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Abstract
This paper is devoted to the study of the dynamical behavior of a Boussinesq system,
which is a basic model in describing the flame propagation in a gravitationally
stratified medium. This system consists of an incompressible Navier-Stokes equation
coupled with a reaction-advection-diffusion equation under the Boussinesq
approximation. We prove that this system possesses time dependent periodic
solutions, bifurcating from a steady solution.
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1 Introduction and main results
The Boussinesq-type equation of reactive flows is a basic model in describing the flame
propagation in a gravitationally stratified medium, and its non-dimensional form is given
by

Ut + (U · ∇)U – ν�U + ∇P = T→
ρ ,

∇U = ,

Tt + (U · ∇)T – �T = g(T),

(.)

where (t, x) ∈ R+ × R, U ∈ R is the velocity field, T is the temperature function, ν > 
denotes the Prandtl number, which is the ratio of the kinematic and thermal diffusivities
(inverse proportional to the Reynolds number); P(x, t) ∈ R denotes the pressure; the vector
→
ρ = ρ

→
g corresponds to the non-dimensional gravity

→
g scaled by the Rayleigh number

ρ > . The reaction term of Kolmogorov-Petrovskii-Piskunov (KPP) type is of the form

g(T) =
αT( – T)


.

Here, α is the reaction rate. See [] for the derivation of this model and the related param-
eters.

When the initial temperature T is identically zero (or constant), the above system re-
duces to the classical incompressible Navier-Stokes equation:

Ut + (U · ∇)U – ν�U + ∇P = ,

∇U = .
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Since the work of Sattinger [], Iudovich [], and Iooss [] in , the bifurcation of sta-
tionary solutions into time-periodic solutions (i.e. Hopf bifurcation) of incompressible
Navier-Stokes equation has attracted much attention, see [–], etc. When the linearized
operator possesses a continuous spectrum up to the imaginary axis and that a pair of imag-
inary eigenvalues crosses the imaginary axis, Melcher, et al. [] proved Hopf bifurcation
for the vorticity formulation of the incompressible Navier-Stokes equations in R. Their
work is mainly motivated by the work of Brand et al. [] who studied the Hopf-bifurcation
problem and its exchange of stability for a coupled reaction diffusion model in Ra. Inspired
by the work of [, ], this paper is to establish the corresponding Hopf-bifurcation result
for the three-dimensional Boussinesq system.

The Boussinesq system is a very important model in fluid mechanics, which exhibits
extremely rich phenomena, for example, Rayleigh-Bénard convection [–], geophys-
ical fluid dynamics [, ] etc. A key problem in the study of the dynamic behavior of
Boussinesq system is how to understand the time-periodic solutions, quasi-periodic solu-
tions and traveling waves, etc. There were several papers on the existence of time-periodic
solutions [] and traveling waves [–] for the Boussinesq system (.). To our knowl-
edge, there is no theoretical result on bifurcation analysis for the Boussinesq system on
R.

In the present paper, we consider the reactive Boussinesq system with external time-
independent force in R

Ut + (U · ∇)U – ν�U + ∇P = T→
ρ + f (x, ε), (.)

∇U = , (.)

Tt + (U · ∇)T – �T = g(T) + h(x, ε), (.)

with initial conditions

U(x, ) = U(x), T(x, ) = T(x), (.)

where f (x, ε) and h(x, ε) ∈ R × R are external time independent forces, which depend
smoothly on some parameter ε, g(T) = T( – T). Meanwhile, external forces f (x, ε) and
h(x, ε) can be chosen suitably so that (Uε(x), Tε(x), Pε(x)) is the solution of the steady
Boussinesq system

–ν�U + (U · ∇)U + ∇P = T→
ρ + f (x, ε),

∇U = ,

–�T + (U · ∇)T = g(T) + h(x, ε),

with the condition

lim|x|→∞ Uε(x) = , lim|x|→∞ Tε(x) = .

