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Abstract
This paper aims to explore the possible solutions for the movement of an Oldroyd-B
fluid placed under certain conditions, i.e. the fluid is present within two cylinders,
which are coaxial and oscillating within. Having said that the governing model will be
an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear
stress by using some common transformations, namely the Laplace transformation
and the Hankel transformation. The final results, for the sake of simplicity, will be
expressed in the form of generalized G-function and they satisfy all imposed initial
and boundary conditions.

Keywords: Oldroyd-B fluid; velocity field; shear stress; rotational oscillatory flow;
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1 Introduction
Flow due to an oscillating cylinder is one of the most important and interesting problems
of motion near oscillating walls. As early as , Stokes [] established an exact solution to
the rotational oscillations of an infinite rod immersed in a Newtonian fluid. An extension
of this problem to the rod undergoing both rotational and longitudinal oscillations has
been realized in [], while the first exact solutions for similar motions of non-Newtonian
fluids are those of Rajagopal [] and Rajagopal and Bhatnagar []. However, all these so-
lutions are steady-state solutions to which a transient solution has to be added in order to
describe the motion of the fluid for small and large times.

The first closed-form expressions for the starting solutions corresponding to an oscil-
lating motion seem to be those of Erdogan [] for Newtonian fluids. New exact solutions
for the same problem, but presented as a sum of steady-state and transient solutions, have
also been established by Corina Fetecau et al. []. The extension of these solutions to sec-
ond grade fluids has been achieved in [], while the starting solutions for the motion of
the same fluids due to longitudinal and torsional oscillations of a circular cylinder have
been established in []. Recently, starting solutions for oscillating motions of a Maxwell
fluid in cylindrical domains have been obtained in []. Other interesting results regarding
oscillating flows of non-Newtonian fluids have been presented in [–].

In this paper, we are interested in the velocity and shear stress for the movement of an
Oldroyd-B fluid within two coaxial infinite oscillating cylinders oscillatory motion of a
generalized Maxwell fluid between two infinite coaxial circular cylinders, both of them
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oscillating around their common axis with given constant angular frequencies z. The ve-
locity field and associated tangential stress of the motion are determined by using Laplace
and Hankel transforms and are presented by integral and series. It is worthy to point out
that the solutions that have been obtained satisfy the governing differential equation and
all imposed initial and boundary conditions as well. The solutions correspond to the or-
dinary Oldroyd-B fluid, performing the same motion.

1.1 Governing equations of problem
The movement of the Oldroyd-B fluid is governed by the following mathematical model:
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Here we have labeled the dynamic viscosity as μ, whereas the kinematic viscosity is ν =
μ

ρ
, the constant density of the fluid is presented as ρ , the relaxation time is λ, and the

retardation time is λr . We have labeled the velocity V as w(r, t) and the extra-stress S as
τ (r, t) and the governing model using fractional derivatives eventually becomes
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due to the fractional operator defined as follows:

Dξ
t f (t) =


	( – ξ )

d
dt

∫ f (τ )
(t – τ )ξ

dτ when  ≤ ξ < , ()

=
d
dt

f (t) when ξ = . ()

We can notice that for ξ and η → , our model involving fractional derivatives reduces to
the basic model defined earlier due to the fact D

t f (t) = d
dt f (t).

2 Theoretical description of the problem
Suppose a viscoelastic (Oldroyd-B) fluid is at rest in the annulus of coaxial circular cylin-
ders whose lengths are infinite and having R and R radii, respectively, where R < R.
Initially at t = , both the cylinders and the fluid are at rest. At time t = +, the outer cylin-
der suddenly begin to oscillate around its axis (r = ) with the velocity Z sin(zt), where z is
the constant angular frequency of the outer cylinder and Z is the constant. Owing to the
shear, the fluid between the cylinders is gradually moved, its velocity being of the form

V = V(r, t) = w(r, t)eθ ,

where eθ is the unit vector along θ -direction of the polar coordinate system whose coor-
dinates are (r, θ , z).
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The constraint of incompressibility is automatically satisfied for this kind of flows. The
equation for this motion is

τ (r, t) =
μ( + λrDη

t )
( + λDξ

t )
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r

)
w(r, t), ()

where τ (r, t) = Srθ (r, t) is the only non-zero shear stress. When the pressure gradient and
the body forces in the axial direction are absent, the following equation is obtained by the
balance of the linear momentum:

ρ
∂w(r, t)
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where the constant density of the fluid is ρ .
In this paper, we have determined the velocity and the shear stress when the inner cylin-

der is fixed and the outer cylinder is moving. The initial and boundary conditions, when
the inner cylinder is fixed and the outer cylinder moves gradually become

w(r, ) = ; r ∈ [R, R], ()

w(R, t) = , w(R, t) = Z sin(zt). ()

Also

w̄(R, s) = , w̄(R, s) =
Zz

z + s . ()

Two transformations, namely the Laplace and the Hankel transformations, can be applied
to the problem to solve it.

