abstract evolution
systems with nonlocal conditions have been fully studied (see [–] and the references
therein).

Measure differential equations were investigated early by [–]. We can refer to the
review paper [] for a complete introduction of measure differential systems. Recently,
the theory of measure differential equations in R

n space has been developed to some ex-
tent (see [, –]). However, to the best of our knowledge, little literatures has been
devoted to measure differential equations in infinite-dimensional spaces except [] and
[, ]. In separable Banach spaces, by applying Hausdorff measure of noncompactness,
the paper [] discussed the existence of solutions for nonlinear measure driven system in
the Kurzweil integral setting (a kind of nonabsolutely convergent integral generalizing the
Lebesgue integral), in which the system can be viewed as a particular case of system ()
in this paper with A =  and p(x) = x. Although some properties of Hausdorff measure
of noncompactness in the space of G(J ; X) were provided in [], those properties are not
intrinsic for G(J ; X) since the function g in the system was involved. Under Lipschitz-type
conditions, [, ] studied the retarded version of nonlinear measure driven system by
means of generalized ordinary differential equations when X = R

n and in the Kurzweil in-
tegral setting. The authors in [] investigated the existence of mild solutions for abstract
semilinear measure driven system without consideration of nonlocal conditions, where
the compactness of the C-semigroup related to the linear part of the system is claimed.
In this paper, for a general Banach space X, we first establish some useful properties of the
Kuratowski measure of noncompactness in the space of regulated functions G(J ; X). Then
we obtain some existence results for semilinear measure driven system with nonlocal con-
ditions () by applying the Kuratowski measure of noncompactness and a corresponding
fixed point theorem. The compactness of the C-semigroup is not demanded in this paper.
In addition, without any assumptions of Lipschitz-type as those in [, ], a similar anal-
ysis to system () can lead to the existence result for nonlinear measure retarded equations
in the Lebesgue integral setting.

This paper is organized as follows. In Section , we review some concepts and results
about the Lebesgue-Stieltjes integral and regulated functions and the Kuratowski measure
of noncompactness, which will be used throughout this paper. In Section , some results of
the Kuratowski measure of noncompactness and regulated functions are established and
applied to investigate the existence for the semilinear measure system (). An example
that illustrates our results is presented in Section . Finally, some conclusions are drawn
in Section .

2 Preliminaries
In this section, we recall some concepts and basic results about the Lebesgue-Stieltjes
integral and regulated functions and the Kuratowski measure of noncompactness. For the
properties of operator semigroups, we refer the reader to [, ].
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Let X be a Banach space with a norm ‖ · ‖, and [a, b] be a closed interval of the real line.
A function f : [a, b] → X is called regulated on [a, b] if the limits

lim
s→t– f (s) = f

(
t–)

, t ∈ (a, b] and lim
s→t+

f (s) = f
(
t+)

, t ∈ [a, b),

exist and are finite. The space of regulated functions f : [a, b] → X is denoted by
G([a, b]; X). It is well known that the set of discontinuities of a regulated function is at
most countable and that the space G([a, b]; X) is a Banach space endowed with the norm
‖f ‖∞ = supt∈[a,b] ‖f (t)‖ (see []).

The finite sets d = {t, t, . . . , tn} of points in the closed interval [a, b] such that a = t <
t < · · · < tn = b are called partitions of [a, b]. For δ > , we say that a partition of [a, b] is
δ-fine if |ti – ti–| < δ for all i = , , . . . , n.

The following result holds by Proposition  in [] since the Kurzweil integral is more
general than the Lebesgue integral.

Proposition . Consider the functions f : [a, b] → X and g : [a, b] → R such that g is
regulated and

∫ b
a f dg exists. Then for every t ∈ [a, b], the function h(t) =

∫ t
t

f dg , t ∈ [a, b],
is regulated and satisfies

h
(
t+)

= h(t) + f (t)�+g(t), t ∈ [a, b),

h
(
t–)

= h(t) – f (t)�–g(t), t ∈ (a, b],

where �+g(t) = g(t+) – g(t) and �–g(t) = g(t) – g(t–).

The readers can refer to [, ] for the theory of Lebesgue-Stieltjes integral and other
types of integrals together with the relations among them.

Definition . ([]) A set A ⊂ G([a, b]; X) is called equiregulated if, for every ε >  and
every t ∈ [a, b], there is δ >  such that:

(i) If x ∈A, t ∈ [a, b], and t – δ < t < t, then ‖x(t
–) – x(t)‖ < ε.

(ii) If x ∈A, t ∈ [a, b], and t < t < t + δ, then ‖x(t) – x(t
+)‖ < ε.

