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Abstract
In this paper, we study the symmetric solutions of second-order BVP with integral
boundary conditions. By using a generalized Leggett-Williams fixed point theorem
and some other techniques, we obtain sufficient conditions for the existence of
symmetric positive solutions for the system. Meanwhile, an example is devoted to
demonstrate our results in the end.
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1 Introduction
With the development of science and technology, boundary value problems have acquired
more attention in these years. Many methods are used to solve this kind of problems, such
as fixed point theorems, coincidence degree theory, iterative method with upper and lower
solutions, etc. Readers can see [–] for details.

However, the past researches focus on the existence of positive solution, periodic solu-
tion, uniqueness, etc.

For example, Boucherif [] considered the following BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + f (u(t)) = , t ∈ (, ),

u() – au′() =
∫ 

 g(s)u(s) ds,

u() – bu′() =
∫ 

 g(s)u(s) ds.

By applying the Krasnoselskii fixed point theorem, they obtained the existence of positive
solutions of the system.

After Hayasida [] drew some interesting results about symmetric positive solutions
for a kind of BVP, several papers concerned about the subject with the same method; see
[–]. Inspired by them, we consider a similar problem for the following system:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + f (u(t)) = , t ∈ I,

u() – au′() =
∫ 

 �(s)u(s) ds,

u() – bu′() =
∫ 

 �(s)u(s) ds,

()

© 2016 Tong and Ding. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0591-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0591-x&domain=pdf
mailto:dingwei@shnu.edu.cn


Tong and Ding Boundary Value Problems  (2016) 2016:84 Page 2 of 11

where f : R → [, +∞) is continuous, I = [, ], � >  and � >  are continuous, and a
and b are real parameters.

Abdulkadir [] studied the case a = b = , �,� ≡  and drew some conclusions by
using a generalization of the Leggett-Williams fixed point theorem. Obviously, the general
case is much complicated. In this paper, we generalize the corresponding results.

The structure of this paper is as follows. In Section  and Section , we introduce the
Leggett-Williams fixed point theorem, some definitions, and some lemmas. In particular,
we deduce system () and some properties of the Green function, which will be used to
prove the main results. Section  is devoted to developing the main results, which will be
stated in detail. Finally, an example is included to display the main results.

2 Preliminaries
In this section, we give some definitions and the fixed point theorem that will be used in
this paper.

Definition  Let E be a real Banach space. A nonempty, closed, and convex set P ⊂ E is a
cone if the following two conditions are satisfied:

(i) if x ∈ P and μ ≥ , then μx ∈ P;
(ii) if x ∈ P and –x ∈ P, then x = .

Every cone P ⊂ E induces the ordering in E given by x ≤ x if and only if x – x ∈ P.

Definition  A map α is called a nonnegative continuous convex functional on a cone P
in a real Banach space E if α : P → [, +∞) is continuous and

α
(
λx + ( – λ)x

) ≤ λα(x) + ( – λ)α(x)

for all x, x ∈ P and  ≤ λ ≤ . Likewise, we know the map β is a nonnegative continuous
concave functional on a cone P in a real Banach space E if β : P → [, +∞) is continuous
and

β
(
λx + ( – λ)x

) ≥ λβ(x) + ( – λ)β(x)

for all x, x ∈ P and  ≤ λ ≤ .
We denote E = C(I), I = [, ], with the maximum norm, and for all  < t̃ ≤ 

 , we define
the cone P ⊂ E by

P =
{

u ∈ E : u(t) is concave, symmetric, and nonnegative-valued on I,

and min
t∈[̃t,–̃t]

u(t) ≥ ̃t‖u‖
}

.

Theorem  (Leggett-Williams fixed-point theorem []) Let P ⊂ E be a cone in a real
Banach space E. Let l >  and N > , let β and χ be nonnegative continuous concave func-
tionals on P, and let ζ , α, and ρ be nonnegative continuous convex functionals on P with

β(u) ≤ α(u), ‖u‖ ≤ Nζ (u),
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for all u ∈ P(ζ , l). Suppose that Y : P(ζ , l) → P(ζ , l) is a completely continuous operator and
that there exist numbers h > , d > , p, q >  with d < p such that:

u ∈ P(ζ ,ρ,β , p, q, l) : β(u) > p �= ∅ and β(Fu) > p for u ∈ P(ζ ,ρ,β , p, q, l);

u ∈Q(ζ ,α,χ , h, d, l) : α(u) < d �= ∅ and α(Fu) < d for u ∈Q(ζ ,α,χ , h, d, l);

α(Fu) > p for u ∈ P(ζ ,β , p, l) with ρ(Fu) > q;

β(Fu) < d for u ∈Q(ζ ,α, d, l) with χ (Fu) < h.

