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Abstract

This paper is concerned with the existence of traveling waves for the scalar
hyperbolic-parabolic balance law. Using a phase-plane analysis method, we first
prove the existence of an increasing traveling wave solution in C' (R). Then we
construct a family of discontinuous periodic traveling wave entropy solutions.
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1 Introduction
We consider the discontinuous traveling waves for the scalar hyperbolic-parabolic balance

law

ou 0 0] u
—+ —f(u) = a(a(u)a) +g(m), xeR,t>0, (1.1)

at  0x
where a € C}(R) with a(s) > 0 for s € R.
If a(u) = 0, (1.1) reduces to the scalar hyperbolic balance law

ou

+ if(u) =g(u), xeR,t>0, (1.2)
ot ox
which describes the problems under idealizing inviscid assumptions and is extensively
studied by numerous authors. For example, in [1], Mascia gave a classification of the pos-
sible traveling waves for the case of that f is convex. Lyberopoulos [2] obtained qualitative
properties and the long-time behavior of the solutions of (1.2) with periodic initial data.
It was Fan and Hale [3] who first studied the discontinuous traveling waves for (1.2) and
Sinestrari [4] studied related properties of such traveling waves.

It is well known that the effects of viscosity on the balance law should be included in
many practical problems such as fluid flows [5], the model of car traffic flow on a highway
[6], ion etching in the semiconductor industry [7], efc. In other words, when a(u) £ 0, (1.1)
becomes the scalar viscous balance law, to which a lot of important research works have
been devoted in the past several decades. When a(u) = ¢, Wu and Xing [8] considered the
traveling waves of the following scalar viscous balance law:

9 9 02
a_j:tJrﬁf(“):Ea—; +g(u), xeR,t>0, (1.3)
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where ¢ > 0 is the viscosity parameter. Harterich [9] obtained the global attractors of (1.3)
depending on the parameter ¢. Owing to the parabolicity, such an equation admits only
smooth traveling waves with low gradient depending on the parameter ¢. It is worthy of
noticing that sharp surface and high gradient have been observed in some viscous balance
phenomena [10]. Since their discovery, it is necessary for us to derive a nonlinearly viscous
balance law model. Inspired by the idea of the localized perturbations in [11], we propose
a nonlinear viscosity with degeneracy in this paper.

Now, let us formulate the problem with nonlinear and degenerate viscosity. We con-
sider a typical equation of gas dynamics in one spatial dimension as an illustrative exam-
ple. In the Oberbeck-Boussinesq approximation, all changes in the fluid properties due to
temperature variations are neglected except for the change in density that gives rise to a
buoyancy force g. In particular, the momentum conservation equation becomes

v 1 9p* 9 ov
ox

— =—|v— , eR,t>0, 1.4
8t+p08x 8xv >+g * g 14

where g = agp0z, « is the coefficient of volume expansion of the fluid, gy is the acceler-
ation due to gravity, 6(x,t) = T(x,t) — Tp is the temperature deviation from the mean, z
is the unit vector along the vertical direction, p, is the density at mean temperature T,
P =p + pogoz, p is the pressure, v is the velocity and v = n/p, is the kinematic viscos-
ity [12]. Based on experimental results that flows (and therefore also the velocity) can be
generated by a temperature gradient without any initial pressure gradient, we assume that
the thermal buoyancy force is a function depending only on the velocity of the flow [13].
In mathematical form we have g = g(v). Thus the gas dynamics equation considering the
thermal buoyancy term can take the form of

u 9 9 9
M Tt = L (a2 ) +guw), xeR,¢>0, (1.5)
ox ox aox

ot

where u is a vector of densities of conserved quantities in R”, including mass, momen-
tum, and energy in the case of gas dynamics, f a vector of corresponding fluxes in R”, the
thermal buoyancy term g in R”, and a(u) a matrix of transport coefficients in R"*" [5, 14].

