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Abstract
In this paper, we consider the following high-order p-Laplacian neutral differential
equation with singularity:

(ϕp(x(t) – cx(t – τ ))(n))(m) + f (x(t))x′(t) + g(t, x(t – σ )) = e(t).

By applications of coincidence degree theory and some analysis techniques,
sufficient conditions for the existence of positive periodic solutions are established.
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1 Introduction
In this paper, we consider the following high-order p-Laplacian neutral differential equa-
tion with singularity:

(
ϕp

(
x(t) – cx(t – τ )

)(n))(m) + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= e(t), (.)

where p ≥ , ϕp(x) = |x|p–x for x �=  and ϕp() = ; g : [, T] × (,∞) → R is an L-
Carathéodory function, i.e., it is measurable in the first variable and continuous in the
second variable, and for every  < r < s there exists hr,s ∈ L[, T] such that |f (t, x(t))| ≤ hr,s

for all x ∈ [r, s] and a.e. t ∈ [, T]. g(t, x) being singular at  means that g(t, x) becomes un-
bounded when x → +. τ and σ are constants and  ≤ τ ,σ < T ; e : R →R is a continuous
periodic function with e(t + T) ≡ e(t) and

∫ T
 e(t) dt = . T is a positive constant, c is a

constant and |c| �= ; n, m are positive integers.
Generally speaking, differential equations with singularities have been considered from

the very beginning of the discipline. The main reason is that singular forces are ubiquitous
in applications, gravitational and electromagnetic forces being the most obvious examples.
In , Lazer and Solimini [] discussed the second-order singular equation

u′′ +


uα
= h(t), (.)
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and they showed that, if h(t) was continuous and T-periodic, then for all α >  a positive
T-periodic solution existed if and only if h(t) had a positive mean value. Afterwards, they
studied the singular equation

u′′ –


uα
= h(t), (.)

and they found that if α ≥ , a positive T-periodic solution existed if and only if h(t) had a
negative mean value. This last result was best possible in that for any α,  < α < , h can be
chosen so that h had a negative mean value and the equation had no T-periodic solution.

Lazer and Solimini’s work has attracted the attention of many specialists in differential
equations. More recently, the method of lower and upper solutions [–], the Poincaré-
Birkhoff twist theorem [–], topological degree theory [, ], the Schauder fixed point
theorem [–], the Leray-Schauder alternative principle [–], the Krasnoselskii fixed
point theorem in a cone [, ], and the fixed point index theory [] have been employed
to investigate the existence of positive periodic solutions of singular second-order, third-
order, and fourth-order differential equations.

However, the singular differential equation (.), in which there are p-Laplacian and
high-order cases, has not attracted much attention in the literature. There are not so many
results concerning the existence of a positive periodic solution for (.) even when we have
a neutral operator. In this paper, we try to fill gap and establish the existence of a positive
periodic solution of (.) using coincidence degree theory. Our new results generalize in
several aspects some recent results contained in [].

In what follows, we need the notations:

|u|∞ = max
t∈[,T]

∣
∣u(t)

∣
∣, |u| = min

t∈[,T]

∣
∣u(t)

∣
∣, |u|p =

(∫ T


|u|p dt

) 
p

, h̄ =

T

∫ T


h(t) dt.

2 Preparation
Let CT = {φ ∈ C(R,R) : φ(t + T) ≡ φ(t)} with the norm |φ|∞ = maxt∈[,T] |φ(t)|. Define
operators A as follows:

A : CT → CT , (Ax)(t) = x(t) – cx(t – τ ).

Lemma . (see []) If |c| �= , then the operator A has a continuous inverse A– on CT ,
satisfying:

()
[
A–f

]
(t) =

⎧
⎨

⎩
f (t) +

∑∞
j= cjf (t – jτ ), for |c| < ,∀f ∈ CT ,

– f (t+τ )
c –

∑∞
j=


cj+ f (t + (j + )τ ), for |c| > ,∀f ∈ CT .

() |[A–f ](t)| ≤ |f |∞
|–|c|| , ∀f ∈ CT .

()
∫ T

 |[A–f ](t)|dt ≤ 
|–|c||

∫ T
 |f (t)|dt, ∀f ∈ CT .

Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with
index zero, here D(L) denotes the domain of L. This means that Im L is closed in Y and
dim Ker L = dim(Y / Im L) < +∞. Consider supplementary subspaces X, Y of X, Y , respec-
tively, such that X = Ker L⊕X, Y = Im L⊕Y. Let P : X → Ker L and Q : Y → Y denote the
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natural projections. Clearly, Ker L ∩ (D(L) ∩ X) = {} and so the restriction LP := L|D(L)∩X

is invertible. Let K denote the inverse of LP .
Let � be an open bounded subset of X with D(L) ∩ � �= ∅. A map N : � → Y is said to

be L-compact in � if QN(�) is bounded and the operator K(I – Q)N : � → X is compact.

Lemma . (Gaines and Mawhin []) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (, );
() Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
() deg{JQN ,� ∩ Ker L, } �= , where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

In order to apply coincidence degree theorem, we rewrite (.) in the form
⎧
⎨

⎩
(Ax)(n)(t) = ϕq(x(t)),

x(m)
 (t) = –f (x(t))x′

(t) – g(t, x(t – σ )) + e(t),
(.)

where 
p + 

q = . Clearly, if x(t) = (x(t), x(t))� is a T-periodic solution to (.), then x(t)
must be a T-periodic solution to (.). Thus, the problem of finding a T-periodic solution
for (.) reduces to finding one for (.).

Now, set X = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm |x|∞ =
max{|x|∞, |x|∞}; Y = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm ‖x‖ =
max{|x|∞, |x′|∞}. Clearly, X and Y are both Banach spaces. Meanwhile, define

L : D(L) =
{

x ∈ Cn+m(
R,R) : x(t + T) = x(t), t ∈R

} ⊂ X → Y

by

(Lx)(t) =

(
(Ax)(n)(t)

x(m)
 (t)

)

and N : X → Y by

(Nx)(t) =

(
ϕq(x(t))

–f (x(t))x′
(t) – g(t, x(t – σ )) + e(t)

)

. (.)

Then (.) can be converted into the abstract equation Lx = Nx. From the definition of L,
one can easily see that

Ker L ∼= R
, Im L =

{

y ∈ Y :
∫ T



(
y(s)
y(s)

)

ds =

(



)}

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
 be

defined by

Px =

(
(Ax)()

x()

)

; Qy =

T

∫ T



(
y(s)
y(s)

)

ds,
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then Im P = Ker L, Ker Q = Im L. Setting LP = L|D(L)∩Ker P and writing L–
P : Im L → D(L) to

denote the inverse of LP , then

[
L–

P y
]
(t) =

(
(A–Gy)(t)

(Gy)(t)

)

,

[Gy](t) =
n–∑

i=


i!

(Ax)(i)()ti +


(n – )!

∫ t


(t – s)n–y(s) ds,

[Gy](t) =
m–∑

i=


i!

x(i)
 ()ti +


(m – )!

∫ t


(t – s)m–y(s) ds,

(.)

where (Ax)(i)(), i = , , . . . , n –  are defined by the following:

EZ = B, where E =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

   · · ·  
c   · · ·  
c c  · · ·  
· · ·

cn– cn– cn– · · ·  
cn– cn– cn– · · · c 

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(n–)×(n–)

.

Z = ((Ax)(n–)(), . . . , (Ax)′′(), (Ax)′())�, B = (b, b, . . . , bn–)�, bi = – 
i!T

∫ T
 (T – s)i ×

y(s) ds, and cj = Tj

(j+)! , j = , , . . . , n – . x(i)
 (), i = , , . . . , m – , are determined by the

equation

EW = F , where E =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

   · · ·  
c   · · ·  
c c  · · ·  
· · ·

cm– cm– cm– · · ·  
cm– cm– cm– · · · c 

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(m–)×(m–)

.

W = ((x)(m–)(), . . . , (x)′′(), (x)′())�, F = (d, d, . . . , dn–)�, di = – 
i!T

∫ T
 (T – s)iy(s) ds,

and cj = Tj

(j+)! , j = , , . . . , m – .
From (.) and (.), it is clear that QN and K(I –Q)N are continuous, QN(�) is bounded

and then K(I – Q)N(�) is compact for any open bounded � ⊂ X, which means N is L-
compact on �̄.

