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Abstract
We consider a fourth order Hamiltonian system with some singular nonlinear term
and multiplicity result. We get two theorems which show the number of weak
solutions of this problem. The first theorem is a result which shows that there exists a
weak solution for this problem and the second one is an improved result of the first
result, which shows that there exist infinitely many weak solutions for this problem.
We get the first result by a variational method and critical point theory, and we get
the second result by homology theory.
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1 Introduction
Let N̄ε(θ ) be a closure of an ε-neighborhood of θ = (, . . . , ), ε >  be a fixed small
number, and D be an open subset in Rn with compact complement N̄ε(θ ) = Rn \ D,
n ≥ . Let c ∈ R and | · | be a norm in Rn. In this paper we consider the weak solutions
z(t) = (z(t), . . . , zn(t)) ∈ C([, π ], D) of a fourth order Hamiltonian system with singular
nonlinear term

....z (t) + cz̈(t) + gradz

(


|z(t)|p

)
= , p ≥ ,

z() = z(π ), z̈() = z̈(π ). (.)

Our problems are characterized as a singular fourth order Hamiltonian system with sin-
gularity at {z(t) = θ}, θ = (, . . . , ). The motivation of this paper is the fourth order ellip-
tic problem with singular potential. We recommend the book [] for the singular elliptic
problems. Many authors considered the fourth order elliptic boundary value problem. In
particular, Choi and Jung [] showed that the problem

�u + c�u = bu+ + s in �,

u = , �u =  on ∂�, (.)
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has at least two nontrivial solutions when c < λ, λ(λ – c) < b < λ(λ – c), and s <  or
when λ < c < λ, b < λ(λ – c), and s > . We obtained these results by using a variational
reduction method. We [] also proved that when c < λ, λ(λ – c) < b < λ(λ – c), and
s < , (.) has at least three nontrivial solutions by using degree theory. Tarantello [] also
studied

�u + c�u = b
(
(u + )+ – 

)
,

u = , �u =  on ∂�. (.)

She showed that if c < λ and b ≥ λ(λ – c), then (.) has a negative solution. She obtained
this result by degree theory. Micheletti and Pistoia [] also proved that if c < λ and b ≥
λ(λ – c) then (.) has at least three solutions by the variational linking theorem and
Leray-Schauder degree theory.

The eigenvalue problem

ü + λu =  in (, π ),

u() = u(π ) = ,

has many eigenvalues λj, j ≥ , and corresponding eigenfunctions φj, j ≥ , suitably nor-
malized with respect to L([, π ]) inner product and each eigenvalue λj is repeated as
often as its multiplicity. The eigenvalue problem

....u (t) + cü(t) = μu in (, π ),

u() = u(π ) = , ü() = ü(π ) = ,

has also infinitely many eigenvalues μj = λj(λj –c), j ≥ , and corresponding eigenfunctions
φj, j ≥ . We note that μ < μ ≤ μ, . . . ,μj → +∞.

In this paper we are trying to find the weak solutions z(t) ∈ C([, π ], D) ∩ 
D of the
system (.) satisfying

∫ π



[
z̈(t) · φ̈(t) – cż(t) · φ̇(t)

]
dt +

∫
�

gradu

(


|z(t)|p

)
· φ(t) dt = 

for all φ(t) ∈ C([, π ], D) ∩ 
D, where 
D is introduced in Section .

Theorem . Assume that λj < c < λj+, j ≥ . Then the system (.) has at least one non-
trivial weak solution.

Moreover, we improve Theorem . as follows.

Theorem . Assume that λj < c < λj+, j ≥ . Then the system (.) has infinitely many
nontrivial weak solutions.

For the proof of Theorem . we follow the approach of the variational method and use
a minimax method in critical point theory on the loop space 
D, and for the proof of
Theorem . we follow homology theory. In Section , we introduce a loop subspace 
D
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of the Banach space, and we prove that the associated functional J of (.) satisfies the (P.S.)
condition on the loop subspace 
D. In Section , we use a minimax method and critical
point theory for the existence of a nontrivial weak solution of (.) and prove Theorem ..
We also prove Theorem . by using critical point theory and homology theory to prove
the existence of infinitely many nontrivial weak solutions.