To propose the basic assumption, we illustrate peculiar properties of the degenerate
nonlinear viscosity term. It is well understood that the viscosity of gas is small when tem-
perature is low, vice versa. At the same time, the thermal buoyancy force can be ignored for
temperatures below a certain critical temperature. So we can assume that a(u) = 0 around
the zero of the thermal buoyancy term g. Considering the scalar hyperbolic-parabolic bal-
ance law (1.1), namely the case n =1 of (1.5), we present the basic assumption on the vis-
cosity term

2K

suppa = _Jlax bi], (16)
k=1

where [ak, br] C (Vi, vis1) for any 1 < k < 2K. The notations v¢ and K will be explained in
Section 2.

This paper is organized as follows. In Section 2, after introducing some definitions and
notations, we present some auxiliary lemmas and state the main results. Subsequently, in
Section 3, we prove the existence of discontinuous traveling waves.
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2 Preliminaries and main results

In this section, we present some closely related results and definitions of entropy solutions.
Sinestrari [4] studied the discontinuous traveling waves of the scalar hyperbolic balance
law (1.2) with the initial value

u(x,0)=up(x), xR (2.1)

being periodic, under the conditions:
(A1) f € C?(R),f" is strictly increasing;
(A2) g e CY(R), g’ <k, for some constant k;
(A3) uo € BV (R), where BV, is the space of functions which are locally of bounded
variation and are L-periodic for some given constant L > 0;
(A4) The zeros of g are simple, i.e., g'(v) # 0 for any v such that g(v) = 0.
Moreover, g has at least one zero v such that g’'(v) > 0 and there exists M, > 0 such that

vg(v) <0, [v] > M.

The zeros of g are labeled in an increasing order by vy, vs,..., Vax 41, for some positive in-
teger K, with ¢'(v;) < 0 if i is odd, g'(v;) > 0 if i is even.

To any zero vy of g there can be associated a continuous traveling wave solution and a
family of discontinuous periodic traveling waves of (1.2) with speed f”(va).

It is well known that the problem (1.2)-(2.1) does not have global classical solutions even
if 1 is smooth [4]. On the other hand, discontinuous solutions in the distributional sense
may not be unique. This leads to the definition of entropy solutions as follows.
Definition 2.1 ([4]) A function u € LY (R x R*) N C (]R*,LIIOC(R)) is an entropy solution
of the problem (1.2)-(2.1) if it satisfies (1.2)-(2.1) in the sense of distributions, u(-,£) €
BV oc(R) for every ¢t and the entropy condition

u(x*,t) <u(x",t), x€R,t>0 (2.2)

holds, where u(x*,t) and u(x~,t) denote the rightward and leftward one-sided limits of
u(-, t).

A function u is a solution of (1.2) in the sense of distributions with the entropy condi-
tion (2.2) if and only if u satisfies Definition 2.2, which is derived by a vanishing viscosity
method [15].

Definition 2.2 A function z € L{° (R x R*) is an entropy solution of equation (1.2) if

for any k € R and any smooth function w(x,t) > 0 with compact support, the following
inequality holds:

// (1 — klw, + sign(u — k) (f () — f (k) wy + sign(u — k)g(u)w) dxdt > 0. (2.3)
RxR*

With this notion of entropy solutions and under the assumptions (A1)-(A3), the problem
(1.2)-(2.1) is well posed, as is shown by [15] and references therein.
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We are concerned with the discontinuous traveling waves for the scalar hyperbolic-
parabolic balance law (1.1). For the sake of convenience, we define

As) = fsa(r)dr.
0

Using the vanishing viscosity method, we give the following definition of entropy solu-
tions.

Definition 2.3 A function u# € L°

loc
(1.1), if for any k € R and any smooth function w(x, £) > 0 with compact support, the fol-

(R x R*) is said to be an entropy solution of equation

lowing inequality holds:

// (|u—/<|wt+sign(u—k)(f(u) —f(k))wx
RxR*

+ sign(u — k)g(u)w + sign(u — k) (A(u) - A(k))wxx) dxdt > 0. (2.4)

It was Vol'pert and Hudjaev [16] who first treated the solvability of the initial value prob-
lem for the hyperbolic-parabolic balance law (1.1). The uniqueness of entropy solution of
equation (1.1) subject to given initial value was proved by Wu and Yin [17] in an equivalent
form of discontinuity condition.