3 Existence of positive periodic solutions for (1.1)
For the sake of convenience, we list the following assumptions which will be used repeat-
edly in the sequel:

(H) There exist constants  < D < D such that if x is a positive continuous T-periodic
function satisfying

∫ T


g
(
t, x(t)

)
dt = ,
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then

D ≤ x(τ ) ≤ D

for some τ ∈ [, T].
(H) ḡ(x) <  for all x ∈ (, D), and ḡ(x) >  for all x > D.
(H) Assume that

ψ(t) = lim
x→+∞ sup

g(t, x)
xp– ,

exist uniformly a.e. t ∈ [, T], i.e., for any ε >  there is gε ∈ L(, T) such that

g(t, x) ≤ (
ψ(t) + ε

)
xp– + gε(t)

for all x >  and a.e. t ∈ [, T]. Moreover, ψ ∈ C(R,R) and ψ(t + T) = ψ(t).
(H) g(t, x) = g(x) + g(t, x), where g ∈ C((,∞);R) and g : [, T] × [,∞) → R is an

L-Carathéodory function.
(H)

∫ 
 g(x) dx = –∞.

(H) There exist two positive constants a, b such that

∣∣f
(
x(t)

)∣∣ ≤ a|x|p– + b, ∀x ∈R.

Theorem . Assume that conditions (H)-(H) hold. Suppose one of the following condi-
tions is satisfied:

(i) p >  and (a+|ψ |∞T)Tp

p|–|c||p– ( T
π

)(n–)(p–)+(m–) < ;

(ii) p =  and (a+|ψ |∞T)Tp

p|–|c||p– ( T
π

)(n–)(p–)+(m–) + bT( T
π )n+m–

|–|c|| < .
Then (.) has at least one positive T-periodic solution.

Proof Consider the equation

Lx = λNx, λ ∈ (, ).

Set � = {x : Lx = λNx,λ ∈ (, )}. If x(t) = (x(t), x(t))� ∈ �, then

⎧
⎨

⎩
(Ax)(n)(t) = λϕq(x(t)),

x(m)
 (t) = –λf (x(t))x′

(t) – λg(t, x(t – σ )) + λe(t).
(.)

Substituting x(t) = λ–pϕp[(Ax)(n)(t)] into the second equation of (.)

(
ϕp(Ax)(n)(t)

)(m) + λpf
(
x(t)

)
x′

(t) + λpg
(
t, x(t – σ )

)
= λpe(t). (.)

Integrating of both sides of (.) from  to T , we have

∫ T


g
(
t, x(t – σ )

)
dt = . (.)
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In view of (H), there exist positive constants D, D, and ξ ∈ [, T] such that

D ≤ x(ξ ) ≤ D.

Then we have

∣
∣x(t)

∣
∣ =

∣∣
∣∣x(ξ ) +

∫ t

ξ

x′
(s) ds

∣∣
∣∣ ≤ D +

∫ t

ξ

∣
∣x′

(s)
∣
∣ds, t ∈ [ξ , ξ + T],

and

∣
∣x(t)

∣
∣ =

∣
∣x(t – T)

∣
∣ =

∣∣
∣∣x(ξ ) –

∫ ξ

t–T
x′

(s) ds
∣∣
∣∣ ≤ D +

∫ ξ

t–T

∣
∣x′

(s)
∣
∣ds, t ∈ [ξ , ξ + T].

Combing the above two inequalities, we obtain

|x|∞ = max
t∈[,T]

∣∣x(t)
∣∣ = max

t∈[ξ ,ξ+T]

∣∣x(t)
∣∣

≤ max
t∈[ξ ,ξ+T]

{
D +




(∫ t

ξ

∣∣x′
(s)

∣∣ds +
∫ ξ

t–T

∣∣x′
(s)

∣∣ds
)}

≤ D +



∫ T



∣∣x′
(s)

∣∣ds. (.)

Since

(Ax)(n)(t) =
(
x(t) – cx(t – σ )

)(n) = x(n)
 (t) – cx(n)

 (t – σ ) = Ax(n)
 (t),

from Lemma . and the first equation of (.), we have

∣∣x(n)


∣∣∞ = max
t∈[,T]

∣∣A–Ax(n)
 (t)

∣∣

≤ maxt∈[,T] |(Ax)(n)(t)|
| – |c||

≤ ϕq(|x|∞)
| – |c|| . (.)