2 Variational approach
Let L([, π ], R) be a square integrable function space defined on [, π ]. Any element x
in L([, π ], R) can be written as

x =
∑

hkφk with
∑

h
k < ∞.

We shall denote the subset of L([, π ], R) satisfying the π-periodic condition, by
L(S, R). Similar notations will be used for other π-periodic function spaces. We define
a subspace W of L(S, R) as follows:

W =
{

x ∈ L(S, R
) ∣∣∑ |μk|h

k < ∞
}

.

Then this is a complete normed space with a norm

‖x‖W =
[∑

|μk|h
k

] 
 .

Let

W + = {x ∈ W | hk =  if μk < },
W – = {x ∈ W | hk =  if μk > }.

Then W = W – ⊕W +, for x ∈ W , x = x– + x+ ∈ W – ⊕W +. Let E be the n Cartesian product
space of W , i.e.,

E = W × W × · · · × W .

Let E+ and E– be the subspaces on which the functional

z 
→ A(z) =
∫ π



[∣∣z̈(t)
∣∣ – c

∣∣ż(t)
∣∣]dt

is positive definite and negative definite, respectively. Then

E = E+ ⊕ E–.

Let P+ be the projection from E onto E+ and P– the projection from E onto E–. The norm
in E is given by

‖z‖
E =
∥∥P+z

∥∥
E +
∥∥P–z

∥∥
E ,
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where ‖P+z‖
E =
∑n

i= ‖P+zi‖
W , ‖P–z‖

E =
∑n

i= ‖P–zi‖
W , z = (z, . . . , zn). Let ν

μi
,ν

μi
, . . . ,νn

μi

be the eigenvalues of the matrix

det(μiI) =

⎛
⎜⎜⎜⎜⎝

μi   . . . 
 μi  . . . 
...

...
...

. . .
...

   . . . μi

⎞
⎟⎟⎟⎟⎠ ∈ Mn×n(R), i = , . . . , n,

that is,

νk
μi

= μi, i ≥ , for all k = , . . . , n.

Let (c
,μi

, . . . , c
n,μi

), (c
,μi

, . . . , c
n,μi

), . . . , (cn
,μi

, . . . , cn
n,μi

) be the eigenvectors of the matrix

det(μiI) =

⎛
⎜⎜⎜⎜⎝

μi   . . . 
 μi  . . . 
...

...
. . .

...
...

   . . . μi

⎞
⎟⎟⎟⎟⎠ ∈ Mn×n(R)

corresponding to the eigenvalues ν
μi

, ν
μi

, . . . ,νn
μi

, respectively. Since νk
μi

= μi for all k =
, , . . . , n, (c

,μi
, . . . , c

n,μi
) = · · · = (cn

,μi
, . . . , cn

n,μi
). Let us set

(c,μi , . . . , cn,μi ) =
(
c

,μi
, . . . , c

n,μi

)
= · · · =

(
cn

,μi
, . . . , cn

n,μi

)
.

Let us set

Wμi = span{φi | μj = μi},
Eμi =

{
(c,μiφ, . . . , cn,μiφ) ∈ E | (c, . . . , cn) ∈ Rn,φ ∈ Wμi

}
,

E
μi

=
{(

c
,μi

φ, . . . , c
n,μi

φ
) ∈ E | φ ∈ Wμi

}
,

...

En
μi

=
{(

cn
,μi

φ, . . . , cn
n,μi

φ
) ∈ E | φ ∈ Wμi

}
.

We note that

Eμi ≡ E
μi

≡ · · · ≡ En
μi

and

E =
⊕
i≥

Eμi .

Let us introduce an open set of the Hilbert space E as follows:


D =
{

z ∈ E | z(t) ∈ D = Rn \ N̄ε(θ ), ε >  is a small number, ∀t ∈ S}.
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Let us consider the functional on 
D

J(z) =



∫ π



[∣∣z̈(t)
∣∣ – c

∣∣ż(t)
∣∣]dt +

∫ π




|z(t)|p dt, p ≥ . (.)