Now we show that for piecewise continuous functions, the definition of entropy solu-
tions can be valid by satisfying the assumptions in the following lemma.

Lemma 2.1 Suppose that a function u € LY° (R x R*) is piecewise C* continuous with the
discontinuous lines x = x(t) being C regular and the following conditions are fulfilled:
(i) in any piecewise continuous domain, u satisfies (1.1) in the classical sense;
(i) along any discontinuous line x = x(t) the following Rankine-Hugoniot condition
holds:

(1) o)) 5 = (o 1))~ () 25)

(ili) along any discontinuous line x = x(t) the entropy condition (2.2) is valid and there
exists al < k < 2K such that u(x*,t), u(x™,t) € (br_1,ax).
Then u is an entropy solution of equation (1.1).

Proof Since a(s) = 0 for s € (br_1,ax) and u(x*, ), u(x",t) € (bg_1,ax), the second deriva-
tive term A(u) ., = (a(u)uy), is strongly degenerate. The rest of the proof is similar to the
proof of the equivalence between the inequality (2.3) in Definition 2.2 and the definition
of entropy solutions for the first order equation (1.2) in Definition 2.1. d

We state our main result here and leave its proof to the next section.

Theorem 2.1 Assume that the assumptions (Al), (A2), (A4), and (1.6) hold. We further
assume that a(s) satisfies the following inequality:

(ax) —f' (b))

MaXre(uy_y o) 1€(T))

a(s) < 2 min{|s — axl, |s — by}, (2.6)
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for s € (asx-1,bak-1) U (aak, bak), and for any 1 < k < K. Then for any positive integer k with
1 <k <K, equation (1.1) admits infinitely many discontinuous traveling wave entropy so-
lutions with speed f' (vax).

3 Proof of the main results
For any given k with 1 < k < K, in order to find the discontinuous traveling waves with
speed f’(vy), we first prove that the degenerate equation (1.1) has a continuous traveling

wave solution with speed f’(vo) and range (vax_1, Vak41)- Let the traveling wave

ux,t) = p(x—f'(va)t) =€), & =x—f(va)t.

We have

(F' (@) =1 (v20))8'(€) = (alp)¢'(5)) +2(9), & €R. 3.1

Since (3.1) is autonomous, without loss of generality, we assume that ¢(0) = vy. Note
that

Vak-1 < A2k-1 < bogoy < Vor < Aok < bag < Vo

and a(s) = 0 for s € (byx_1, azr). There exist £~ < 0 < £*, such that

&) ¢ o
/Mf(V) S (vax) O

o &)

and ¢(&7) = box-1, P(EF) = ax.
Now we need to extend the solution ¢ of equation (3.1) to the domain (-o00,£7) and
(€%, +00). We begin with the right-hand extension to the interval (§*, +00). We have

+) g(ﬂzk)

=— >0.
Flan) —f (o)

P(E") =an,  ¢'(&

Lemma 3.1 Assume that

'(@2) —f' (var))®

a(s) <
2(1 + maXce(vypvor,p) 18(T))

(s—aw), s € (aubx). (3.2)

Then equation (3.1) admits a continuous solution ¢(&) € C1([0, +00)), such that $(0) = vy,

¢ is piecewise C* continuous and strictly increasing, and the range of ¢ is [Vax, Vars1)-

Proof We only need to consider solving (3.1) in the interval (§*, +00). Since ¢(§*) = agx,
@’ (§*) > 0, there exists a right neighborhood (§*,&;) of £* such that for any & € (§*,&;), we
have ¢(&) € (ax, bax), and if & < +00, then ¢(&1) = ari or ¢p(&) = by That is, (§%,&) is the
maximal rightward interval of & such that ¢(&) € (aa, bax). Define