Furthermore, assume that the steady solution (Uε(x), Tε(x), Pε(x)) satisfies the following
certain decay properties:
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(A) For p ∈ (, ) and s > ,

∥
∥Uε(x)

∥
∥

Lp
s
,
∥
∥Tε(x)

∥
∥

Lp
s
,
∥
∥Pε(x)

∥
∥

Lp
s
≤ C,

where C and Lp
s denote a positive constant and the weighted Lebesgue space to be specified

blow.
We also assume that the solution of system (.)-(.) has the form

U(x, t) = u(x, t) + Uε(x), T(x, t) = v(x, t) + Tε(x), Pε(x, t) = p(x, t) + Pε(x),

where

(

Uε(x), Tε(x), Pε(x)
)

=
(

uε(x) + c, T̃ε(x) + , Pε(x)
)

,

and (uε(x), T̃ε(x), Pε(x)) is the solution of the following steady problem:

–ν�U + (U · ∇)U + ∇P = T→
ρ + fε(x),

∇U = ,

–�T + (U · ∇)T = g(T) + hε(x),

with the condition

lim|x|→∞ Uε(x) = , lim|x|→∞ Tε(x) = .

Then the deviation (u(x, t), v(x, t), p(x, t)) from the stationary (Uε(x), Tε(x), Pε(x)) satisfies

ut – ν�u + c∂x u + (uε · ∇)u + (u · ∇)uε + (u · ∇)u + ∇p = v→
ρ , (.)

∇u = , (.)

vt – �v – v + ∂x v + (uε · ∇)v + (u · ∇)T̃ε + (u · ∇)v + vT̃ε + v = . (.)

Here, for general matrices u = (uij)i,j=,,,

∇ · u =

( 
∑

j=

∂x uj,


∑

j=

∂x uj,


∑

j=

∂x uj

)T

.

In fact, by the incompressible condition (.), it follows that

∇ · (uvT)

= u · ∇u + u∇ · u = u · ∇u.

So, system (.)-(.) can be rewritten as

ut – ν�u + c∂x u + ∇ · (uεuT)

+ ∇ · (uuT
ε

)

+ ∇ · (uuT)

+ ∇p = v→
ρ , (.)

vt – �v – v + ∂x v + ∇ · (uεvT)

+ ∇ · (uT̃T
ε

)

+ ∇ · (uvT)

– uε∇ · v – u∇ · T̃ε – u∇ · v + vT̃ε + v = , (.)
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with the incompressible condition

∇ · u = .

It is convenient to rewrite system (.)-(.) in the stream function and vorticity for-
mulation in dimensionless form. The vorticity associated with the velocity field u of the
fluid is defined by ω = ∇ × u. Then, using

∇ × ∇ · (uuT)

= ∇ · (ωuT – uωT)

,

we can rewrite system (.)-(.) in the stream function and the vorticity formulation in
dimensionless form

ωt – �ω + c∂xω – ∇ · M(ωε ,ω) – ∇ · M(ω,ω) = →
ρ∇v, (.)

vt – �v – v + ∂x v + ∇ · N(u, uε , v, T̃ε) – B(u, v, T̃ε) = , (.)

where

M(ω,ω) = ωuT
 + ωuT

 – uω
T
 – uω

T
 ,

N(u, uε , v, T̃ε) = uεvT + uT̃T
ε + uvT ,

B(u, v, T̃ε) = uε∇ · v + u∇ · T̃ε + u∇ · v – vT̃ε – v.

Note that we can assume that ∇ ·ω = . This is because the space of divergence free vector
fields is invariant under the evolution of (.).

Denote ϕ = (ω, v)T . Then we can write system (.)-(.) as the evolution equation of
the form

dϕ

dt
+ Nϕ = F(ϕ), (.)

where

N =

(

–� + c∂x
→
ρ · ∇v

 –� –  + ∂x

)

and

F(ϕ) =

(

∇ · M(ωε ,ω) + ∇ · M(ω,ω)
B(u, v, T̃ε) – ∇ · N(u, uε , v, T̃ε)

)

.

For y ∈ R, the Fourier transform F and the inverse Fourier transform F– are given by

F (u)(y) = û(y) =


(π )

∫

R
u(x)e–ix·y dx,

F–(û)(x) = u(x) =


(π )

∫

R
û(y)eix·y dy.
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For s ≥ ,  ≤ p ≤ , and 
p + 

q = , the Fourier transform is a continuous mapping from
Lp

s into Wq
κ . Especially, when p = , the Fourier transform is an isomorphism between Lp

s

and Wq
κ .