3 Calculation of the velocity field
Let us apply Laplace transformation to equation () to obtain the following ODE:
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where ‘s’ is the parameter of the Laplace transform, or
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Multiplying both sides of above equation by rB(r, rn) and integrating with respect to ‘r’
from R to R, where B(r, rn) = J(rrn)Y(Rrn) – J(Rrn)Y(rrn), and rn are the positive
roots of the equation B(Rrn) = .

Hence our last equation becomes

s + λsξ+

ν( + λrsη)

∫ R

R

rB(rrn)w̄(r, s) dr

=
∫ R

R

r
(

∂

∂r +

r

∂

∂r
–


r

)
B(rrn)w̄(r, s) dr. ()

RETRACTED A
RTIC

LE



Kang et al. Boundary Value Problems  (2016) 2016:40 Page 4 of 11

Also we define the Hankel transform of w̄(r, s) as

W̄H (rn, s) =
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Consider right hand side of the above equation (), and solving it for simplification
purposes, we get
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Before we proceed, let us define the inverse Hankel transform
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or equivalently
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which is the required velocity field.
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3.1 Calculation of shear stress
Considering equation () and solving it for τ (r, t), we get
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Equivalently
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Taking the Laplace inverse, using the convolution theorem, and the following identity:
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4 Particularization of the above results
The above results are of a general nature and the imposition of certain limits/conditions
may bring these to particular fluids.

4.1 Ordinary Oldroyd-B fluid
The velocity field and shear stress of the movement of an ordinary Oldroyd-B fluid can be
deduced imposing ξ ,η →  on the obtained results:
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4.2 Ordinary Maxwell fluid
If ξ → , λr →  in the already found results for the velocity and shear stress then the
resultants will govern the movement of an ordinary Maxwell fluid under the same cir-
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cumstances. We have
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5 Conclusion
Our above endeavors were to develop a formula for the calculation of exact solutions for
the velocity field and the shear stress of the motion (flow) of an Oldroyd-B fluid present
between two rotationally oscillating cylinders of infinite lengths. The use of fractional
derivatives and the commonly known transformations, i.e. the Laplace and the Hankel
transformations, has made the approach more accessible. The central notion depicts the
phenomenon that a viscoelastic (Oldroyd-B) fluid will react under certain conditions and
that can we control such flow. At first stage the inner cylinder was supposed to be at rest,
i.e. fixed, whereas the movement was produced by the outer cylinder. At the second stage,
we analyzed the flow of the fluid produced by the movement of the inner cylinder while
considering the outer cylinder at rest or fixed. The obtained solutions satisfy the govern-
ing equations and all imposed initial and boundary conditions. The solutions, obtained
by means of Laplace and Hankel transforms, are presented in integral and series forms in
terms of the generalized G-function. In the end these general solutions have been partic-
ularized for ‘ordinary Oldroyd-B fluids’ and for ‘ordinary Maxwell fluids’.
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Appendix
The following are some expressions used in the text:

(A) The finite Hankel transform of the function

a(r) =
CR(R

 – r) + CR(r – R
 )

(R
 – R

 )r

satisfying a(R) = C and a(R) = C is

an(r) =
∫ R

R

ra(r)B(rrn) dr =
C

πr
n

–
C

πr
n

J(Rrn)
J(Rrn)

.

(A) If f (t) = L–{f (q)} and g(t) = L–{g(q)}, then

L–{f (q)g(q)
}

= (f ∗ g)(t)

=
∫ t


f (t – τ )g(τ ) dτ

=
∫ t


f (t)g(t – τ ) dτ .

(A)

∞∑
k=

(
–νr

n
)kG,––k,k+

(
–αr

n, t
)

=


 + αr
n

exp

(
–νr

nt
 + αr

n

)
.
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