V(&) = alg)¢'(§).
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Noticing that a(¢) > 0 for & € (§*,&;), we can convert the second-order degenerate differ-
ential equation (3.1) into the following singular planar dynamic system:

i1
o 63
v’ = T)Zk‘/f -g(®).
For the sake of convenience, we let (®, V) designate the right-side vector field of the above
dynamic system.
We apply the phase-plane arguments to this problem in the domain

Go = {(¢! w):¢ € (612](, bZk)’ ¥ > O}

We need to show that there exists a trajectory connecting the two singular points (a, 0)
and (byy, 0). Define the curve

I, = {(tbnﬁ);lﬁ __&(dal¢)

—— b .
F6) 00 ¢ € (ax 2k)}

We can verify that I'g connects the singular points (aa,0) and (by,0), and divides the
domain G into two parts, with the following assertions holding:
(i) along the curve I'g, ® >0, ¥ = 0;
(ii) in the domain Gy = {(¢, V¥); ¥ > %,q& € (ax, b))}, >0, ¥ > 0;
(iii) while in the domain G; = Go\G1, ® >0, ¥ < 0.
In order to prove the existence of a trajectory that goes out from the singular points
(a2x, 0), we construct the following curve:

I = {(¢’ 1/f)» Y= C(¢ - ﬂzk)a,fb € (ﬂzk, bZk)}’

and let G| = {(¢, ¥); ¥ > c(¢ — a)®, @ € (azx, b)), G = Gl\@;, where ¢ > 0, o > 0 are
constants that will be determined below, such that I'; has the following properties:

(i) the curve I'y lies in the domain Gy;

(ii) any trajectory intersecting with the curve I'; all runs through I' from G into Gj.

The above two properties are equivalent to

g(@)a(o) d W
>f/(@——f’(1/zk)’ %(C(‘?—ﬂzk) )<$,

Vo € (ax, bax), ¥ = c(¢p — ax)”.

c(¢p — ax)”

That is,

g(p)a(®)

(¢ — an)®’

(@) —f'(var) > caulp — ani)*™ + Ve € (ask, ba)- (3.4)
Take o =1 and ¢ = (f'(axx) — f' (vax))/2. According to the assumption (3.2), we see that (3.4)
is true.

Let I'; and I's be the trajectories that arrive at the point (by, ) and (byx — §,0), respec-
tively, where € > 0, 0 < § < byg — ayt. Since ® > 0, ¥ < 0 in the domain G, I'; cannot inter-
sect with the segment L = {(¢, 0); ¢ € (a2x, b2x)} and I's cannot intersect with L except the
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point (byr — §,0). On the other hand, according to the properties of the curve I'y, all the
trajectories I'; and I's; do not intersect with the curve I'y. Thus I'; and I'; are all starting
from the singular point (ay, 0). By the continuity of system (3.3), there exists a trajectory
" that connects (ax, 0) and (by, 0). It follows that equation (3.1) admits a solution ¢ (&)
such that ¢ is defined on the interval (§*, &), ¢ is strictly increasing and ¢(§;) = byr. Com-
bining with (3.1), we see that ¢’(§) = W;jj’% > 0, which implies that & is a finite real
number.

Now we solve equation (3.1) in the interval (§;, +00). Since a(s) = 0 for any s € (bak, Voxs1),
we find that ¢ (&) satisfies
/¢(E)JM dv=£-&, §&>&.

bok g

We note that vox,; is an odd zero of g. It follows that the above integral has a non-integrable

singularity at vox,1. Thus ¢ is strictly increasing and limg_, ;o0 $(§) = Var. O
The left-hand extension of ¢ to the interval (-0, £7) is similar.