Lemma . ([]) A set A ⊂ G([a, b]; X) is equiregulated if and only if, for every ε > ,
there is a δ-fine partition a = t < t < · · · < tn = b such that

∥∥x
(
t′′) – x

(
t′)∥∥ < ε

for all x ∈A and ti– < t′ < t′′ < ti, i = , , . . . , n.

Remark . According to Lemma ., it is clear that x : [a, b] → X is a regulated function
if and only if, for every ε > , there is a δ-fine partition a = t < t < · · · < tn = b such that

∥∥x
(
t′′) – x

(
t′)∥∥ < ε

for ti– < t′ < t′′ < ti and i = , , . . . , n. One can also refer to Lemma . in [] for the
proof.
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Lemma . ([]) Let {xn}∞n= be a sequence of functions from [a, b] to X. If xn converges
pointwise to x as n → ∞ and the sequence {xn}∞n= is equiregulated, then xn converges
uniformly to x.

Lemma . Let W ⊂ G(J ; X). If W is bounded and equiregulated, then the set co(W ) is
also bounded and equiregulated.

Proof According to the boundedness of W , it is evident that co(W ) is bounded.
For any ε > , it follows from the equiregularity of the set W and Lemma . that there

exists a δ-fine partition  = t < t < · · · < tn = a such that

∥∥w
(
t′′) – w

(
t′)∥∥ < ε

for all w ∈ W and ti– < t′ < t′′ < ti, i = , , . . . , n.
For any h ∈ co(W ), there exist w, w, . . . , wm ∈ W , λ,λ, . . . ,λm > ,

∑m
j= λj = , such

that h =
∑m

j= λjwj. Then, for all ti– < t′ < t′′ < ti, i = , , . . . , n, we have

∥
∥h

(
t′′) – h

(
t′)∥∥ =

∥
∥∥
∥∥

m∑

j=

λj
(
wj

(
t′′) – wj

(
t′))

∥
∥∥
∥∥

≤
m∑

j=

λj
∥
∥wj

(
t′′) – wj

(
t′)∥∥

< ε

m∑

j=

λj = ε.

Hence, the set co(W ) is equiregulated.
For any h ∈ co(W ), there exists a sequence of functions {hn}∞n= in the set co(W ) such

that limn→∞ hn = h. Then for all ti– < t′ < t′′ < ti, i = , , . . . , n, we have

∥
∥h

(
t′′) – h

(
t′)∥∥ = lim

n→∞
∥
∥hn

(
t′′) – hn

(
t′)∥∥ ≤ ε.

Therefore, the set co(W ) is equiregulated. �

The Kuratowski measure of noncompactness of a bounded subset S of the Banach space
X is defined by

α(S) = inf{δ >  : S can be expressed as the union of a finite number of sets such that
the diameter of each set does not exceed δ, i.e., S =

⋃m
i= Si with diam(Si) ≤ δ,

i = , , . . . , m},
where diam(S) denotes the diameter of a set S (see [], Definition ..).

Lemma . ([]) Let S, T be bounded sets of X, and λ ∈ R. Then:
(i) α(S) =  if and only if S is relatively compact;

(ii) S ⊆ T implies α(S) ≤ α(T);
(iii) α(S) = α(S);
(iv) α(S ∪ T) = max{α(S),α(T)};
(v) α(λS) = |λ|α(S), where λS = {x = λz : z ∈ S};

(vi) α(S + T) ≤ α(S) + α(T), where S + T = {x = y + z : y ∈ S, z ∈ T};
(vii) α(co S) = α(S);
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(viii) |α(S) – α(T)| ≤ dh(S, T), where dh(S, T) denotes the Hausdorff metric of S and T ,
that is,

dh(S, T) = max
{

sup
x∈S

d(x, T), sup
x∈T

d(x, S)
}

,

and d(·, ·) is the distance from an element of X to a subset of X .

Lemma . ([]) Let X be a Banach space, and D ⊆ X a bounded set. Then there exists
a countable subset D of D such that α(D) ≤ α(D).

Let μ be a regular Borel measure on J and L
μ(J ; X) denote the set of μ-integrable functions

from J to X.

Lemma . ([]) Let W ⊆ L
μ(J ; X) be a countable set. Assume that there exists a positive

function k ∈ L
μ(J ;R+) such that ‖w(t)‖ ≤ k(t) μ-a.e. for all w ∈ W. Then we have

α

(∫

J
W(t) dμ(t)

)
≤ 

∫

J
α
(
W(t)

)
dμ(t).

Corollary . Let W ⊆ L
μ(J ; X). If there exists a positive function k ∈ L

μ(J ;R+) such that
‖w(t)‖ ≤ k(t) μ-a.e. for all w ∈ W , then we have

α

(∫

J
W (t) dμ(t)

)
≤ 

∫

J
α
(
W (t)

)
dμ(t).

