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Abstract
Let q(t) be a continuous 2π -periodic function with 1

2π

∫ 2π
0 q(t)dt > 0. We propose a

new approach to establish the existence of Aubry-Mather sets and quasi-periodic
solutions for the following time-periodic parameters semilinear Duffing-type
equation:

x′′ + q(t)x + f (t, x) = 0,

where f (t, x) is a continuous function, 2π -periodic in the first argument and
continuously differentiable in the second one. Under some assumptions on the
functions q and f , we prove that there are infinitely many generalized quasi-periodic
solutions via a version of the Aubry-Mather theorem given by Pei. Especially, an
advantage of our approach is that it does not require any high smoothness
assumptions on the functions q(t) and f (t, x).
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1 Introduction
The goal of this paper is to study the existence of Aubry-Mather sets and quasi-periodic
solutions to the following time-periodic parameters semilinear Duffing-type equation:

x′′ + q(t)x + f (t, x) = , (.)

where q(t) is continuous and π-periodic function in the time t, f (t, x) is a continuous
function, π-periodic in the first argument and continuously differentiable in the second
one. As is well known such a system is one of the most important models in Hamiltonian
systems due to both its physical significance and mathematical fascination despite its sim-
ple form. Here we are concerned with the so-called break-down of stability (in the sense
of the Lagrangian) by using the Aubry-Mather theory.
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In the early s, Aubry [] and Mather [] proved independently that invariant
curves of integrable system will be broken if its perturbation increased gradually and/or
the smoothness of integrable system is weakened, when they, respectively, studied one-
dimensional liquid crystal model of solid state physics and the qualitative properties of
the orbits of an area-preserving twist map of the annulus. They also found that when in-
variant curves break, they do not simply disappear, some special invariant sets still exist.
Today, these sets are called Aubry-Mather sets. For the planar differential system, Aubry-
Mather theory suggests that its Poincaré mapping has Aubry-Mather sets Mσ with a rota-
tion number σ , then the planar differential system possesses Aubry-Mather type solutions
zσ (t) = (xσ (t), yσ (t)), such that Mσ ≡ {zσ (π i), i ∈ Z} with the following geometrical and
dynamical properties:

() if σ = n
m ∈Q with (n, m) = , then zσ (t) is a Birkhoff periodic solution with periodic

mπ and arg(zσ (t) + m) = arg(zσ (t)) + n, the m solutions zσ (t + π i) ( ≤ i ≤ m – )
can be homotopically drawn to m straight lines;

() if σ ∈R\Q, then Mσ is either an invariant circle and its orbits are just usual
quasi-periodic orbits, or an invariant Cantor set and its orbits become generalized
ones.

In general, we note that the existence of Birkhoff type periodic solution is very difficult
to prove, see, for example, Bernstein and Katok’s work []. But Aubry-Mather theory has
provided a powerful tool for the in-depth study of the dynamic behavior of differential
equations. Since the pioneering work of Aubry [] and Mather [], Aubry-Mather sets for
area-preserving monotone twist homeomorphism have been widely studied due to their
applications in many fields such as one-dimensional crystal model of solid state physics,
differential geometry and dynamical systems (see [, ]). And then much work has been
carried out concerning the existence of Aubry-Mather sets for various kinds of differential
equations, such as Hamiltonian systems [–], reversible systems [, ] and nonlinear
asymmetric oscillator [–].

In the s, the Duffing-type equation has been a typical model in the recent Aubry-
Mather theory for planar periodic Hamiltonian systems, there are several papers concern-
ing this problem for the Duffing equation (see [–]). For example, Pei [] and Qian
[] have proved, respectively, the existence of Aubry-Mather sets and quasi-periodic so-
lutions for some superlinear Duffing equations and sublinear Duffing equations by using
Aubry-Mather theory under some suitable assumptions.

When q(t) = λ is constant and f (x, t) = ϕ(x) – p(t), equation (.) reduces to the semi-
linear Duffing equation

x′′ + λx + ϕ(x) = p(t). (.)