Since we deal with the problem in the whole space R, it is advantageous to apply the
Fourier transform to the evolution equation (.). Denote ϕ̂ = (ω̂, v̂)T . Then

dϕ̂

dt
+ N̂ ϕ̂ = F̂(ϕ̂), (.)

where

N̂ =

(

|y| + icy i→ρ · y
 |y| +  + iy

)

,

F̂(ϕ̂) =

(

iy · M̂(ω̂ε , ω̂) + iy · M̂(ω̂, ω̂)
P̂(ûε , v̂, ˆ̃Tε) + B̂(û, v̂, ˆ̃Tε)

)

,

and

M̂(ω̂, ω̂) = ω̂ ∗ ûT
 + ω̂ ∗ ûT

 – û ∗ ω̂T
 – û ∗ ω̂T

 ,

P̂(ûε , v̂, ˆ̃Tε) = –iy · (ûε ∗ v̂T)

+ iûε ∗ (y · v̂) – v̂ ∗ ˆ̃Tε ,

B̂(û, v̂, ˆ̃Tε) = iy · (û ∗ ˆ̃TT
ε + û ∗ v̂T)

+ iû ∗ (y · ˆ̃Tε) + iû ∗ (y · v̂) – v̂ ∗ v̂.

Here, ∗ denotes the convolution. That is,

û ∗ v̂(y) =
∫

R
û(y – x)v̂(x) dx,

and for general matrices u = (ukj)k,j=,,,

iy · u = i

( 
∑

j=

∂x yjuj,


∑

j=

∂x yjuj,


∑

j=

∂x yjuj

)T

.

To overcome the essential spectrum of operator Ĵ (defined in (.)) up to the imaginary
axis, for  < p <  and s > ( – 

p ), we need the following assumption:
(A) For any ε ∈ [εc – ε, εc + ε],  is not an eigenvalue of Ĵ .
(A) For ε = εc, the operator Ĵ has two pair eigenvalues (λ+

,μ+
) and (λ–

,μ–
) satisfying

λ±
 (εc) = μ±

 (εc) = ±i�c 
= , for �c > , (.)

d
dε

Re
(

λ±
 (ε)

)
∣
∣
∣
∣
ε=εc

> ,
d

dε
Re

(

μ±
 (ε)

)
∣
∣
∣
∣
ε=εc

> . (.)

(A) The remaining eigenvalue of Ĵ is strictly bounded away from the imaginary axis in
the left half plane for all ε ∈ [εc – ε, εc + ε].

Here is our main result in this paper.
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Theorem . Assume that (A)-(A) hold. Then for p ∈ (, ) and s > ( – 
p ), system

(.) has a time-periodic solution

ϕ̂(y, t) =
(

û(y, t), v̂(y, t)
)

=
(

∑

n∈Z

ûn(y)ein� t ,
∑

n∈Z

v̂n(y)ein� t
)

,

with ε = εc + ε, ε ∈ (,β), ‖(û, v̂)‖Lp
s

= O(ε), � – �c = O(ε
).

This paper is organized as follows. In Section , we give the basic setting of the problem
and derive some priori estimates needed in the proof in next section. The proof of the
main result occupies the Section .

2 Preliminary and some estimates
We start this section by introducing some notations. Consider the following standard
Sobolev space, a spatially weighted Lebesgue space:

Wq
κ :=

{

u : ‖u‖q
κ :=

∑

|α|≤κ

∥
∥Dαu

∥
∥

q
Lq < ∞

}

,

Lp
s :=

{

u : ‖u‖p
s :=

∫

R
ρsp(x)up(x) dx < ∞

}

,

where the weighted function ρ(x) =
√

 + |x|.
To investigate periodic solutions of system (.)-(.), we also introduce the space

Xp
s :=

{

û = (ûn)n∈Z : ‖û‖Xp
s

:=
∑

n∈Z

‖ûn‖Lp
s

< ∞
}

and the weighted space

Lp
s = Lp

s × Lp
s+, X p

s = Xp
s × Xp

s+,

with norms

‖ϕ‖Lp
s

:= ‖u‖Lp
s

+ ‖v‖Lp
s+

, ‖ϕ‖X p
s

:= ‖u‖Xp
s

+ ‖v‖Xp
s+

,

for ϕ = (u, v)T ∈Lp
s or X p

s , respectively.
As we known, the vorticity ω = ∇ × u, where u is the velocity field. By the Biot-Savart

law, u is recovered from ω as

u(x) = –


π

∫

R

(x – y) × ω(y)
|x – y| dy.

The following estimates are taken from [], which show the norm relationship û with ω̂.

Lemma . Let p ∈ [, +∞]. For k = , ,  and ω̂ ∈ (Lp(R)), there exists a constant C such
that

‖iykû‖Lp ≤ C‖ω̂‖Lp .
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Furthermore, for every p ∈ [, ), p, p ∈ [,∞] with 
p

+ 
p

= 
p ,

‖û‖Lp ≤ C
(‖ω̂‖Lp + ‖ω̂‖Lp

)

.