Proof By Lemma .(ii), Lemma ., and Lemma ., there exists a countable set W ⊆ W
such that

α

(∫

J
W (t) dμ(t)

)
≤ α

(∫

J
W(t) dμ(t)

)
≤ 

∫

J
α
(
W(t)

)
dμ(t)

≤ 
∫

J
α
(
W (t)

)
dμ(t). �

Remark . Since the Lebesgue-Stieltjes measure is a regular Borel measure, the result
of Corollary . holds for the Lebesgue-Stieltjes measure.

Lemma . ([]) Let F be a closed convex subset of a Banach space, and the operator
N : F → F be continuous with N(F) bounded. For any bounded B ⊆ F , set

Ñ (B) = N(B) and Ñn(B) = N
(
co

(
Ñn–(B)

))
, ∀n ≥ , n ∈N.

If there exist a constant  ≤ γ <  and n ∈ N such that α(Ñn (B)) ≤ γα(B) for every
bounded B ⊆ F , then N has a fixed point.

3 Main results
In this section, we show the main results of this paper that are divided into two parts.
Some properties of the Kuratowski measure of noncompactness in the space of regulated
functions G(J ; X) are established in the first part. These properties are then applied to
discuss the existence for the semilinear measure system () in the second part.
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3.1 Measure of noncompactness in G(J; X)
Let W be a subset of G(J ; X). For each fixed t ∈ J , we denote W (t) = {x(t) : x ∈ W }. Fur-
ther, let W (J) =

⋃
t∈J W (t) = {x(t) : x ∈ W , t ∈ J}. Next, we will provide some results on the

Kuratowski measure of noncompactness in the space of regulated functions G(J ; X), which
generalize those in the space of continuous functions C(J ; X) in [].

Theorem . Let W ⊂ G(J ; X) be bounded and equiregulated on J . Then α(W (t)) is regu-
lated on J .

Proof Since W is equiregulated, then for every ε > , there is a δ-fine partition  = t < t <
· · · < tn = a such that

∥∥x
(
t′′) – x

(
t′)∥∥ < ε/ for any ti– < t′ < t′′ < ti (i = , , . . . , n), x ∈ W .

Note that

sup
x∈W

d
(
x
(
t′), W

(
t′′)) = sup

x∈W
inf

y∈W

∥∥x
(
t′) – y

(
t′′)∥∥

≤ sup
x∈W

∥∥x
(
t′) – x

(
t′′)∥∥ + sup

x∈W
inf

y∈W

∥∥x
(
t′′) – y

(
t′′)∥∥ ≤ ε/.

Further, the same proof as before leads to

sup
x∈W

d
(
x
(
t′′), W

(
t′)) ≤ ε/.

Then we have

dh
(
W

(
t′), W

(
t′′)) ≤ ε/.

By Lemma .(viii) we have

∥
∥α

(
W

(
t′′)) – α

(
W

(
t′))∥∥ ≤ dh

(
W

(
t′), W

(
t′′)) ≤ ε.

According to Remark ., α(W (t)) is regulated on J . �

Theorem . Let W ⊂ G(J ; X) be bounded and equiregulated on J . Then

α(W ) = sup
{
α
(
W (t)

)
: t ∈ J

}
.

Proof Step . We first prove that α(W ) = α(W (J)).
(i) Let us first show that α(W (J)) ≤ α(W ). For every ε > , let W =

⋃m
j= Wj be such that

diam(Wj) < α(W ) + ε, j = , , . . . , m.
By the equiregularity of the set W and by Lemma . there is a δ-fine partition  = t <

t < · · · < tn = a such that

∥∥x
(
t′′) – x

(
t′)∥∥ < ε

for all x ∈ W and ti– < t′ < t′′ < ti, i = , , . . . , n.
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Let Ji = (ti–, ti), Sji = {x(t) : x ∈ Wj, t ∈ Ji}, j = , , . . . , m, i = , , . . . , n. It is evident that

W (J) =

( m⋃

j=

n⋃

i=

Sji

)

∪
( m⋃

j=

n⋃

i=

Wj(ti)

)

.

For any x, y ∈ Wj, t, t′ ∈ Ji, we have

∥∥x(t) – y
(
t′)∥∥ ≤ ∥∥x(t) – y(t)

∥∥ +
∥∥y(t) – y

(
t′)∥∥ ≤ ‖x – y‖∞ + ε

≤ diam(Wj) + ε < α(W ) + ε.

Hence, α(
⋃m

j=
⋃n

i= Sji) ≤ α(W ) + ε.
For any x, y ∈ Wj, t = ti, we have

∥∥x(ti) – y(ti)
∥∥ ≤ ‖x – y‖∞ ≤ diam(Wj) < α(W ) + ε.