On the other hand, from x(m–)
 () = x(m–)

 (T), there exists a point t ∈ [, T] such that
x(m–)

 (t) = , which together with the integration of the second equation of (.) on the
interval [, T] yields


∣∣x(m–)

 (t)
∣∣ ≤ 

(
x(m–)

 (t) +



∫ T



∣∣x(m)
 (t)

∣∣dt
)

≤ λ

∫ T



∣∣–f
(
x(t)

)
x′

(t) – g
(
t, x(t – σ )

)
+ e(t)

∣∣dt

≤
∫ T



∣∣f
(
x(t)

)∣∣∣∣x′
(t)

∣∣dt +
∫ T



∣∣g
(
t, x(t – σ )

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt. (.)
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Write

I+ =
{

t ∈ [, T] : g
(
t, x(t – σ )

) ≥ 
}

; I– =
{

t ∈ [, T] : g
(
t, x(t – σ )

) ≤ 
}

.

Then we get from (H) and (.) that

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣dt =
∫

I+

g
(
t, x(t – σ )

)
dt –

∫

I–

g
(
t, x(t – σ )

)
dt

= 
∫

I+

g
(
t, x(t – σ )

)
dt

≤ 
∫

I+

((
ψ(t) + ε

)
xp–

 (t – σ ) + gε(t)
)

dt

≤ 
(|ψ |∞ + ε

) ∫ T



∣∣x(t)
∣∣p– dt + 

∫ T



∣∣gε(t)
∣∣dt. (.)

Substituting (.) and (.) into (.), and from (H), we have


∣∣x(m–)

 (t)
∣∣ ≤ a

∫ T



∣∣x(t)
∣∣p–∣∣x′

(t)
∣∣dt + b

∫ T



∣∣x′
(t)

∣∣dt

+ 
(|ψ |∞ + ε

)∫ T



∣
∣x(t)

∣
∣p– dt + 

∫ T



∣
∣gε(t)

∣
∣dt +

∫ T



∣
∣e(t)

∣
∣dt

≤ a
(

D +



∫ T



∣∣x′
(t)

∣∣dt
)p– ∫ T



∣∣x′
(t)

∣∣dt + b
∫ T



∣∣x′
(t)

∣∣dt

+ 
(|ψ |∞ + ε

)
T

(
D +




∫ T



∣∣x′
(t)

∣∣dt
)p–

+ T

 |gε| + |e|∞T . (.)

For a given constant δ > , which is only dependent on k > , we have

( + x)k ≤  + ( + k)x for x ∈ [, δ].

From (.), we have


∣
∣x(m–)

 (t)
∣
∣ ≤ a

p–

(
D

∫ T
 |x′

(t)|dt
+ 

)p–(∫ T



∣
∣x′

(t)
∣
∣dt

)p–

+
(|ψ |∞ + ε)T

p–

(
D

∫ T
 |x′

(t)|dt
+ 

)p–

·
(∫ T



∣
∣x′

(t)
∣
∣dt

)p–

+ b
∫ T



∣
∣x′

(t)
∣
∣dt + T


 |gε| + |e|∞T

≤
[

a
p–

(
 +

D(p – )
∫ T

 |x′
(t)|dt

)
+

(|ψ |∞ + ε)T
p–

(
 +

Dp
∫ T

 |x′
(t)|dt

)]

·
(∫ T



∣
∣x′

(t)
∣
∣dt

)p–

+ b
∫ T



∣
∣x′

(t)
∣
∣dt + T


 |gε| + |e|∞T

=
(

a
p– +

(|ψ |∞ + ε)T
p–

)(∫ T



∣
∣x′

(t)
∣
∣dt

)p–
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+
aD(p – ) +

(|ψ |∞ + ε
)
TDp

p–

·
(∫ T



∣
∣x′

(t)
∣
∣dt

)p–

+ b
∫ T



∣
∣x′

(t)
∣
∣dt + T


 |gε| + |e|∞T . (.)

From the Wirtinger inequality (see [], Lemma .), we get

∫ T



∣∣x′
(s)

∣∣ds ≤ T



(∫ T



∣∣x′
(s)

∣∣ ds
) 



≤ T



(
T

π

)n–(∫ T



∣∣x(n)
 (s)

∣∣ ds
) 



≤ T
(

T
π

)n–∣
∣x(n)


∣
∣∞. (.)