Meanwhile, if ω̂ ∈ Lp(R) ∩ Lp (R), then û ∈ Lp(R) and the above estimate also holds.

Then, for the weighted space Lp
s , the following Sobolev embedding holds.

Lemma . For p ≥ p and s > a
p

– a
p

, the continuous embedding Lp
s (Ra) ⊂ Lp (Ra)

holds.

Proof Note that ρ(y) = ( + |y|) 
 , y ∈ Ra. By direct computation, we have

∥
∥ρ–s(y)

∥
∥

p
Lp =

∫

Ra

dy
( + |y|)

sp


=
∫

|y|≤

dy
( + |y|)

sp


+
∫

|y|>

dy
( + |y|)

sp


≤
∫

|y|≤

dy
( + |y|)

sp


+ C
∫ ∞



dx
xsp–a+ , ∀p > .

Hence, for sp > a, the above inequality implies that ‖ρ–s(y)‖p
Lp is bounded.

Let 
p

= 
p

+ 
p

. By Hölder’s inequality and the above inequality, it follows that for ∀ϕ ∈
Lp (Ra),

‖ϕ‖Lp (Ra) =
∥
∥ρsϕρ–s∥∥

Lp (Ra) ≤ ∥
∥ρsϕ

∥
∥
Lp (Ra)

∥
∥ρ–s∥∥

Lp (Ra)

= ‖ϕ‖Lp
s (Ra)

∥
∥ρ–s∥∥

Lp (Ra) ≤ C‖ϕ‖Lp
s (Ra).

This completes the proof. �

From Corollary . in [], the following result holds.

Lemma . Let p ∈ ( 
 , +∞]. For any ω̂, ω̂ ∈ Lp

s and s > ( – 
p ), there exists a positive

constant C such that

∥
∥M̂(ω̂, ω̂)

∥
∥

Lp
s
≤ C‖ω̂‖Lp

s
‖ω̂‖Lp

s
.

Furthermore, let p ∈ (, ). Then, for s > ,

∥
∥M̂(ω̂, ω̂)

∥
∥

L∞ ≤ C‖ω̂‖Lp
s
‖ω̂‖Lp

s
.

Lemma . Let p ∈ ( 
 , +∞] and s > ( – 

p ). Then there exists a constant C >  such that

∥
∥iû ∗ (y · v̂)

∥
∥

Lp
s
≤ C‖ω̂‖Lp

s
‖v̂‖Lp

s+
, for (û, v̂) ∈Lp

s .
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Proof By Young’s inequality and Lemma ., it follows that

∥
∥iû ∗ (y · v̂)

∥
∥

Lp
s

≤ C
(‖û‖Lp + ‖û‖Lp

s

)‖yv̂‖L + ‖û‖L‖v̂‖Lp
s+

≤ C
(‖ω̂‖Lp + ‖ω̂‖Lp + ‖ω̂‖Lp

s–

)‖yv̂‖L + ‖v̂‖Lp
s+

(‖ω̂‖L + ‖ω̂‖Lp
)

, (.)

where 
p

+ 
p

=  and p ∈ [, ).
For s > ( – 

p ) and p > p, applying the Sobolev embedding Lp
s ⊂ L ∩ Lp to (.) yields

∥
∥iû ∗ (y · v̂)

∥
∥

Lp
s
≤ C‖ω̂‖Lp

s
‖v̂‖Lp

s+
.

This completes the proof. �

Lemma . Let p ∈ (, ) and s > . Then there exists a constant C >  such that

∥
∥iû ∗ (y · v̂)

∥
∥

L∞ ≤ C‖ω̂‖Lp
s
‖v̂‖Lp

s+
, for (û, v̂) ∈Lp

s .

Proof By Young’s inequality and Lemma ., we have

∥
∥iû ∗ (y · v̂)

∥
∥

L∞ ≤ ‖û‖Lp‖yv̂‖Lp ≤ C
(‖ω̂‖

Lp′


+ ‖ω̂‖Lp
)‖yv̂‖Lp , (.)

where 
p + 

p
= , 

p′


+ 
p

= 
p

, and p ∈ [, ).
For p ≥ p and s > ( 

p
– 

p ), p ≥ p′
 and s > ( 

p′


– 
p ), applying the Sobolev embedding

Lp
s ⊂ Lp and Lp

s ⊂ Lp′
 to (.), we derive

∥
∥iû ∗ (y · v̂)

∥
∥

L∞ ≤ C‖ω̂‖Lp
s
‖v̂‖Lp

s+
.