Then there exist at least three fixed points u, u, u ∈ P(ζ , l) such that

α(u) < d, p < β(u), and d < α(u) with β(u) < p.

Thereinto, some sets are as follows:

P(ζ , l) =
{

u ∈ P : ζ (u) < l
}

,

P(ζ ,β , p, l) =
{

u ∈ P : p ≤ β(u), ζ (u) < l
}

,

P(ζ ,ρ,β , p, q, l) =
{

u ∈ P : p ≤ β(u),ρ(u) ≤ q, ζ (u) < l
}

,

Q(ζ ,α, d, l) =
{

u ∈ P : α(u) ≤ d, ζ (u) < l
}

,

Q(ζ ,α,χ , h, d, l) =
{

u ∈ P : h ≤ χ (u),α(u) ≤ d, ζ (u) < l
}

.

Many other functionals on the cone P are defined by

β(u) = min
t∈[t,t]∪[–t,–t]

u(t) = u(t),

χ (u) = min
t∈[ 

ω , ω–
ω ]

u(t) = u
(


ω

)

,

α(u) = max
t∈[ 

ω , ω–
ω ]

u(t) = u
(




)

,

ρ(u) = max
t∈[t,t]∪[–t,–t]

u(t) = u(t),

ζ (u) = max
t∈[,̃t]∪[–̃t,]

u(t) = u(̃t),

where t, t, and ω are nonnegative numbers such that

 < t < t ≤ 


and

ω

≤ t.

It is clear that, for all u ∈ P,

β(u) = u(t) ≤ u
(




)

= α(u), ()

‖u‖ = u
(




)

≤ 
̃t

u(̃t) =

̃t

ζ (u). ()

Throughout the paper, we suppose that the following two conditions hold.
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(H) a > , – < b < ;
(H) � >  and � >  are continuous on I , and the supplementary function ϕ(t, s), defined

by

ϕ(t, s) =
a + t

 + a – b
�(s) –

b –  + t
 + a – b

�(s), t, s ∈ I,

satisfies

 ≤ m := min
t,s∈I

ϕ(t, s) ≤ M := max
t,s∈I

ϕ(t, s) < .

3 Some lemmas
In order to get the main results, we consider the following linear system:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) = h(t), t ∈ [, ],

u() – au′() =
∫ 

 �(s)σ(s) ds,

u() – bu′() =
∫ 

 �(s)σ(s) ds.

()

Lemma  Assume that h, σ, and σ are continuous functionals. If condition (H) is satis-
fied, then problem () has a unique solution given by

u(t) =
∫ 


G(t, s)h(s) ds +

a + t
 + a – b

∫ 


�(s)σ(s) ds –

b –  + t
 + a – b

∫ 


�(s)σ(s) ds, ()

where G(t, s) is given by

G(t, s) =

⎧
⎨

⎩

(s+a)(–b–t)
+a–b ,  ≤ s < t < ,

(–s–b)(a+t)
+a–b ,  ≤ t < s ≤ .

()

Here G(t, s) is Green’s function of (), which has the following different properties:

∫ 


G(t, s) ds =

–( + a – b)t + ( – b)t + a( – b)
( + a – b)

,  ≤ t ≤ ,

∫ 
ω


G

(



, s
)

ds =
( – b)( + aω)

ω( + a – b)
, ω > ,

∫ 



ω

G
(




, s
)

ds =
( – b)(ω – )[(a + )ω + ]

ω( + a – b)
, ω > ,

∫ t

t

G(t, s) ds +
∫ –t

–t

G(t, s) ds =
(t – t)( – b)(a + t)

( + a – b)
,  < t < t <




,

min
ω∈[,]

G(t,ω)
G(t,ω)

= ,  < t < t <



, max
ω∈[,]

G( 
 ,ω)

G(t,ω)
= ,  < t ≤ 


.