The Euler equation for J is (.).
By Lemma ., J ∈ C(
D, R), and so the weak solutions of system (.) coincide with

the critical points of the associated functional J(z).

Lemma . J(z) is continuous and Fréchet differentiable in 
D with Fréchet derivative

DJ(z)v =
∫ π



[
z̈(t) · ẅ(t) – cż(t) · ẇ(t) + gradz


|z(t)|p · w(t)

]
dx ∀w ∈ 
D. (.)

Moreover, DJ ∈ C. That is, J ∈ C.

Proof First we prove that J(z) is continuous. For z, w ∈ 
D,

∣∣J(z + w) – J(z)
∣∣

=
∣∣∣∣ 


∫ π


( ....z + w + c ¨z + w) · (z + w) dt

+
∫ π




|z(t) + w(t)|p dt

–



∫ π


(....z + cz̈) · z dt –

∫ π




|z(t)|p dt

∣∣∣∣
=
∣∣∣∣ 


∫ π



[
(....z + cz̈) · w + (....w + cẅ) · z + (....w + cẅ) · w

]
dt

+
∫ π



(


|z(t) + w(t)|p –


|z(t)|p

)
dt
∣∣∣∣.

We have

∣∣∣∣
∫ π



[


|z(t) + w(t)|p –


|z(t)|p

]
dt
∣∣∣∣

≤
∣∣∣∣
∫ π



[
gradz


|z(t)|p · w + O

(‖w‖E
)]

dt
∣∣∣∣ = O

(‖w‖E
)
. (.)

Thus we have

∣∣J(z + w) – J(z)
∣∣ = O

(‖w‖E
)
.

Next we shall prove that J(z) is Fréchet differentiable in 
D. For z, w ∈ 
D,

∣∣J(z + w) – J(z) – DJ(z)w
∣∣

=
∣∣∣∣ 


∫ π


( ....z + w + c ¨z + w) · (z + w) dt +

∫ π




|z(t) + w(t)|p dt
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–



∫ π


(....z + cz̈) · z dt –

∫ π




|z(t)|p dt

–
∫ π



(
....z + cz̈ + gradz


|z(t)|p

)
· w dt

∣∣∣∣
=
∣∣∣∣ 


∫ π



[
(....w + cẅ) · z + (....w + cẅ) · w

]
dt

+
∫ π



(


|z(t) + w(t)|p –


|z(t)|p

)
dt –

∫ π


gradz


|z(t)|p · w dt

∣∣∣∣.

Thus by (.), we have

∣∣J(z + w) – J(z) – DJ(z)w
∣∣ = O

(‖w‖E
)
. (.)

Similarly, it is easily checked that J ∈ C. �

Lemma . Assume that λj < c < λj+, j ≥ . Let {zk} ⊂ 
D, zk(t) ∈ Z, and zk ⇀ z weakly
in 
D with z ∈ ∂
D. Then J(zk) → ∞, where Z is a neighborhood of θ = (, . . . , ).

Proof Since 
z(t)p has a singular point θ = (, . . . , ) in Rn, the conclusion follows. �

Now, we shall prove that J(z) satisfies (P.S.)γ condition for any γ ∈ R.

Lemma . Assume that λj < c < λj+, j ≥ . Then if ‖zk‖E → ∞, then there exist (zhk )k and
z in 
D such that

gradz


|zhk (t)|p → z ∈ 
D,
zhk

‖zhk ‖E
→ θ , θ = (, . . . , ).

Proof Let ‖zk‖E → ∞. Then 
|zk (t)|p is bounded, it follows that

∫ π




|zk (t)|p

‖zk‖E
dt → . (.)

Since

∫ π



[gradz


|zk (t)|p · zk(t) –  
|zk (t)|p ]

‖zk‖E
dt −→ ,

by (.), we have

∫ π



gradz


|zk (t)|p · zk(t)

‖zk‖E
dt −→ . (.)