Hence, α(
⋃m

j=
⋃n

i= Wj(ti)) ≤ α(W ) + ε. Therefore, we have

α
(
W (J)

)
= max

{

α

( m⋃

j=

n⋃

i=

Sji

)

,α

( m⋃

j=

n⋃

i=

Wj(ti)

)}

≤ α(W ) + ε.

The arbitrariness of ε shows that α(W (J)) ≤ α(W ).
(ii) Let us now show that α(W ) ≤ α(W (J)). For every ε > , by the equiregularity of the

set W and by Lemma . there is a δ-fine partition  = t < t < · · · < tn = a such that

∥
∥x

(
t′′) – x

(
t′)∥∥ < ε

for all x ∈ W and t′, t′′ ∈ Ji = (ti–, ti), i = , , . . . , n.
On the other hand, there is a partition W (J) =

⋃m
j= Tj such that

diam(Tj) < α
(
W (J)

)
+ ε, j = , , . . . , m.

Let P be the finite set of all maps i → μ(i) of {, , . . . , n} into {, , . . . , m}. Let Q be the
finite set of all maps i → ν(i) of {, , , . . . , n} into {, , . . . , m}. Fixing arbitrarily τi ∈ Ji,
i = , , . . . , n, for μ ∈ P, ν ∈ Q, let Lμ = {x ∈ W : x(τi) ∈ Tμ(i), i = , , . . . , n}, Lν = {x ∈ W :
x(ti) ∈ Tν(i), i = , , . . . , n}, and let Lμν = Lμ ∩ Lν . It is clear that W =

⋃
μ∈P,ν∈Q Lμν .

For any x, y ∈ Lμν and t ∈ J , if t ∈ Ji for some i = , , . . . , n, then we have

∥∥x(t) – y(t)
∥∥ ≤ ∥∥x(t) – x(τi)

∥∥ +
∥∥x(τi) – y(τi)

∥∥ +
∥∥y(τi) – y(t)

∥∥

< ε + diam(Tμ(i)) < α
(
W (J)

)
+ ε.

If t = ti for some i = , , . . . , n, then we have

∥∥x(ti) – y(ti)
∥∥ ≤ diam(Tν(i)) < α

(
W (J)

)
+ ε.
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Consequently, for any x, y ∈ Lμν , we have

‖x – y‖∞ = sup
t∈J

∥∥x(t) – y(t)
∥∥ ≤ α

(
W (J)

)
+ ε,

which implies diam(Lμν) ≤ α(W (J)) + ε, and hence α(W ) ≤ α(W (J)) + ε. Since ε is arbi-
trary, we have α(W ) ≤ α(W (J)).

(i) and (ii) show that α(W ) = α(W (J)).
Step . Now we prove that α(W (J)) = sup{α(W (t)) : t ∈ J}.
We first observe that, by Theorem ., α(W (t)) is regulated on J , and hence

supt∈J α(W (t)) exists. Since W (t) ⊂ W (J) for any t ∈ J , we have

sup
t∈J

α
(
W (t)

) ≤ α
(
W (J)

)
.

On the other hand, for any given ε > , by the equiregularity of the set W and by Lem-
ma ., there is a δ-fine partition  = t < t < · · · < tn = a such that

∥
∥x

(
t′′) – x

(
t′)∥∥ < ε

for all x ∈ W and t′, t′′ ∈ Ji = (ti–, ti), i = , , . . . , n.
Take τi ∈ Ji (i = , , . . . , n) arbitrarily. It is easy to see that, for any i (i = , , . . . , n), there

exists a partition W =
⋃m

j= W (i)
j (m is independent of i) such that W (τi) =

⋃m
j= W (i)

j (τi)
satisfies

diam
(
W (i)

j (τi)
)

< α
(
W (τi)

)
+ ε, j = , , . . . , m.

Let Bij = W (i)
j (Ji). It is evident that W (J) = (

⋃n
i=

⋃m
j= Bij) ∪ (

⋃n
i= W (ti)). For x, y ∈ W (i)

j and
t, t′ ∈ Ji, we have

∥∥x(t) – y
(
t′)∥∥ ≤ ∥∥x(t) – x(τi)

∥∥ +
∥∥x(τi) – y(τi)

∥∥ +
∥∥y(τi) – y

(
t′)∥∥

< diam
(
W (i)

j (τi)
)

+ ε,

and therefore,

diam(Bij) ≤ diam
(
W (i)

j (τi)
)

+ ε < α
(
W (τi)

)
+ ε ≤ sup

t∈J
α
(
W (t)

)
+ ε.