Define the linear operator B : C(I) → C(I) by

(Bu)(t) =
∫ 


ϕ(t, s)u(s) ds. ()
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Lemma  If (H) and (H) are satisfied, then the operator B has the following properties:
(i) B is a bounded linear operator, B(P) ⊂ P;

(ii) (I – B) is invertible;
(iii) ‖(I – B)–‖ ≤ 

–M .

Proof
(i) For all k, k ∈R and u(t), u(t) ∈ C(I),

B
(
ku(t) + ku(t)

)

=
∫ 


φ(t, s)

[
ku(t) + ku(t)

]
ds

= k(Bu)(t) + k(Bu)(t).

By using (H) and ϕ(t, s) ≤ M we have that

∣
∣(Bu)(t)

∣
∣ ≤ M‖u‖.

For u ∈ P, we have u(s) ≥ , s ∈ [, ]. Since ϕ(t, s) ≥ m > , we can obtain the
following inequalities:

(Bu)(t) ≥ ; (Bu)(t) = (Bu)( – t)
(

 < t <



)

;

(Bu)′′(t) = –u(t) < ; (Bu)(̃t) ≤ ̃tBu
(




)

.

Then, B(P) ⊂ P.
(ii) To prove that (I – B) is invertible, we just need to show that  is not an eigenvalue

of B.
Since M < , ‖Bu‖ ≤ M‖u‖, and thus supu�=

‖Bu‖
‖B‖ ≤ M < .

Besides, if we suppose that  is an eigenvalue of B, then there is u ∈ C(I) such that
Bu = u. Moreover, we can obtain that ‖Bu‖

‖B‖ = . So ‖B‖ ≥ . Thus, this assumption is
false, so that  is not an eigenvalue of B and, equivalently, (I – B) is invertible.

(iii) To obtain the expression for (I – B)–, we make use of the theory of Fredholm
integral equations.

For each t ∈ I , u(t) = (I – B)–x(t) ⇔ u(t) = x(t) + (Bu)(t). We obtain

u(t) = x(t) +
∫ 


ϕ(t, s)u(s) ds. ()

By using successive substitutions in (), the condition M <  implies that  is not an
eigenvalue of the kernel ϕ(t, s). So () has a unique continuous solution u(t) for
every continuous function x(t).

By successive substitutions in () we get

u(t) = x(t) +
∫ 


K(t, s)x(s) ds, ()
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where the kernel K(t, s) is given by

K(t, s) =
∞∑

j=

ϕj(t, s). ()

Here ϕj(t, s) =
∫ 

 ϕ(t, τ )ϕj–(τ , s) ds, j = , , . . . , and ϕ(t, s) = ϕ(t, s).
Because |ϕ(t, s)| ≤ M < , the series on the right in () is convergent. It can be

easily verified that K(t, s) ≤ M
–M . So we can get

(I – B)–x(t) = x(t) +
∫ 


K(t, s)x(s) ds. ()

Therefore,

∣
∣(I – B)–x(t)

∣
∣ ≤ ∣

∣x(t)
∣
∣ +

M
 – M

∫ 


x(s) ds

≤ ‖x‖
(

 +
M

 – M

)

=


 – M
‖x‖,

so that

‖(I – B)–x‖
‖x‖ ≤ 

 – M
.

Thus,

∥
∥(I – B)–∥∥ ≤ 

 – M
.

The proof of the lemma is over. �

Remark  Since ϕ(t, s) ≥ m for each (t, s) ∈ I, we analogously have K(t, s) ≥ m
–m .

Lemma  A function u(t) ∈ P is a solution of () if and only if

u(t) =
∫ 


G(t, s)f

(
u(s)

)
ds +

∫ 


ϕ(t, s)u(s) ds, for t ∈ [, ]. ()

Define the nonlinear operator T : C(I) → C(I) by

(Tu)(t) =
∫ 


G(t, s)f

(
u(s)

)
ds. ()

From () we obtain another form of u(t),

u(t) = (Tu)(t) + (Bu)(t). ()

By Lemma , () is equivalent to

u(t) = (I – B)–(Tu)(t).
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Hence, we construct a composite operator �:

� := (I – B)–T . ()

Lemma  If u(t) of () is a cone in P and � is as in (), then � : P → P.