Thus the sequence (
∫ π



gradz


|zk (t)|p ·zk (t)

‖zk‖E
dt)k is bounded. It follows from (.) that there

exists a subsequence (zhk )k such that

lim
k→∞

∫ π

 [gradz


|zhk (t)|p · zhk (t)] dt

‖zhk ‖E
= lim

k→∞

∫ π


gradz


|zhk (t)|p · zhk (t)

‖zhk ‖E
dt = . (.)
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Since gradz


|zk (t)|p is bounded when ‖zk‖E → ∞, it follows from (.) that there exists z in

D such that

gradz


|zhk (t)|p → z ∈ 
D,
zhk

‖zhk ‖E
→ θ .

Thus the lemma is proved. �

Lemma . Assume that λj < c < λj+, j ≥ . Then J(z) satisfies the (P.S.)γ condition for any
γ ∈ R.

Proof Let γ ∈ R and (zk)k ⊂ 
D be a sequence such that J(zk) → γ and

DJ(zk) = ....zk (t) + cz̈k(t) + gradz

(


|zk(t)|p

)
−→ θ , θ = (, . . . , ) in 
D

or equivalently

∥∥P+zk(t)
∥∥ –
∥∥P–zk(t)

∥∥ + (Dtttt + cDtt)–
(

gradz

(


|zk(t)|p

))
−→ θ , (.)

where Dttttzk(t) = ....zk (t), (Dtttt + cDtt)– is a compact operator. We shall show that (zk)k has
a convergent subsequence. We claim that {zk} is bounded in 
D. By contradiction, we
suppose that ‖zk‖E → ∞ and set wk = zk

‖zk‖E
. Since (wk)k is bounded, up to a subsequence,

(wk)k converges weakly to some w in 
D. Since J(zk) → γ and DJ(zk) → , we have

DJ(zk) · (zk)
‖zk‖E

=
J(zk)
‖zk‖E

+

∫ π

 [gradz


|zk (t)|p · zk(t) –  
|zk (t)|p ] dt

‖zk‖E
−→ .

Thus we have
∫ π

 [gradz


|zk (t)|p · zk(t) –  
|zk (t)|p ] dt

‖zk‖E
−→ .

By Lemma . and (.), there exist (zhk )k and z in 
D such that

gradu


|zhk (t)|p → z ∈ 
D, and
zhk

‖zhk ‖E
→ θ .

Thus we have w = , which is absurd because ‖w‖E = . Thus {zk} is bounded in 
D.
Thus (zk)k has a convergent subsequence converging weakly to some z in 
D. We claim
that this subsequence of (zk)k converges strongly to z. By DJ(zk) → θ , we have

DJ(zk) = ....zk + cz̈k + gradz


|zk(t)|p −→ θ .

We claim that the mapping zk →
→ (gradz


|zk (t)|p )k is compact. Since the embedding


D ↪→ C([, π ] × 
D, Rn) is compact, the sequence (
∫ π

 [gradz


|zk (t)|p · zk(t) dt)n has

a convergent subsequence which converges to
∫ π

 [gradz


|z(t)|p · z(t) dt. Because {zk} is
bounded and the subsequence of (zk)k converges weakly to some z in 
D, (gradz


|zk (t)|p )k is

bounded. Since (Dtttt + cDtt)– is compact, by (.), (P+zk)k and (P–zk)k have subsequences
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converging strongly. Thus (zk)k has a subsequence converging strongly. Thus the lemma
is proved. �

3 Proofs of Theorems 1.1 and 1.2
Lemma . There exists a sequence of integers

b < b < · · · < bi < · · · , bi → ∞,

such that Hbi (
D) �= .

Proof Let ε >  be a fixed small number such that N̄ε(θ ) contains θ , and choose R >  such
that N̄ε(θ ) ⊂ int(BR). Then we have

Rn \ BR ⊂ D ⊂ Rn \ {θ}.

Since Rn \ BR is a deformation retract of Rn \ {θ}, 
(Rn \ BR) is a deformation retract of

(Rn \ {θ}), so 
(Rn \ BR) is a deformation retract of λD. Then we have

H∗(
D) ∼= H∗
(


(
Rn \ BR

))⊕ H∗
(

D,


(
Rn \ BR

))
∼= H∗

(


(
Sn–))⊕ H∗

(

D,


(
Sn–)).