Substituting (.) into (.), we have


∣∣x(m–)

 (t)
∣∣ ≤ (a + (|ψ |∞ + ε)T)Tp–

p–

(
T

π

)(n–)(p–)∣∣x(n)


∣∣p–
∞

+
(aD(p – ) + (|ψ |∞ + ε)TDp)Tp–

p–

(
T

π

)(n–)(p–)∣∣x(n)


∣∣p–
∞

+ bT
(

T
π

)n–∣
∣x(n)


∣
∣∞ + T


 |gε| + |e|∞T . (.)

Substituting (.) into (.), we have


∣∣x(m–)

 (t)
∣∣ ≤ (a + (|ψ |∞ + ε)T)Tp–

p–

(
T

π

)(n–)(p–) (ϕq(|x|∞))p–

| – |c||p–

+
(aD(p – ) + (|ψ |∞ + ε)TDp)Tp–

p–

(
T

π

)(n–)(p–) (ϕq(|x|∞))p–

| – |c||p–

+ bT
(

T
π

)n–
ϕq(|x|∞)
| – |c|| + T


 |gε| + |e|∞T

=
(a + (|ψ |∞ + ε)T)Tp–

p–

(
T

π

)(n–)(p–) |x|∞
| – |c||p–

+
(aD(p – ) + (|ψ |∞ + ε)TDp)Tp–

p–

(
T

π

)(n–)(p–) |x|–q
∞

| – |c||p–

+ bT
(

T
π

)n– |x|q–
∞

| – |c|| + T

 |gε| + |e|∞T . (.)

Since
∫ T

 (ϕq(x(t))) dt =
∫ T

 (Ax(t))(n)(t) dt = , there exists a point t ∈ [, T] such that
x(t) = . From the Wirtinger inequality, we can easily get

|x|∞ ≤ 


∫ T



∣∣x′
(t)

∣∣dt

≤
√

T


(∫ T



∣
∣x′

(t)
∣
∣

) 
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≤
√

T


(
T

π

)m–(∫ T



∣∣x(m–)
 (t)

∣∣ dt
) 



≤ T


(
T

π

)m–∣
∣x(m–)


∣
∣∞. (.)

Combination of (.) and (.) implies

|x|∞ ≤ T


(
T

π

)m–∣∣x(m–)


∣∣∞

≤T


(
T

π

)m–[ (a + (|ψ |∞ + ε)T)Tp–

p–

(
T

π

)(n–)(p–) |x|∞
| – |c||p–

+
(aD(p – ) + (|ψ |∞ + ε)TDp)Tp–

p–

(
T

π

)(n–)(p–) |x|–q
∞

| – |c||p–

+ bT
(

T
π

)n– |x|q–
∞

| – |c|| + T

 |gε| + |e|∞T

]
.

So, we have

|x|∞ ≤ (a + (|ψ |∞ + ε)T)Tp

p| – |c||p–

(
T

π

)(n–)(p–)+(m–)

|x|∞

+
(aD(p – ) +

(|ψ |∞ + ε
)
TDp)Tp–

p–| – |c||p–

(
T

π

)(n–)(p–)+(m–)

|x|–q
∞

+
bT



(
T

π

)n+m– |x|q–
∞

| – |c|| +
T


(
T

π

)m–(
T


 |gε| + |e|∞T

)
.

Case (i): If p > , we can get  < q < . Since ε sufficiently small, we know that

(a + |ψ |∞T)Tp

p| – |c||p–

(
T

π

)(n–)(p–)+(m–)

< ,

there exists a positive constant M such that

|x|∞ ≤ M. (.)

Case (ii): If p = , we can get q = . Since ε is sufficiently small, we know that

(a + |ψ |∞T)Tp

p| – |c||p–

(
T

π

)(n–)(p–)+(m–)

+
bT( T

π
)n+m–

| – |c|| < ,

there exists a positive constant M such that

|x|∞ ≤ M.