Lemma 3.2 Assume that

(f' var) =f' (b))

(bok-1—5), s € (agk-1, bax1). (3.5)
+ MaX vy o) 1€(T)])

a(s) < 20

Then equation (3.1) admits a continuous solution ¢(&) € C'((-oo,0]), such that ¢(0) = vy,

¢ is piecewise C* continuous and strictly increasing, and the range of ¢ is (Var_1, Var ).
Proof The proof of this lemma is similar to that of Lemma 3.1. g

Utilizing the above two lemmas, we can prove that the degenerate parabolic equation

(1.1) admits a strictly increasing traveling wave solution whose range is (Vox_1, Vag+1)-

Lemma 3.3 Assume that the conditions (3.2) and (3.5) hold, then equation (1.1) admits a
continuous traveling wave ¢(£) € C1(R) such that ¢ is piecewise C* continuous and strictly

increasing, ¢(0) = vox, and the range of ¢ is (Var_1, Vaks1)-
Proof This is a simple conclusion of Lemma 3.1 and Lemma 3.2. g

Concerned with the Rankine-Hugoniot condition (2.5), we give the following property

of convex functions.

Lemma 3.4 Assume that

f(ﬂzk) _f(b2/<—l) <

asri — bar

£ (v, (3.6)

then for any ¢* € (vok, agk), there exists a unique ¢~ € (bak_1, vak), such that

fle)-fle7) _

L8 ).
[l
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Similarly, assume that

f (a2%) —f (bax-1)

> f'(var), 3.7
tor — oy > f'(vax) (3.7)

then for any ¢~ € (bak-1, Vak), there exists a unique ¢* € (v, aqk), such that

() -fle)
fﬁif? o
-9
Proof According to the strict convexity of f, we conclude the above assertions. O

Using the continuous traveling wave of equation (1.1), we can construct a family of dis-
continuous periodic traveling waves. Suppose that the conditions (3.2) and (3.5) are ful-
filled. We note that either the condition (3.6) or the condition (3.7) is true. Without loss of
generality, suppose that (3.6) holds. Lemma 3.3 implies that equation (1.1) admits a contin-
uous traveling wave, denoted by ¢k (§) with & = x — f’(vax)t and the speed of this traveling
wave is [ (var).

For any given positive integer N, and any given real number sets {&;},, {;}Y,, such that
£ >0,n; € (vap,ax), i =1,2,..., N, there exists a unique set {ui}ﬁl C (bak-1, k) such that

S'nd) = f' (i)
Ni— Ki

:f/(VZk)) i:1,2,...,N, (38)
according to Lemma 3.4.

Since ¢or(§) is strictly increasing with range (var_1, vak+1), we see that there exists a
unique {7}, C R* and {&7}Y, C R7, such that

o (&) =i ¢or (&) =mi 1<i<N.

Fix any &, € R and define

Vo & € [§0,60 + &1),
(& — (6o + 1)), & €lbo+enéo+er+&),
(& — (6o + T1)), Eeléo+Ti+& 6+ T),
Vaks & €léo+T1,60 +T1+e2),
Vor(€) = (€ — o+ T1 +62)), E€[éo+Ti+ex,60+Ti+e+E5), (3.9)
du(E o+ T1+T2), E€léo+Ti+Tr+8& 6 +T1+Th)
Vaks Eeléo+Ti+ T +T1+To+e3),
(& — (o + 1)), E€lbo+T+éy,60+7T),

where Tj=¢; + &' +1£7|,1<i<N,and T = Zf\il T;. Extend vk (&) periodically for £ e R
and denote this extension still by ¥ (£).

Lemma 3.5 Assume that the conditions (3.2) and (3.5) are fulfilled. The periodic func-
tion u(x,t) = Yor(§) with & = x — f'(var)t defined by (3.9) is a discontinuous traveling wave
entropy solution with speed f'(vax) for equation (1.1).
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Proof By the construction of ¥ (&), we see that the two single-side limits of /5, (£) at the
discontinuous point & + ;T + Y . T; + &, are ok (&) = 0 and ¢ox(§,,) = pm, for j € Z,
1 <m < N. Since a(s) = 0 for s € (byi_1,a2) and the equality (3.8), we prove that v
satisfies the Rankine-Hugoniot condition (2.5) at any discontinuous points. The entropy
condition (2.2) is fulfilled as p,, < 1. Clearly, (, N € (bax-1, d2x). Lemma 2.1 implies that
u(x, t) is an entropy solution of (1.1). O