This completes the proof. �

Consider the linearized operator of (.)

Jε(ϕ̂) =
(

N̂ + DF(ϕε)
)

ϕ̂, (.)

where

DF(ϕε)ϕ̂ =

(

iy · M̂(ω̂ε , ω̂)
P̂(ûε , v̂, ˆ̃Tε)

)

,

and

P̂(ûε , v̂, ˆ̃Tε) = iûε ∗ (y · v̂) – v̂ ∗ ˆ̃Tε – iy · (ûε ∗ v̂T)

.

Then we can rewrite system (.) as

dϕ̂

dt
+ Jε(ϕ̂) = G(ϕ̂),
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where

G(ϕ̂) =

(

iy · M̂(ω̂, ω̂)
B̂(û, v̂, ˆ̃Tε)

)

and

M̂(ω̂, ω̂) = ω̂ ∗ ûT
 + ω̂ ∗ ûT

 – û ∗ ω̂T
 – û ∗ ω̂T

 ,

B̂(û, v̂, ˆ̃Tε) = iy · (û ∗ ˆ̃TT
ε + û ∗ v̂T)

+ iû ∗ (y · ˆ̃Tε) + iû ∗ (y · v̂) – v̂ ∗ v̂.

Remark . By applying the theorem of Riesz, it is easy to see that the operators Jε and
N̂ differ by a relatively compact perturbation in Lp

s , for p ∈ (, ) and s > ( – 
p ). Hence,

the essential spectrum of the operator J equals the essential spectrum of the operator N̂
(see [], p. ).

Lemma . Let p ∈ ( 
 , +∞] and s > ( – 

p ). Then, for (ω̂, v̂) ∈ Lp
s , there exists a positive

constant C such that

∥
∥B̂(û, v̂, ˆ̃Tε)

∥
∥

Lp
s
≤ C

(‖ω̂‖Lp
s
‖ ˆ̃Tε‖Lp

s+
+ ‖ω̂‖

Lp
s

+ ‖v̂‖
Lp

s+

)

.

Moreover, for p ∈ (, ) and s > , there exists a positive constant C such that

∥
∥B̂(û, v̂, ˆ̃Tε)

∥
∥

L∞ ≤ C
(‖ω̂‖Lp

s
‖ ˆ̃Tε‖Lp

s+
+ ‖ω̂‖

Lp
s

+ ‖v̂‖
Lp

s+

)

.

Proof Applying Lemma . and Young’s inequality for convolution, it is easy to derive this
result. �

Lemma . Let p, p ≥ . Then, for s > , 
p = 

p
+ 

p
, and f̂ ∈Lp

s (R), the equation

N̂ ϕ̂ = f̂

has a unique solution ϕ = N̂– f̂ ∈Lp
s (R).

Proof Let η(y) ∈ C∞(R, [, ]) be a cut-off function satisfying

η(y) = , for |y| ≤ ;

η(y) = , for |y| ≥ .

Consider

ϕ̂ = N̂ – f̂ = η(y)N̂ – f̂ +
(

 – η(y)
)

N̂ – f̂ ,

where

N̂ – =


(|y| + icy)(|y| + iy + )

(

|y| + icy –i �ρy
 |y| +  + iy

)

.
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Denote

ϒ 
|y|≤ =


|y| + iy + 

, ϒ̃ 
|y|> =


|y| + iy + 

,

ϒ
|y|≤ =


|y| + icy

, ϒ̃
|y|> =


|y| + icy

,

ϒ
|y|≤ =

–i �ρy
(|y| + icy)(|y| + iy + )

, ϒ̃
|y|> =

–i �ρy
(|y| + icy)(|y| + iy + )

.

By Minkowski’s inequality, Hölder’s inequality, and Lemma ., for 
p = 

p
+ 

p
, p′ > p, and

s > ( 
p

– 
p′ ), we have

‖ϕ̂‖Lp
s
≤ ∥

∥η(y)N̂ – f̂
∥
∥
Lp

s
+

∥
∥
(

 – η(y)
)

N̂ – f̂
∥
∥
Lp′

s

≤ C
(∥
∥η(y)N̂ –∥∥

Lp ‖f̂ ‖Lp
s

+
∥
∥
(

 – η(y)
)

N̂ –∥∥
L∞‖f̂ ‖Lp

s

)

≤ C
(∥
∥η(y)N̂ –∥∥

Lp′
s
‖f̂ ‖Lp

s
+

∥
∥
(

 – η(y)
)

N̂ –∥∥
L∞‖f̂ ‖Lp

s

)

. (.)