On the other hand, from (.), we have

∣
∣x(n)


∣
∣∞ ≤ ϕq(|x|∞)

| – |c|| ≤ Mq–


| – |c|| := M′
n. (.)
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Since x() = x(T), there exists a point t ∈ [, T] such that x′
(t) = . From the Wirtinger

inequality, we can easily get

∣∣x′

∣∣∞ ≤ 



∫ T



∣∣x′′
 (t)

∣∣dt ≤ T 




(∫ T



∣∣x′′
 (t)

∣∣ dt
) 



≤ T


(
T

π

)(n–)∣∣x(n)


∣∣∞

≤ T


(
T

π

)n–

M′
n := M. (.)

Hence, from (.), we have

|x|∞ ≤ D +



∫ T



∣∣x′
(t)

∣∣dt ≤ D +
TM


:= M. (.)

From (.), (.), and (.) we have

∣∣x(m–)


∣∣∞ ≤ 


max

∣∣∣
∣

∫ T


x(m)

 (t) dt
∣∣∣
∣

≤ λ



∫ T



∣∣–f
(
x(t)

)
x′

(t) – g
(
t, x(t – σ )

)
+ e(t)

∣∣dt

≤ λ


(|f |M TM + 

(|ψ |∞ + ε
)
TMp–

 + 
√

T |gε| + T |e|∞
)

:= λMm–,

where |f |M = max<x(t)≤M |f (x(t))|. Since x() = x(T), there exists a point t ∈ [, T]
such that x′

(t) = . From the Wirtinger inequality, we can easily get

∣∣x′

∣∣∞ ≤ 



∫ T



∣∣x′′
(t)

∣∣dt

≤ T 




(∫ T



∣∣x′′
(t)

∣∣ dt
) 



≤ T


(
T

π

)(m–)∣∣x(m–)


∣∣∞

≤ T


(
T

π

)(m–)

λMm– := λM.

Next, it follows (.) that

(
ϕp(Ax)(n)(t + σ )

)(m) + λp(f
(
x(t + σ )

)
x′

(t + σ ) + λpg
(
t + σ , x(t)

))

= λpe(t + σ ). (.)

Namely,

(
ϕp(Ax)(n)(t + σ )

)(m) + λpf
(
x(t + σ )

)
x′

(t + σ ) + λp(g
(
x(t)

))
+ g

(
t + σ , x(t)

)

= λpe(t + σ ). (.)
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Multiplying both sides of (.) by x′
(t), we get

(
ϕp(Ax)(n)(t + σ )

)(m)x′
(t) + λpf

(
x(t + σ )

)
x′

(t + σ )x′
(t)

+ λpg
(
x(t)

)
x′

(t) + λpg
(
t + σ , x(t)

)
x′

(t) = λpe(t + σ )x′
(t). (.)

Let τ ∈ [, T], for any τ ≤ t ≤ T , we integrate (.) on [τ , t] and get

λp
∫ x(t)

x(τ )
g(u) du

= λp
∫ t

τ

g
(
x(s)

)
x′

(s) ds

= –
∫ t

τ

(
ϕp(Ax)(n)(s + σ )

)(m)x′
(s) ds – λp

∫ t

τ

f
(
x(s + σ )

)
x′

(s + σ )x′
(s) ds

– λp
∫ t

τ

g
(
s + σ , x(s)

)
x′

(s) ds + λp
∫ t

τ

e(s + σ )x′
(s) ds. (.)

By (.), (.), (.), and (.), we have

∣∣
∣∣

∫ t

τ

(
ϕp(Ax)(n)(s + σ )

)(m)x′
(s) ds

∣∣
∣∣

≤
∫ t

τ

∣∣(ϕp(Ax)(n)(s + σ )
)(m)∣∣∣∣x′

(s)
∣∣ds

≤ ∣∣x′

∣∣∞

∫ T



∣∣(ϕp(Ax)(n)(t + σ )
)(m)∣∣dt

≤ λp∣∣x′

∣
∣∞

(∫ T



∣
∣f

(
x(t)

)∣∣
∣
∣x′

(t)
∣
∣dt +

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣dt +
∫ T



∣
∣e(t)

∣
∣dt

)

≤ λpM
(|f |M M + 

(|ψ |∞ + ε
)
TMp–

 + T


∣∣g+

ε

∣∣
 + T |e|∞

)
.