Proof By the above lemmas we easily get

(�u)(t) =
∫ 


G(t, s)f

(
u(s)

)
ds +

∫ 


K(t, s)

∫ 


G(s, τ )f

(
u(τ )

)
dτ ds.

First, we will verify the conditions of cone P,
(i) if u ∈ p, then, by some properties of G(t, s), �u(t) ≥ ,

(ii) (�u)′′(t) = –f (u(s)) ≤ ,  < t < , that is, �u(t) is concave.
(iii) �u(̃t) ≥ ̃t�u( 

 ), �u(t) = �u( – t),  < t < 
 , that is, �u(t) is symmetric.

This means that �u(t) ∈ P, and so � : P → P. �

4 Main results
To show our main result, we first assume that the following condition is established:

(H)(i) f (ε) ≤ [paω – l( + aω)]( + a – b)( – M)
a( – b)(ω – )[(a + )ω + ]

,
p
l

< ε < p;

(ii) f (ε) >
q( – m)( + a – b)

(a + )(t – t)( – b)
, q < ε <

qt

t
;

(iii) f (ε) ≤ l( – M)( + a – b)

[(a + b) + ] – ab(a – b + )
,  < ε <

l
̃t

.

Theorem  Suppose that f satisfies (H). Let real constants p > , q > , and l >  be such
that  < p < q ≤ lt

t
. Then system () has three symmetric positive solutions u(t), u(t), and

u(t) satisfying

max
t∈[,̃t]∪[–̃t,]

ui(t) ≤ l, i = , , ,

min
t∈[t,t]∪[–t,–t]

u(t) > q, max
t∈[ 

ω ,– 
ω ]

u(t) < p,

min
t∈[t,t]∪[–t,–t]

u(t) < q, with max
t∈[ 

ω ,– 
ω ]

u(t) > p.

Proof The following five steps are used for verifying the conditions of Theorem .
(i) For all u ∈ P, from () and () we obtain β(u) ≤ α(u), ‖u‖ ≤ 

̃t ζ (u).
If u ∈ P(ζ , l), then ‖u‖ ≤ 

̃t ζ (u) < l
̃t , and from assumption (iii) of (H) we get

ζ (�u) = max
t∈[,̃t]∪[–̃t,]

{∫ 


G(t, s)f

(
u(s)

)
ds +

∫ 


K(t, s)

∫ 


G(s, τ )f

(
u(τ )

)
dτ ds

}

≤
(

 +
M

 – M

)∫ 


G(̃t, s)f

(
u(s)

)
ds

≤ 
 – M

l( – M)( + a – b)

[(a + b) + ] – ab(a – b + )

∫ 


G(̃t, s) ds
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≤ 
 – M

l( – M)( + a – b)
–( + a – b)̃t + ( – b)̃t + a( – b)

∫ 


G(̃t, s) ds

= l.

Thus, � : P(ζ , l) → P(ζ , l), and we immediately get that

{

u ∈ P

(

ζ ,ρ,β , q,
qt

t
, l

)

: β(u) > q
}

�= ∅ and

{

u ∈Q

(

ζ ,α,χ ,
p
l

, p, l
)

: α(u) < p
}

�= ∅.

(ii) If u ∈Q(ζ ,α, p, l) with χ (�u) < p
l , then we obtain

α(�u) = max
t∈[ 

ω ,– 
ω ]

{∫ 


G(t, s)f

(
u(s)

)
ds +

∫ 


K(t, s)

∫ 


G(s, τ )f

(
u(τ )

)
dτ ds

}

≤
(

 +
M

 – M

)∫ 


G

(



, s
)

f
(
u(s)

)
ds

=


 – M

∫ 



G( 
 , s)

G( 
ω

, s)
G

(

ω

, s
)

f
(
u(s)

)
ds

≤ 
 – M

∫ 


G

(

ω

, s
)

f
(
u(s)

)
ds

≤  – m
 – M

χ (�u)

<
 – m
 – M

p
l

< p.