Hence,

α

( n⋃

i=

m⋃

j=

Bij

)

≤ sup
t∈J

α
(
W (t)

)
+ ε.

Since ε is arbitrary, we have

α

( n⋃

i=

m⋃

j=

Bij

)

≤ sup
t∈J

α
(
W (t)

)
.
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Therefore,

α
(
W (J)

)
= max

{

α

( n⋃

i=

m⋃

j=

Bij

)

,α
(
W (t)

)
,α

(
W (t)

)
, . . . ,α

(
W (tn)

)
}

≤ sup
t∈J

α
(
W (t)

)
.

Thus, we have α(W ) = α(W (J)) = sup{α(W (t)) : t ∈ J}. �

3.2 Existence for semilinear measure driven equations
In this part, we provide existence results for the abstract measure system (). We first give
the definition of mild solutions for system ().

Definition . The function x ∈ G(J ; X) is called a mild solution of system () on J if it
satisfies the following measure integral equation:

x(t) = T(t)p(x) +
∫ t


T(t – s)f

(
s, x(s)

)
dg(s), t ∈ J .

Denote by LSg(J ; X) the space of all functions f : J → X that are Lebesgue-Stieltjes inte-
grable with respect to g . We introduce the following assumptions.

(H) The C-semigroup T(t) generated by A is equicontinuous, that is, {T(t)x : x ∈ B} is
equicontinuous at any t >  for any bounded subset B ⊂ X (cf. []). Let
M = supt∈J ‖T(t)‖.

(cf) For every x ∈ G(J ; X), the function f (·, x(·)) ∈LSg(J ; X).
(cf) The map x �→ f (·, x(·)) from G(J ; X) to LSg(J ; X) is continuous.
(cf) There exist a function m ∈LSg(J ;R+) and a nondecreasing continuous function


 : R+ → R
+ such that

∥
∥f (t, x)

∥
∥ ≤ m(t)


(‖x‖)

for all x ∈ X and almost all t ∈ J . In addition,

lim inf
l→+∞


(l)
l

= γ < +∞.

(cf) There exists a function L ∈LSg(J ;R+) such that

α
(
f (t, B)

) ≤ L(t)α(B)

for almost all t ∈ J and every bounded set B ⊆ X .
(cp) p : G(J ; X) → X is continuous and compact, and there exist positive constants c

and d such that
∥
∥p(x)

∥
∥ ≤ c‖x‖∞ + d for all x ∈ G(J ; X).

Theorem . Assume that hypotheses (H), (cf)-(cf), and (cp) are satisfied and

cM + Mγ

∫ a


m(s) dg(s) < . ()

Then system () has a mild solution on J .
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Proof Define the operator N : G(J ; X) → G(J ; X) by

N(x)(t) = T(t)p(x) +
∫ t


T(t – s)f

(
s, x(s)

)
dg(s).

As a result of assumptions (H) and (cf), the integral in the last formula is well defined.
Let l >  be a constant, and Bl = {x ∈ G(J ; X) : ‖x‖∞ ≤ l}. For every positive number l, Bl

is clearly a bounded closed convex set in G(J ; X). Write N(Bl) = {N(x) : x(·) ∈ Bl}.
Step . There exists a positive number l such that {N(Bl)} ⊆ Bl .
If this statement is not true, then for each positive constant l, there exists a function

xl(·) ∈ Bl such that N(xl)(·) /∈ Bl , that is, ‖N(xl)(t)‖ > l for some t(l) ∈ J , where t(l) denotes
t that is dependent on l. We have

l <
∥∥N(xl)(t)

∥∥ =
∥
∥∥
∥T(t)p(xl) +

∫ t


T(t – s)f

(
s, xl(s)

)
dg(s)

∥
∥∥
∥

≤ ∥
∥T(t)p(xl)

∥
∥ +

∫ t



∥
∥T(t – s)f

(
s, xl(s)

)∥∥dg(s)

≤ M(cl + d) + M
(l)
∫ a


m(s) dg(s).

Dividing both sides by l and taking the lower limit as l → +∞, we get

cM + Mγ

∫ a


m(s) dg(s) ≥ .

It is a contradiction to (). Hence, for some positive number l, N(Bl) ⊆ Bl .
Step . N(Bl) is an equiregulated set of functions.
For t ∈ [, a), we have

∥∥N(x)(t) – N(x)
(
t

+)∥∥

≤ ∥∥(
T(t) – T

(
t

+))
p(x)

∥∥ +
∫ t+



∥∥(
T(t – s) – T

(
t

+ – s
))

f
(
s, x(s)

)∥∥dg(s)

+ M
∫ t

t+

∥
∥f

(
s, x(s)

)∥∥dg(s)

= I + I + I.