We have

∣∣
∣∣

∫ t

τ

f
(
x(s + σ )

)
x′

(s + σ )x′
(s) ds

∣∣
∣∣ ≤ |f |M M

T ,

∣
∣∣
∣

∫ t

τ

g
(
s + σ , x(s)

)
x′

(s) ds
∣
∣∣
∣ ≤ ∣∣x′


∣∣
∫ T



∣∣g(t, x(t – σ )
∣∣dt ≤ Mp–


√

T |gM |,

where gM = max≤x≤M |g(t, x)| ∈ L(, T) is as in (H); we have

∣∣
∣∣

∫ t

τ

e(t + σ )x′
(t) dt

∣∣
∣∣ ≤ MT |e|∞.

From these inequalities we can derive from (.) that

∣
∣∣∣

∫ x(t)

x(τ )
g(u) du

∣
∣∣∣ ≤ M′

, (.)
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for some constant M′
, which is independent on λ, x, and t. In view of the strong force

condition (H), we know that there exists a constant M >  such that

x(t) ≥ M, ∀t ∈ [τ , T]. (.)

The case t ∈ [, τ ] can be treated similarly.
From (.), (.), and (.) and (.), we let

� =
{

x = (x, x)� : E ≤ |x|∞ ≤ E,
∣
∣x′


∣
∣∞ ≤ E, |x|∞ ≤ E and

∣∣x′

∣∣∞ ≤ E,∀t ∈ [, T]

}
,

where  < E < min{M, D}, E > max{M, D}, E > M, E > M, and E > M. � = {x :
x ∈ ∂� ∩ Ker L} then ∀x ∈ ∂� ∩ Ker L

QNx =

T

∫ T



(
ϕq(x(t))

–f (x(t))x′
(t) – g(t, x(t – σ )) + e(t)

)

dt.

If QNx = , then x(t) = , x = E or –E. But if x(t) = E, we know

 =
∫ T



{
g(t, E) – e(t)

}
dt.

From assumption (H), we have x(t) ≤ D ≤ E, which yields a contradiction. Similarly if
x = –E. We also have QNx �= , i.e., ∀x ∈ ∂�∩ Ker L, x /∈ Im L, so conditions () and () of
Lemma . are both satisfied. Define the isomorphism J : Im Q → Ker L as follows:

J(x, x)� = (x, –x)�.

Let H(μ, x) = –μx + ( – μ)JQNx, (μ, x) ∈ [, ] × �, then ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L),

H(μ, x) =

(
–μx – –μ

T
∫ T

 [g(t, x) – e(t)] dt
–μx – ( – μ)|x|q–x

)

.

We have
∫ T

 e(t) dt = . So, we can get

H(μ, x) =

(
–μx – –μ

T
∫ T

 g(t, x) dt
–μx – ( – μ)|x|q–x

)

, ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L).

From (H), it is obvious that x�H(μ, x) < , ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L). Hence

deg{JQN ,� ∩ Ker L, } = deg
{

H(, x),� ∩ Ker L, 
}

= deg
{

H(, x),� ∩ Ker L, 
}

= deg{I,� ∩ Ker L, } �= .

So condition () of Lemma . is satisfied. By applying Lemma ., we conclude that equa-
tion Lx = Nx has a solution x = (x, x)� on �̄ ∩ D(L), i.e., (.) has an T-periodic solution
x(t). �
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Example . Consider the p-Laplacian type high-order neutral differential equation with
singularity

(
ϕp

(
x(t) – x(t – τ )

)′′′)′′′ + x(t)x′(t) +



(cos t + )x(t – σ ) –


xκ (t – σ )

= sin t, (.)

where κ ≥  and p = , σ and τ are constants, and  ≤ σ , τ < T .
It is clear that T = π , m = n = , c = , g(t, x) = 

 (cos t + )x(t – σ ) – 
xκ (t–σ ) , ψ(t) =


 (cos t + ), |ψ |∞ = 

 , f (x(t)) = x(t), and |f (x(t))| ≤ |x(t)| + ; here a = , b = . It is
obvious that (H)-(H) hold. Now we consider the assumption of the condition

(a + |ψ |∞T)Tp

p| – |c||p–

(
T

π

)(n–)(p–)+(m–)

=
( + π

 )π

 ×  × 


=
( + π

 )π

 ×  < .

So by Theorem ., we know (.) has at least one positive π-periodic solution.
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