In , based on a generalized version of Aubry-Mather theorem, Pei [] obtained the
existence of Aubry-Mather sets of equation (.) for any continuous π-periodic function
p(t) if

(A) ϕ(x)
x > ϕ′(x) > , for |x| ≥ d > ;

(A) ϕ(x) = o(x), |ϕ(x) – xϕ′(x)| → +∞, as |x| → +∞; |xϕ′′(x)| ≤ C, where the constant
C > .

An interesting question is: can the smoothness requirement of the perturbation term
ϕ(x) ∈ C(R) for equation (.) be weakened?
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Recently, the author [] has extended such a result to the case ϕ(x) ∈ C(R) and ob-
tained the existence of Aubry-Mather sets and quasi-periodic solutions for equation (.)
under the following conditions:

(B) lim|x|→+∞ ϕ′(x) = ;
(B) sgn(x)(ϕ(x) – xϕ′(x)) > p∞, for |x| ≥ d > , where p∞ = maxt∈[,π ] |p(t)|.

In this paper, we will continue the study of the existence of Aubry-Mather sets and quasi-
periodic solutions of equation (.) initiated in [, ]. In our case, we cannot apply the
estimation method used in []. Instead, we seek a suitable action and angle variable trans-
formation so that the transformed system of (.) is a perturbation of an integral Hamil-
tonian system, and then propose a new estimate approach and apply a kind of analytical
techniques developed by the present author (see the recent papers [, , ]) to directly
prove the Poincaré map of the transformed system satisfying monotone twist property,
which leads to our desired results. Especially, an advantage of our approach is that it does
not require any high smoothness assumptions on the functions q(t) and f (t, x). The results
obtained in this paper are natural generalizations and refinements of the results obtained
in [, ].

Our main result is the following.

Theorem . Assume that equation (.) satisfies:

(D) q(t) ∈ C(S) and 
π

∫ π

 q(t) dt = γ  > b∞, where γ > ,

b∞ = max
t∈[,π ]

∣
∣b(t)

∣
∣, b(t) = q(t) – γ ;

(D) f (t, x) ∈ C,(S ×R) and has limits

lim|x|→+∞ fx(t, x) = , uniformly in t ∈ [, π ];

(D) there is a constant d > , such that

sgn(x)
[
f (t, x) – xfx(t, x)

]
> b∞, for |x| ≥ d.

Then there exists ε > , such that for any α ∈ (γπ , γπ + ε), equation (.) possesses
an Aubry-Mather type solution zα(t) = (xα(t), x′

α(t)) with rotation number α, that is:
(i) if α = n

m is rational, and (n, m) = , the solution zi
α(t) = zα(t + π i),  ≤ i ≤ m – , are

mutually unlinked periodic solutions of period m;
(ii) if α is irrational, the solution zα(t) either a usual quasi-periodic solution or a

bounded solution such that the closed set

Mα ≡ {
zα(π i), i ∈ Z

}

is a Denjoy minimal set (see the definition of it in []).

Remark . Applying the rule of L’Hospital to condition (D), it is easy to see that
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(f)

lim|x|→+∞
f (t, x)

x
= , uniformly in t ∈ [, π ].

Example . Let q(t) =  + 
 sin t and f (t, x) = sgn(x) ln( + |x|) · ( + |p(t)|), where p(t)

is a continuous function with p(t + π ) = p(t). Then q(t) ∈ C(S) and f (t, x) meet the
conditions of (D)-(D) in Theorem .. We can check it as follows: (i) By simple cal-
culation, we have γ = , b∞ = maxt∈[,π ] | 

 sin t| = 
 , then  = γ  > b∞ = 

 ; (ii) since
fx(t, ) =  + |p(t)| and fxx(t, ) = ∞, we have f (t, x) ∈ C,(S × R) and it is obvious that
f (t, x) has limits lim|x|→+∞ fx(t, x) = , uniformly in t ∈ [, π ]; (iii) choose d = e, then we
have sgn(x)[f (t, x) – xfx(t, x)] ≥  > 

 = b∞, for |x| ≥ d. Thus, according to (i)-(iii), the
assumptions (D)-(D) in Theorem . hold.