Hypotheses (cp) and (cf) show that the sets {p(x) : x ∈ Bl} and {f (s, x(s)) : s ∈ J , x ∈ Bl}
are bounded, respectively. On the other hand, by condition (H) the C-semigroup T(t) is
equicontinuous on J . Thus, I →  and I →  as t → t

+, independently on particular
choices of x(·). Let h(t) =

∫ t
 m(s) dg(s); by Proposition ., h(t) is a regulated function on

J . Hence,

I ≤ M
(l)
∫ t

t+
m(s) dg(s) = M
(l)

(
h(t) – h

(
t

+)) →  as t → t
+,

also independently on x(·).
We can use a similar procedure to show that ‖N(x)(t

–) – N(x)(t)‖ →  as t → t
– for

each t ∈ (, a]. Therefore, N(Bl) is equiregulated on J in terms of Definition ..
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Step . N is a continuous operator on Bl .
Let {xn, n ∈ N} be a convergent sequence in Bl and xn → x as n → ∞. In view of assump-

tions (cf) and (cp) and the strong continuity of T(t), we have, for each t ∈ J ,

∥∥N(xn)(t) – N(x)(t)
∥∥

=
∥
∥∥
∥T(t)

(
p(xn) – p(x)

)
+

∫ t


T(t – s)

[
f
(
s, xn(s)

)
– f

(
s, x(s)

)]
dg(s)

∥
∥∥
∥

≤ M
∥∥p(xn) – p(x)

∥∥ + M
∫ a



∥∥f
(
s, xn(s)

)
– f

(
s, x(s)

)∥∥dg(s) →  as n → ∞.

Step  implies that {N(xn)}∞n= is equiregulated. This property and the above verification,
together with Lemma ., show that N(xn) converges uniformly to N(x) as n → ∞, namely,

∥
∥N(xn) – N(x)

∥
∥∞ = sup

t∈J

∥
∥N(xn)(t) – N(x)(t)

∥
∥ →  as n → ∞.

Therefore, N is a continuous operator.
Step . There exist a constant  ≤ γ <  and a positive integer n such that for any

B ⊆ F , we have α(Ñn (B)) ≤ γα(B), where F = co(N(Bl)) and Ñn, n ≥ , are defined as
in Lemma ..

First, since p(Bl) is relatively compact in X and T(·) is strongly continuous, applying
the Arzelà-Ascoli theorem, we infer that the set {T(·)p(x) : x ∈ Bl} is relatively compact in
C(J ; X). Therefore, we have α({T(·)p(x) : x ∈ Bl}) = .

Since N(Bl) ⊆ Bl , we have F ⊆ co(Bl) = Bl . Hence, N(F) ⊆ N(Bl) ⊆ F . This implies that
N : F → F and N(F) is a bounded set in G(J ; X).

For each bounded set B ⊆ F , we have Ñ (B) = N(B) ⊆ N(F) ⊆ N(Bl). Suppose that
Ñn–(B) ⊆ N(Bl) (n ≥ ). Then

Ñn(B) = N
(
co

(
Ñn–(B)

)) ⊆ N
(
co

(
N(Bl)

)) ⊆ N
(
co(Bl)

)
= N(Bl).

Hence, by mathematical induction as before, we get Ñn(B) ⊆ N(Bl) for every n ≥ . On the
other hand, Step  and Step  show that N(Bl) is bounded and equiregulated on J ; therefore,
Ñn(B) is bounded and equiregulated on J for every n ≥ . By Theorem ., α(Ñn(B)) =
supt∈J α(Ñn(B)(t)).

Since N(Bl) is bounded and equiregulated on J , by Lemma ., F is bounded and
equiregulated on J . By hypotheses (cf) and (cf) and Theorem . together with Corol-
lary ., we have, for each bounded set B ⊆ F ,

α
(
N(B)(t)

) ≤ α
(
T(t)p(B)

)
+ α

(∫ t


T(t – s)f

(
s, B(s)

)
dg(s)

)

= α

(∫ t


T(t – s)f

(
s, B(s)

)
dg(s)

)

≤ 
∫ t


α
(
T(t – s)f

(
s, B(s)

))
dg(s)

≤ M
∫ t


L(s)α

(
B(s)

)
dg(s)

≤ M
∫ t


L(s) dg(s)α(B).



Cao and Sun Boundary Value Problems  (2016) 2016:38 Page 12 of 17

Then

α
(
Ñ (B)(t)

)
= α

(
N(B)(t)

) ≤ M
∫ t


L(s) dg(s)α(B).

For n ≥ , n ∈ N, suppose that

α
(
Ñn–(B)(t)

) ≤ (M)n–

(n – )!