It is easy to check that ‖ϒ̃ j
|y|>‖L∞ < +∞ for j = , , . For 

 + s
 < p′ < 

 + s
 , we have

∥
∥ϒ 

|y|≤
∥
∥

p′

Lp′
s

=
∫

|y|≤

( + |y|) s


||y| + iy + |p′ dy ≤ C
∫ 




xp′–s– dx < +∞.

In the same way, we get

∥
∥ϒ

|y|≤
∥
∥

p′
Lp < +∞, for




+
s


< p′ <



+
s


,

∥
∥ϒ

|y|≤
∥
∥

p′
Lp < +∞, for




+
s


< p′ <  +
s


.

Therefore, by (.) and the above estimates, for 
 + s

 < p′ <  + s
 and 

p
– 

p′ ≥ 
 , we obtain

∥
∥η(y)N̂ –∥∥

Lp′
s

< +∞. (.)

This completes the proof. �

Lemma . Let p, p ∈ ( 
 , +∞]. For s ≥  and 

p = 
p

+ 
p

. Then the operator N̂– · DF(ϕ̂)
is a compact operator on Lp

s . Furthermore, the operator

� := I + N̂– · DF(ϕ̂) : Lp
s →Lp

s

is a Fredholm operator with index .

Proof Denote the set

S =
{

ϕ̂ ∈Lp
s : ‖ϕ̂‖Lp

s
≤ 

}

and χn = (N̂– · DF(ϕ̂))ϕ̂n for any sequence ϕ̂n = (ω̂n, v̂n) ∈ S .
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By Minkowski’s inequality, Hölder’s inequality, and Lemma ., for 
p = 

p
+ 

p
, p′ > p,

and s > ( 
p

– 
p′ ), we have

‖χn‖Lp
s

=
∥
∥
(

N̂– · DF(ϕ̂)
)

ϕ̂n
∥
∥
Lp

s

≤ ∥
∥η(y)

(

N̂– · DF(ϕ̂)
)

ϕ̂n
∥
∥
Lp

s
+

∥
∥
(

 – η(y)
)(

N̂– · DF(ϕ̂)
)

ϕ̂n
∥
∥
Lp

s

≤ C
(∥
∥η(y)N̂–∥∥

Lp

∥
∥DF(ϕ̂)ϕ̂n

∥
∥
Lp

s
+

∥
∥
(

 – η(y)
)

N̂–∥∥
L∞

∥
∥DF(ϕ̂)ϕ̂n

∥
∥
Lp

s

)

≤ C
(∥
∥η(y)N̂–∥∥

Lp′
s

∥
∥DF(ϕ̂)ϕ̂n

∥
∥
Lp

s
+

∥
∥
(

 – η(y)
)

N̂–∥∥
L∞

∥
∥DF(ϕ̂)ϕ̂n

∥
∥
Lp

s

)

. (.)

As proved in Lemma ., by Young’s inequality for convolutions, for p, p ∈ ( 
 , +∞] and

s > ( – 
p

), we can get

∥
∥DF(ϕ̂)ϕ̂n

∥
∥
Lp

s

≤ C
(‖ω̂n‖

Lp
s

+ ‖v̂n‖
Lp

s+
+ ‖ûε‖

Lp
s

+ ‖ω̂ε‖
Lp

s
+ ‖ ˆ̃Tε‖

Lp
s+

)

< +∞, (.)
∥
∥DF(ϕ̂)ϕ̂n

∥
∥
Lp′

s

≤ C
(‖ω̂n‖

Lp′
s

+ ‖v̂n‖
Lp′

s+
+ ‖ûε‖

Lp′
s

+ ‖ω̂ε‖
Lp′

s
+ ‖ ˆ̃Tε‖

Lp′
s+

)

< +∞. (.)

From (.), for 
 + s

 < p′ <  + s
 and 

p
– 

p′ ≥ 
 , we derive

∥
∥η(y)N̂ –∥∥

Lp′
s

< +∞. (.)

By (.)-(.), it follows that

‖χn‖Lp
s

=
∥
∥
(

N̂– · DF(ϕ̂)
)

ϕ̂n
∥
∥
Lp

s
< +∞.