Proof of Theorem 2.1 Under the assumptions of Theorem 2.1, we see that the conditions
(3.2) and (3.5) are fulfilled. According to the construction of ¥p(§) and Lemma 3.5, we
conclude that equation (1.1) admits infinitely many discontinuous traveling wave entropy
solutions. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Acknowledgements

The second author was supported by the Program for New Century Excellent Talents in University of the Ministry of
Education (NCET-13-0804), NSFC (11471127,11371153), Guangdong Natural Science Funds for Distinguished Young
Scholar (2015A030306029), The Excellent Young Teachers Program of Guangdong Province (HS2015007), and Special
support program of Guangdong Province.

Received: 16 November 2015 Accepted: 24 January 2016 Published online: 05 February 2016

References
1. Mascia, C: Continuity in finite time of entropy solutions for nonconvex conservation laws with reaction term.
Commun. Partial Differ. Equ. 23, 913-931 (1998)
2. Lyberopoulos, AN: A Poincaré-Bendixson theorem for scalar balance law. Proc. R. Soc. Edinb,, Sect. A 124, 589-607
(1994)
3. Fan, H, Hale, JK: Large-time behavior in inhomogeneous conservation laws. Arch. Ration. Mech. Anal. 125, 201-216
(1993)
4. Sinestrari, C: Instability of discontinuous traveling waves for hyperbolic balance laws. J. Differ. Equ. 134, 269-285
(1997)
5. Zumbrun, K, Texier, B: Galloping instability of viscous shock waves. Physica D 237, 1553-1601 (2008)
6. Wu, C, Zhang, P, Wong, SC, Qiao, D, Dai, S: Solitary wave solution to Aw-Rascle viscous model of traffic flow. Appl.
Math. Mech. 34, 523-528 (2013)
7. Haragus, M, Scheel, A: Corner defects in almost planar interface propagation. Ann. Inst. Henri Poincaré, Anal. Non
Linéaire 23, 283-329 (2006)
8. Wu, Y, Xing, X: The stability of travelling fronts for general scalar viscous balance law. J. Math. Anal. Appl. 305, 698-711
(2005)
9. Harterich, J: Attractors of viscous balance laws: uniform estimates for the dimension. J. Differ. Equ. 142, 142-188
(1997)
10. Barbera, E, Curro, C, Valenti, G: On discontinuous travelling wave solutions for a class of hyperbolic reaction-diffusion
models. Physica D 308, 116-126 (2015)
11. Johnson, MA, Noble, P, Rodrigues, LM, Zumbrun, K: Behavior of periodic solutions of viscous conservation laws under
localized and nonlocalized perturbations. Invent. Math. 197, 115-213 (2014)
12. Gray, DD, Giorgini, A: The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19,
545-551(1976)
13. Valougeorgis, D, Thomas, JR: Exact numerical results for Poiseuille and thermal creep flow in a cylindrical tube. Phys.
Fluids 29, 423-427 (1986)
14. Liu, TP: Nonlinear stability of shock waves for viscous conservation laws. Bull. Am. Math. Soc. 12, 233-236 (1985)
15. Kruzhkov, SN: First order quasilinear equations in several independent variables. Mat. Sb. 81, 228-255 (1970) (English
transl.: Math. USSR Sb. 10, 217-243 (1970))
16. Vol'pert, Al, Hudjaev, SI: Cauchy'’s problem for second order quasilinear degenerate parabolic equations. Mat. Sb. 78,
389-411 (1969)
17. Wu, ZQ, Yin, JX: Some properties of functions in BV, and their applications to the uniqueness of solutions for
degenerate quasilinear parabolic equations. Northeast. Math. J. 5, 395-422 (1989)



	Discontinuous traveling waves for scalar hyperbolic-parabolic balance law
	Abstract
	Keywords

	Introduction
	Preliminaries and main results
	Proof of the main results
	Competing interests
	Authors' contributions
	Acknowledgements
	References