Remark . It is easy to verify that the results in [, ] cannot be applied to Example .
to obtain the existence of Aubry-Mather sets and quasi-periodic solutions. Therefore, the
results obtained in this paper can be viewed as natural generalizations and refinements of
the results in [, ].

Remark . It seems that the break-down of stability (in the sense of the Lagrangian) is re-
lated to the smoothness of f (t, x). And we do not know whether or not f (t, x) ∈ C,(S ×R)
is sufficient to guarantee the existence of Aubry-Mather sets and quasi-periodic solutions
of equation (.).

The main idea of our proof is acquired from []. The proof of Theorem . is based on
a version of Aubry-Mather theorem due to Pei []. The rest of this paper is organized as
follows. In Section , we introduce the action-angle variables which transform equation
(.) into a perturbation of an integral Hamiltonian system. In Section , we will show that
the Poincaré map of the equivalent system satisfies the monotone twist property around
infinity, then some results can be obtained.

2 Action-angle variables and some properties
Let q(t) = γ  + b(t). Then b(t) is a π periodic function and 

π

∫ π

 b(t) dt = . Hence,
equation (.) is equivalent to the system

ẋ = –y, ẏ =
(
γ  + b(t)

)
x + f (t, x). (.)

Now we introduce the action and angle variables (I, θ ) as follows:

x =

√
I
γ

cos θ , y =
√

γ I sin θ , (.)

where I >  and θ ∈ S = R/πZ, then it is not difficult to prove that the mapping

 : S × (,∞) → R – {}, (θ , I) 	→ (x, y) is a canonical transformation, such that (.)
is transformed into

θ̇ = �(t, θ , I), İ = �(t, θ , I), (.)
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where

�(t, θ , I) = γ +
x(θ , I)(b(t)x(θ , I) + f (t, x(θ , I)))

I
,

�(t, θ , I) =
y(θ , I)(b(t)x(θ , I) + f (t, x(θ , I)))

γ
.

Under the assumptions of (D) and (D), it is easy to prove the existence and uniqueness
of the solution of the initial value problem associated with (.). Moreover, this solution
has continuous derivatives with respect to initial data.

Let (θ (t; θ, I), I(t; θ, I)) be the solution of (.) with initial value θ () = θ and I() = I.
Then x(t; θ, I) = x(θ (t; θ, I), I(t; θ, I)) =

√
I(t;θ,I)

γ
cos θ (t; θ, I) is the solution of (.).

First, we give the following growth estimates as regards I(t; θ, I) and θ (t; θ, I).
For the sake of convenience and simplicity, in the following, we let θ = θ (t; θ, I), I =

I(t; θ, I) and x = x(θ , I) = x(θ (t; θ, I), I(t; θ, I)), y = y(θ , I) = y(θ (t; θ, I), I(t; θ, I)).

Lemma . The limit

lim
I→+∞ I(t; θ, I) = +∞

holds uniformly on t ∈ [, π ].

Proof From (f) and coordinate transformation (.), there exist constants C > , K > ,
such that |I ′(t)| = | y(b(t)x+f (t,x))

γ
| ≤ CI(t) + K , ∀I �= .

Then, by the Gronwall inequality, one has

e–πCI –
K
C

(
 – e–πC) ≤ I(t) ≤ eπCI +

K
C

(
eπC – 

)
(.)

for all t ∈ [, π ].
So, by (.), I(t; θ, I) → +∞ as I → +∞ uniformly for t ∈ [, π ]. �

Lemma . There exist constants k > k >  and Ī > , such that for any I ≥ Ī , we have:
(i) γ

 ≤ θ ′(t; θ, I) ≤ γ , ∀θ ∈R and ∀t ∈ [, π ];
(ii) kI ≤ I(t; θ, I) ≤ kI, ∀θ ∈ R and ∀t ∈ [, π ].

Proof (i) Since (f) holds, for every ε >  (we may restrict  < ε < γ 

 – b∞), there exists
M = M(ε) > , such that

∣
∣f (t, x)

∣
∣ ≤ ε|x|

if |x| ≥ M and ∀t ∈ [, π ]. Hence, by (.), we have

dθ

dt
= γ +

x(b(t)x + f (t, x))
I

≥ γ –
(b∞ + ε)x

I

≥ γ –
b∞ + ε

γ
.
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By (D), we have γ  > b∞. Thus, we have

dθ

dt
≥ γ –

b∞ + ε

γ
≥ γ


.