Therefore, N̂– · DF(ϕ̂)S is a precompact set in Lp
s . This completes the proof. �

Lemma . Let p, p ∈ ( 
 , +∞]. For s ≥ , 

p = 
p

+ 
p

and f̂ ∈Lp
s (R), the equation

Jε ϕ̂ = f̂

has a unique solution ϕ̂ = J –
ε f̂ = �–N̂– f̂ ∈Lp

s (R), where the operator

�– =
(

I + N̂– · DF(ϕ̂)
)

: Lp
s →Lp

s .

Proof This is a direct result from Lemma .. �

3 Proof of the main result
This section is devoted to proving the main result. Since the linear operator which we get
in solving equation (.) is not invertible for ε = ε, the implicit function theorem cannot
be applied directly. The Lyapunov-Schmidt reduction is a powerful method to deal with
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this case. Assume that |ε – ε| and |� – �| are suitable small. We find the π/� -time-
periodic solution ϕ̂ = (ω̂, v̂) ∈X p

s , which can be made the ansatz as

ϕ̂(y, t) =
(

∑

n∈Z

ω̂n(y)ein� t ,
∑

n∈Z

v̂n(y)ein� t
)

,

and satisfying

dϕ̂

dt
+ Jε ϕ̂ = G(ϕ̂). (.)

Introduce the projection Sn onto the nth Fourier mode, i.e.,

(Snϕ̂)(y) =
(

�

π

∫ π
�


ω̂(y, t)ein� t dt,

�

π

∫ π
�


v̂(y, t)ein� t dt

)

and the J -invariant orthogonal projection Pn,c onto the subspace spanned by the eigen-
vector associated with the eigenvalue (in� , in� ). We denote Pn,s =  – Pn,c.

Applying the projection Sn to equation (.) we get lattice systems for the Fourier
modes Snϕ̂

in�ϕ̂n + Jε ϕ̂n = Gn(ϕ̂), n ∈ Z, (.)

where

Gn(ϕ̂) =
∑

n∈Z

G(ϕ̂n–m, ϕ̂m).

Denote

in� ∗ =

(

in� 
 in�

)

.

Then we rewrite lattice system (.) as

in� ∗ϕ̂n + Jε ϕ̂n = Gn(ϕ̂), for n = ±,±, . . . , (.)

±i� ∗ϕ̂n,s + Jε ϕ̂n,s = Pn,sG±(ϕ̂), for n = ±, (.)

Jε ϕ̂ = G(ϕ̂), for n = , (.)

±i� ∗ϕ̂n,c + Jε ϕ̂n,c = Pn,cG±(ϕ̂), for n = ±. (.)

In the following, we want to prove that if

ϕ̂±,c = P±,cϕ̂± = (P±,cω̂±,P±,cv̂±) ∈Lp
s

is given, then the above lattice systems are solvable.
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By assumptions (A)-(A), (.)-(.), and Lemma ., we obtain

ϕ̂n =
(

in� ∗ + Jε

)–Gn(ϕ̂), for n = ±,±, . . . , (.)

ϕ̂n,s =
(±i� ∗ + Jε

)–Pn,sG±(ϕ̂), for n = ±, (.)

ϕ̂ = J –
ε G(ϕ̂), for n = . (.)

So we rewrite (.)-(.) as

F (ϕ̂c, ϕ̂s) = , (.)

where

ϕ̂c = (. . . , , ϕ̂–,c, , ϕ̂,c, , . . . ),

ϕ̂s = (. . . , ϕ̂–, ϕ̂–,s, ϕ̂, ϕ̂,s, ϕ̂–, . . . ).

Lemma . Define � = (�n,�n)n∈Z : Lp
s →Lp

s and (�ϕ̂)n∈Z = (�nω̂n,�nv̂n). Then

‖�ϕ̂‖X p
s

≤ sup
n∈Z

‖�‖Lp
s �→Lp

s
‖ϕ̂‖X p

s
.

Proof

‖�ϕ̂‖X p
s

≤
∑

n∈Z

(‖�nω̂n‖Lp
s

+ ‖�nv̂n‖Lp
s+

)

≤ sup
n∈Z

(‖�n‖Lp
s �→Lp

s
+ ‖�n‖Lp

s+ �→Lp
s+

)∑

n∈Z

(‖ω̂n‖Lp
s

+ ‖v̂n‖Lp
s+

)

≤ sup
n∈Z

‖�‖Lp
s �→Lp

s
‖ϕ̂‖X p

s
. �

Lemma . Let p > 
 and s > ( – 

p ). Then, for any ϕ̂ ∈X p
s ,

∥
∥
(

B̂n(ϕ̂)
)

n∈Z

∥
∥
X p

s
≤ C‖ϕ̂‖X p

s

(‖ ˆ̃Tε‖Xp
s+

+ ‖ϕ̂‖X p
s

)

.