By [], the Poincaré series of 
(Sn–) is written as

Pt
(


(
Sn–)) =

(
 + tn) +

tn–

 – t(n–)

(
 + tn)( + tn–)

with Z coefficients. Thus the lemma is proved. �

Let us set a level set

Jγ =
{

z ∈ 
D | J(z) ≤ γ
}

and

β =
{

[z] ⊂ 
D | z ∈ 
D, z(t) is a loop on D,∀t ∈ S}.
Lemma . Assume that λj < c < λj+, j ≥ . For each γ > , there exists a finite dimensional
singular complex � = �γ such that the level set Jγ is deformed into �.

Proof Let us choose z ∈ Jγ . Then z ∈ 
D and we have

J(z) =



∫ π



[∣∣z̈(t)
∣∣ – c

∣∣ż(t)
∣∣]dt +

∫ π




|z(t)|p dt ≤ γ .

We note that there exists a constant R >  such that

if
(
t, z(t)

) ∈ [, π ] × Rn \ BR ,

then


|z(t)|p < +∞ and
∣∣∣∣gradz


|z(t)|p

∣∣∣∣ < +∞. (.)
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We also note that there exists a neighborhood Z of N̄ε(θ ) such that


|z(t)|p ≥ C

d(z, Z)
for (t, z) ∈ [, π ] × Z. (.)

It follows that there exists a constant γ >  such that

∫ π



[∣∣z̈(t)
∣∣ – c

∣∣ż(t)
∣∣]dt ≤ γ,

i.e., we have

∥∥ż(t)
∥∥

E – c
∫ π



∣∣ż(t)
∣∣ dt ≤ γ.

Since the number of elements of the set {λi – c | λi – c < } is finite and λi – c → ∞ as
i ∈ ∞, there exists a constant γ >  such that

∫ π



∣∣ż(t)
∣∣ dt ≤ γ. (.)

By Lemma ., there exists ε = ε(γ ,γ) such that

d
(
z, N̄ε(θ )

)≥ ε ∀z ∈ Jγ ,∀t ∈ S.

Let us choose an integer M = Mγ > π
γ





ε

and let

ti =
π i
M

, i = , , . . . , M.

Let us define a broken line

z̄(t) =
(

 –


π
M(t – ti–)

)
z(ti–) +


π

M(t – ti–)z(ti),

∀t ∈ [ti–, ti], i = , , , . . . , M, ∀x ∈ Jγ . Let

� =
{

z̄(t) | z ∈ Jγ
}

.

The corresponding z̄ 
→ (z(t), z(t), . . . , z(tM)) define a homeomorphism between � and a
certain open subset of the M-fold product D × D × · · · × D. We first claim that � ⊂ 
D.
In fact, ∀z ∈ Jγ , for t > t, by (.), we have

∥∥z(t) – z(t)
∥∥

Rn ≤
∫ t

t

∣∣ż(t)
∣∣dt

≤
(∫ π



∣∣ż(t)
∣∣ dt

) 
 |t – t| 



≤ γ



 |t – t|.
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Therefore

d
(
z̄(t), N̄ε(θ )

) ≥ d
(
z(ti), N̄ε(θ )

)
–
(

 –


π
M(t – ti–)

)∥∥z(ti) – z(ti–)
∥∥

Rn

≥ ε – πM–γ



 > 

∀s ∈ [ti–, ti], i = , , , . . . , M. We next claim that there exists ν ∈ C([, ] × Jγ ,
D) such
that ν(, ·) = id, and ν(, Jγ ) = �. In fact, let us choose z(t) ∈ 
D and let us define ν as
follows:

ν(s, z)(t) =

⎧⎪⎪⎨
⎪⎪⎩

z(t) for t ≥ πs,

( – t–ti–
πs–ti–

)z(ti–) + t–ti–
πs–ti–

z(πs) for ti– < t < πs,

z̄(t) for t ≤ ti– ≤ πs ≤ ti.