(∫ t


L(s) dg(s)

)n–

α(B).

Then

α
(
Ñn(B)(t)

)
= α

(
N

(
co

(
Ñn–(B)

)
(t)

))

≤ M
∫ t


L(s)α

(
Ñn–(B)(s)

)
dg(s)

≤ (M)n

(n – )!

∫ t


L(s)

(∫ s


L(τ ) dg(τ )

)n–

dg(s)α(B)

=
(M)n

n!

(∫ t


L(s) dg(s)

)n

α(B).

Therefore, by mathematical induction as before and by Theorem . we get

α
(
Ñn(B)

)
= sup

t∈J
α
(
Ñn(B)(t)

) ≤ (M)n

n!

(∫ a


L(s) dg(s)

)n

α(B).

Since (M)n

n! (
∫ a

 L(s) dg(s))n →  as n → ∞, there exists n ∈ N such that (M)n
n! ×

(
∫ a

 L(s) dg(s))n = γ < , and applying Lemma ., it follows that the operator N has a
fixed point in F . This fixed point is a mild solution of the measure driven system (). �

In the special case of A =  and p(x) = x, system () degenerates to the nonlinear mea-
sure driven system

dx = f (t, x) dg, t ∈ J ,

x() = x,
()

which was investigated by [] in the Kurzweil integral setting.
The function x ∈ G(J ; X) is a solution of system () if it satisfies the measure integral

equation

x(t) = x +
∫ t


f
(
s, x(s)

)
dg(s), t ∈ J .

For the nonlinear measure driven system (), we have the following existence result. The
proof of it is similar to that of Theorem . (in view of T(t) = I and p(x) = x in this case).
So we omit it.

Theorem . Assume that hypotheses (cf)-(cf) are fulfilled and

γ

∫ a


m(s) dg(s) < .

Then system () has a solution on J .
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Remark . In the Kurzweil integral setting, paper [] investigated the nonlinear measure
equation () in separable Banach spaces. For system (), Theorem . can be applied to
general Banach spaces in the Lebesgue integral setting. On the other hand, Theorem .
provides existence criteria different from those of Theorem  in [] due to the different
results on the measure of noncompactness in the space of regulated functions G(J ; X).

For the special case X = R
n, the papers [, ] studied nonlinear measure retarded dif-

ferential equations in the Kurzweil integral setting, where the Lipschitz-type conditions
are demanded (see Theorem . in [] and Theorem . in [], respectively). Theo-
rem . can be generalized to the retarded version with suitable modifications. Thus, the
Lipschitz-type conditions in the literature cited are unnecessary here. On the other hand,
it is well known that the compactness condition (cf) on f in Theorem . is much weaker
than the Lipschitz condition on f in Theorem . in []. From this point of view, Theo-
rem . is less restrictive than that in [].

Remark . Let PC(J ; X) denote the space of piecewise continuous functions on J (see
[]). Since C(J ; X) ⊂ PC(J ; X) ⊂ G(J ; X), in view of the relation of differential equations
with impulses and measure driven equations [], our results generalize those in [, ],
where existence criteria were provided for abstract semilinear differential equations with
or without impulsive effects, and correspondingly, the solutions belong to C(J ; X) or
PC(J ; X).

4 An example
As an application of Theorem ., we consider the following partial differential system
driven by a measure:

⎧
⎪⎨

⎪⎩

dtx(t,ω) = ∂
∂ω

x(t,ω) + f (t, x(t,ω)) dg(t) for t ∈ [, ],ω ∈ [,π ],
x(t, ) = x(t,π ) = , t ∈ [, ],
x(,ω) =

∫ 
 h(s) log( + |x(s,ω)|) ds, ω ∈ [,π ].

()

Let X = L([,π ]). Define A : X → X by Az = z′ with the domain D(A) = {z ∈ X :
z is absolutely continuous, z′ ∈ X, z() = z(π ) = }. It is well known that A is an infinites-
imal generator of the C-semigroup T(t) defined by T(t)z(s) = z(t + s) for each z ∈ X.
The semigroup T(t) is not a compact semigroup on X but equicontinuous. In addition,
M = sup≤t≤ ‖T(t)‖ ≤  and α(T(t)D) ≤ α(D), where α is the Kuratowski measure of non-
compactness (see [, ]).

Take

g(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

 – 
 ,  ≤ t ≤  – 

 ,
. . . ,
 – 

n ,  – 
n– < t ≤  – 

n for n >  and n ∈N,
. . . ,
, t = .