Proof By Lemma ., we obtain

∥
∥
(

B̂n(ϕ̂)
)

n∈Z

∥
∥
X p

s
=

∑

n∈Z

∥
∥
(

B̂(û, v̂, ˆ̃Tε)
)

n

∥
∥

Lp
s

≤ C
∑

n∈Z

(‖ω̂n‖Lp
s
‖ ˆ̃Tεn‖Lp

s+
+ ‖ω̂n‖

Lp
s

+ ‖v̂n‖
Lp

s+

)

≤ C
(‖ϕ̂‖X p

s
‖ ˆ̃Tε‖Xp

s+
+ ‖ϕ̂‖

X p
s

)

. �

Lemma . There exists a constant C >  such that

∥
∥
(

in� ∗ – Jε

)–(iy, )·∥∥Lp
s �→Lp

s
≤ C, n ∈ Z \ {±, },

∥
∥
(±i� ∗ – Jε

)–Pn,s(iy, )·∥∥Lp
s �→Lp

s
≤ C, n = ±.
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Proof This result is directly derived from assumption (A), the property of the sectorial
operators Jε and N̂ , Lemma ., and Lemma .. �

Now, we return to equation (.). From Lemmas .-., F : X p
s → X p

s is well defined
and smooth for p ∈ (, ) and s ≥ . It is obvious that F (, ) = , Dϕ̂F : X p

s → X p
s is

invertible and Dϕ̂F (, ) = I . Therefore, by the implicit function theorem, there exists a
unique smooth solution ϕ̂s = ϕ̂s(ϕ̂c) satisfying ‖ϕ̂s(ϕ̂c)‖X p

s
≤ C‖ϕ̂c‖X p

s
.

Finally, we give the proof of our main result. This proof is based on the classical Hopf
bifurcation (see []) applied to solve the equation (.) by the implicit function theorem.
Let ψ+

n ∈ X p
s denote the eigenfunctions associated with the eigenvalues (±i�,±i�).

χ+
 (ε) is the eigenvalues of operator Jε under the basis (ψ+

n ,ψ+
n ). Introduce pn,c by Pn,cϕ =

pn,c(ϕ)ψ+
n . Then, for ξ ∈ C \ , it follows (.) that

–i� ∗ξψ+
n + χ+

 (ε)ψ+
n – pn,c

(

G+
(

ϕ̂s
(

ξψ+
n
)))

ψ+
n = ,

which implies that

–i� ∗ξ + χ+
 (ε) – pn,c

(

G+
(

ϕ̂s
(

ξψ+
n
)))

= .

Define the complex-valued smooth function

ϒ(α;�,β) :=

⎧

⎨

⎩

–i(� ∗
c + �) + χ+

 (εc + β) – α–�(εc + β ,α), α 
= ,

–i(� ∗
c + �) + χ+

 (εc + β), α = ,

where �(εc + β ,α) := pn,c(G+(ϕ̂s(ξψ+
n ))).

Denote

i� ∗
c =

(

i�c 
 i�c

)

and

χ+
 (ε) =

(

λ+
 

 μ+


)

.

By (.)-(.) and Lemma ., we know that ϒ(; , ) =  and the determinant of the
Jacobi matrix

det D�,βϒ(α;�,β)|α=�=β= = det

(

 d
dε

Reχ+
 (ε)|ε=εc

– d
dε

Imχ+
 (ε)|ε=εc

)

×

=
d

dε
Reλ+

(ε)
∣
∣
∣
∣
ε=εc

+
d

dε
Reμ+

(ε)
∣
∣
∣
∣
ε=εc

> .

Therefore, there exists a function α �→ (�(α),β(α)) with �() = β() =  satisfying

–iα
(

� ∗
c + �(α)

)

+ αχ+

(

εc + β(α)
)

– �
(

εc + β(α),α
)

= , (.)

for |α| sufficient small.
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Due to the degree of nonlinearity term in (.), it is easy to see that there exists a
function α(β) such that ϕ̂n,c = α(β)ψ+

n is the solution of (.) for � = � + �(α(β)) and
ε = ε + β . This completes the proof.
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