(iii) If u ∈Q(ζ ,α,χ , p
l , p, l), then from assumption (i) and (iii) of (H) we get

α(�u) = max
t∈[ 

ω ,– 
ω ]

{∫ 


G(t, s)f

(
u(s)

)
ds +

∫ 


K(t, s)

∫ 


G(s, τ )f

(
u(τ )

)
dτ ds

}

≤
(

 +
M

 – M

)∫ 


G

(



, s
)

f
(
u(s)

)
ds

=


 – M

∫ 


G

(



, s
)

f
(
u(s)

)
ds

=


 – M

{∫ 
ω


G

(



, s
)

f
(
u(s)

)
ds +

∫ 



ω

G
(




, s
)

f
(
u(s)

)
ds

}

≤ 
 – M

{
l( – M)( + a – b)

[(a + b) + ] – ab(a – b + )

∫ 
ω


G

(



, s
)

ds

+
[paω – l( + aω)]( + a – b)( – M)

a( – b)(ω – )[(a + )ω + ]

∫ 



ω

G
(




, s
)

ds
}

≤ 
 – M

{
l( – M)( + a – b)

a( – b)

∫ 
ω


G

(



, s
)

ds
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+
[paω – l( + aω)]( + a – b)( – M)

a( – b)(ω – )[(a + )ω + ]
×

∫ 



ω

G
(




, s
)

ds
}

= p.

(iv) If u ∈Q(ζ ,β , q, l) with ρ(�u) > qt
t

, then we get

β(�u) = min
t∈[t,t]∪[–t,–t]

{∫ 


G(t, s)f

(
u(s)

)
ds

+
∫ 


K(t, s)

∫ 


G(s, τ )f

(
u(τ )

)
dτ ds

}

≥
(

 +
m

 – m

)∫ 


G(t, s)f

(
u(s)

)
ds

=


 – m

∫ 



G(t, s)
G(t, s)

G(t, s)f
(
u(s)

)
ds

≥ 
 – m

∫ 


G(t, s)f

(
u(s)

)
ds

≥  – M
 – m

ρ(�u)

>
 – M
 – m

qt

t

> q.

(v) If u ∈Q(ζ ,ρ,β , q, qt
t

, l), then from assumption (ii) of (H) we get

β(�u) = min
t∈[t,t]∪[–t,–t]

{∫ 


G(t, s)f

(
u(s)

)
ds

+
∫ 


K(t, s)

∫ 


G(s, τ )f

(
u(τ )

)
dτ ds

}

≥
(

 +
m

 – m

)∫ 


G(t, s)f

(
u(s)

)
ds

=


 – m

∫ 


G(t, s)f

(
u(s)

)
ds

>


 – m

{∫ t

t

G(t, s)f
(
u(s)

)
ds +

∫ –t

–t

G(t, s)f
(
u(s)

)
ds

}

≥ 
 – m

· q( – m)( + a – b)
(a + t)(t – t)( – b)

{∫ t

t

G(t, s) ds +
∫ –t

–t

G(t, s) ds
}

= q. �

5 Example
In the section, we provide a simple example illustrating the application of our main re-
sults.
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Example  Let a = 
 , b = – 

 , � = � = 
 , and f (u(t)) = u(t), Then () turns to the following

equation:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) = u(t), t ∈ I,

u() – 
 u′() = 


∫ 

 u(s) ds,

u() + 
 u′() = 


∫ 

 u(s) ds.

()

Because of the main result in Section , we have the following result.

Corollary  Choose p = 
 , q = , l = , t < t, and ω >  such that  < p < q ≤ lt

t
. Then the

boundary value problem () has three symmetric positive solutions u(t), u(t) and u(t)
satisfying

max
t∈[,̃t]∪[–̃t,]

ui(t) ≤ , i = , , ,

min
t∈[t,t]∪[–t,–t]

u(t) > , max
t∈[ 

ω ,– 
ω ]

u(t) <



,

min
t∈[t,t]∪[–t,–t]

u(t) < , with max
t∈[ 

ω ,– 
ω ]

u(t) >



.

Proof Now, we only verify conditions of (H) in Theorem .
(i) For 

 < u(t) < 
 ,

f
(
u(t)

) ≤ (ω – ω – )
(ω – 

 ω – 
 )

, and, obviously,



≤ (ω – ω – )
(ω – 

 ω – 
 )

.

(ii) For  < u(t) < t
t

,

f
(
u(t)

)
>


(t – t)

, and  >


(t – t)
.

(iii) For  < u(t) < 
̃t ,

f
(
u(t)

) ≤ , and

̃t

≤ .

We can complete the proof according Theorem . �
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