It is evident that g : [, ] → R is a left-continuous and nondecreasing function on [, ].
(H) Assume that f : [, ] × X → X is a continuous function defined by

f (t, x)(ω) = F
(
t, x(ω)

)
, t ∈ [, ],ω ∈ [,π ].
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Take F(t, x(ω)) = c sin(x(ω)), where c is a real constant. We claim that conditions (cf)-
(cf) in Theorem . can be satisfied:

(cf) clearly holds;
(cf) is satisfied because

∥∥f (t, xn) – f (t, x)
∥∥

=
∫ 



(∫ π


c


∣∣sin

(
xn(ω)

)
– sin

(
x(ω)

)∣∣ dω

)/

dg(t)

≤ c
(
g() – g()

)(∫ π



∣
∣xn(ω) – x(ω)

∣
∣ dω

)/

=



c‖xn – x‖;

(cf) is checked with m(t) = c, 
(l) = l, and hence, γ =  since

∥∥f (t, x)
∥∥ =

(∫ π


c

 sin(x(ω)
)

dω

)/

≤
(∫ π


c

x(ω) dω

)/

= c‖x‖;

(cf) is checked with L(t) = c since α(f (t, B)) ≤ cα(B) for any bounded subset B of X .
(H) Define p : G([, ]; X) → X by

p(φ)(ω) =
∫ 


h(s) log

(
 +

∣∣φ(s)(ω)
∣∣)ds, φ ∈ G

(
[, ]; X

)
,

with φ(s)(ω) = x(s,ω). Suppose h ∈ L([, ];R) and

(∫ 



∣
∣h(s)

∣
∣ ds

) 


+



c < .

Let {φn, n ∈N} be a convergent sequence in G([, ]; X), and φn → φ as n → ∞, that is,

‖φn – φ‖ = sup
s∈[,]

∥
∥φn(s) – φ(s)

∥
∥

X

= sup
s∈[,]

∫ π



∣
∣φn(s)(ω) – φ(s)(ω)

∣
∣ dω →  as n → ∞.

Then

∥∥p(φn) – p(φ)
∥∥

X

=
∫ π



∣∣p(φn)(ω) – p(φ)(ω)
∣∣ dω

=
∫ π



∣∣
∣∣

∫ 


h(s)

[
log

(
 +

∣
∣φn(s)(ω)

∣
∣) – log

(
 +

∣
∣φ(s)(ω)

∣
∣)]ds

∣∣
∣∣



dω

≤
∫ π



(∫ 



∣
∣h(s)

∣
∣ · ∣∣log

(
 +

∣
∣φn(s)(ω)

∣
∣) – log

(
 +

∣
∣φ(s)(ω)

∣
∣)

∣
∣ds

)

dω
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≤
∫ 



∣∣h(s)
∣∣ ds ·

∫ 



∫ π



∣∣log
(
 +

∣∣φn(s)(ω)
∣∣) – log

(
 +

∣∣φ(s)(ω)
∣∣)∣∣ dω ds

≤
∫ 



∣∣h(s)
∣∣ ds ·

∫ 



∫ π



∣∣φn(s)(ω) – φ(s)(ω)
∣∣ dω ds →  as n → ∞.

Therefore, p is a continuous operator. Analogously, we can obtain that, for any φ ∈
G([, ]; X),

∥∥p(φ)(ω + η) – p(φ)(ω)
∥∥

X →  as η → 

and

∥∥p(φ)
∥∥

X ≤
(∫ 



∣∣h(s)
∣∣ ds

) 
 ‖φ‖∞.

According to versions of the Árzela-Ascoli theorem for L space (see []), p is a compact
operator and satisfies hypothesis (cp) in Theorem ..

Moreover, we have

cM + Mγ

∫ a


m(s) dg(s)

=
(∫ 



∣∣h(s)
∣∣ ds

) 


+ c
(
g() – g()

)

=
(∫ 



∣
∣h(s)

∣
∣ ds

) 


+



c < ,

which tests inequality ().
Hence, under these assumptions, the partial differential system () can be reformulated

as the abstract measure system () and there exists at least one mild solution for system
() by Theorem ..

5 Conclusions
In this paper, the issue on abstract semilinear measure driven equations in Banach spaces
with nonlocal conditions has been addressed for the first time, which can model a large
class of hybrid systems with Zeno behavior. We first establish some useful results on the
Kuratowski measure of noncompactness in the space of regulated functions. Then the
existence criteria of mild solutions for the discussed measure system are obtained by using
the tools of measure of noncompactness and a corresponding fixed point theorem. The
results obtained in this paper are also applicable to abstract semilinear dynamic equations
on time scales. As shown in [, ], this type of equations can be transformed to abstract
measure driven equations. Moreover, the issue on the existence for abstract semilinear
measure driven equations is relatively new, and we can further develop its investigation
inspired, for example, by [].
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