Then ν(, ·) = id, and ν(, Jγ ) = �. Thus we prove that Jγ is deformed into � in the loop
space 
D. Thus the lemma is proved. �

Proof of Theorem . (Existence of a weak solution) We shall show that the functional J(z)
has a critical value by the generalized mountain pass theorem. Thus we first shall show
that J(z) satisfies the geometric assumptions of the generalized mountain pass theorem.

Let


D+ = 
D ∩ E+, 
D– = 
D ∩ E–.

Then


D = 
D+ ⊕ 
D–.

Let z ∈ 
D+. Then we have

J(z) =


∥∥P+z(t)

∥∥
E –



∥∥P–z(t)

∥∥
E +
∫ π




|z(t)|p dt

=


∥∥P+z(t)

∥∥
E +
∫ π




|z(t)|p dt.

Since 
|z(t)|p is positive and bounded, if z ∈ 
D+, then there exists a number r >  such

that if z ∈ ∂Br ∩ 
D+, then J(z) > . Thus infz∈∂Br∩
D+ J(z) > . We note that by (.), there
exists R > R such that

if
(
t, z(t)

) ∈ [, π ] × Rn \ BR, then


|z(t)|p < +∞ and
∣∣∣∣gradz


|z(t)|p

∣∣∣∣ < +∞,

and by (.), there exists a neighborhood Z of N̄ε(θ ) such that


|z(t)|p ≥ C

d(z, Z)
for (t, z) ∈ [, π ] × Z.
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Let us choose e ∈ B ∩ 
D+. Let z ∈ 
D– ⊕ {ρe | ρ > }. Then z = x + y, x ∈ 
D–, y = ρe.
Then we have

J(z) =


∥∥P+z(t)

∥∥
E –



∥∥P–z(t)

∥∥
E +
∫ π




|z(t)|p dt

=


ρ –



∥∥P–x

∥∥ +
∫

�


|x + ρe|p dt.

By (.), there exists constant R >  such that if (t, z(t)) ∈ [, π ]×Rn \BR , then | 
|z(t)|p | <

+∞ and |gradz


|z(t)|p | < +∞. Thus there exist a large number R > R and a small number
ρ >  such that if z = x + ρe ∈ ∂Q = ∂(((B̄R ∩ 
D–) ⊕ {re | e ∈ B ∩ 
D+,  < r < R}) \ BR ),
then J(z) < . Thus we have supz∈∂Q J(z) < . By Lemma ., J(z) is continuous and Fréchet
differentiable in 
D and, moreover, DJ ∈ C. By Lemma ., J(z) satisfies the (P.S.) con-
dition. Thus by the generalized mountain pass theorem [], J(z) possesses a critical value
c > , which is characterized as

c = inf
h∈�

sup
z∈Q

J
(
h(z)

)
,

where

� =
{

h ∈ C(Q̄,
D) | h = id on ∂Q
}

.

Thus (.) has at least one nontrivial weak solution. Thus we prove Theorem .. �

Proof of Theorem . (Existence of infinitely many weak nontrivial solutions) By contra-
diction, we assume that J(z) has only finitely many critical points z, z, . . . , zl such that by
the process of the proof of Theorem ., we can obtain J(zj) > ,  ≤ j ≤ l. Let us set

K = {z, z, . . . , zl}.

We note that dim ker(DJ(zj)) ≤ n, for all j. Letting

b∗ > max
{

nM, ind(J , zj) + dim ker
(
DJ(zj)

) |  ≤ j ≤ l
}

,

where Mγ is defined in the proof of Lemma ., and

τ > max
{

, J(zj) |  ≤ j ≤ l
}

,

we have

Cb(J , zj) =  ∀b ≥ b∗, j = , , . . . ,

and

H∗(
D, J) = H∗(Jτ , J).
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It follows that

Hb(
D, J) =  ∀b > b∗.

Since

i∗ : Hb(
D) −→ Hb(
D, J) is injective for b ≥ b∗,

Hb(
D) =  for b ≥ b∗,

which is a contradiction to Lemma .. Thus J(z) has infinitely many critical points zj,
j = , , . . . , in 
D. �
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