In the case |x| ≤ M, we may assume that |f (t, x)| ≤ f∞, where f∞ = max{|f (t, x)| : t ∈
[, π ], |x| ≤ M}, then by (.), we have

dθ

dt
= γ +

x(b(t)x + f (t, x))
I

≥ γ –
b∞x + f∞|x|

I

≥ γ –
b∞
γ

–
f∞√
γ I

.

So, by (D) and Lemma ., there exists a constant Ī > , such that dθ
dt ≥ γ

 if I ≥ Ī .
Similarly, the same argument as above shows that the inequality on the right side of (i)

holds.
(ii) By (.), we can easily find constants k > k >  and Ī > , such that

kI ≤ I(t) ≤ kI

for any I ≥ Ī and ∀t ∈ [, π ]. �

3 Monotone twist property and proof of Theorem 1.1
Let the Poincaré map P of equation (.) be

P : (θ, I) 	→ (
θ (π , θ, I), I(π , θ, I)

)
.

To complete the proof of Theorem ., one can see that it suffices to show that the Poincaré
map P is a monotone twist map around infinity, that is, we only need to prove ∂θ (π ;θ,I)

∂I
< 

if I  . Then the existence of Aubry-Mather sets and quasi-periodic solutions is guar-
anteed by a generalized Aubry-Mather theorem given by Pei [].

In the following, we will investigate the behavior of ∂θ (π ;θ,I)
∂I

when I   by some
lemmas. For the sake of convenience, in later discussions we also write x, y, θ , I instead of
x(θ (t; θ, I), I(t; θ, I)), y(θ (t; θ, I), I(t; θ, I)), θ (t; θ, I), I(t; θ, I), respectively.

Lemma . The following convergences hold uniformly on t ∈ [, π ]:
(i) xf (t,x)

I → , xfx(t,x)
I → , as I → +∞;

(ii) yf (t,x)
I → , yxfx(t,x)

I → , as I → +∞;
(iii) f (t,x)

I → , xf (t,x)fx(t,x)
I → , xf 

x (t,x)
I → , as I → +∞.

Proof If (D) and (f) hold, then to each ε >  there corresponds a positive number M =
M(ε) > , if |x| ≥ M and ∀t ∈ [, π ], and we have

∣
∣fx(t, x)

∣
∣ ≤ γ


ε

and

∣
∣f (t, x)

∣
∣ ≤ γ


ε|x|.
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Denote K(ε) = max{|f (t, x)| : t ∈ [, π ], |x| ≤ M}, K(ε) = max{|fx(t, x)| : t ∈ [, π ],
|x| ≤ M}.

(i) According to the coordinate transformation (.), one has

∣
∣
∣
∣
xf (t, x)

I

∣
∣
∣
∣ ≤ MK(ε)

I
+

γ εx

I
≤ MK(ε)

I
+

ε


;

∣
∣
∣
∣
xfx(t, x)

I

∣
∣
∣
∣ ≤ MK(ε)

I
+

γ εx

I
≤ MK(ε)

r
+

ε


.

Then, given Ī > , choose I so that I ≥ Ī , by using Lemma .(ii), provided

I(t) ≥ max

{
MK(ε)

ε
;

MK(ε)
ε

; 
}

,

we have
∣
∣
∣
∣
xf (t, x)

I

∣
∣
∣
∣ ≤ ε,

∣
∣
∣
∣
xfx(t, x)

I

∣
∣
∣
∣ ≤ ε.

Since ε >  is arbitrary, the proof of (i) is complete.
(ii) Corresponding to (.), one can see that

∣
∣
∣
∣
yf (t, x)

I

∣
∣
∣
∣ ≤ K(ε)|y|

I
+

γ ε|y||x|
I

≤
√

γ K(ε)√
I

+
γ ε


;

∣
∣
∣
∣
yxfx(t, x)

I

∣
∣
∣
∣ ≤ M|y|K(ε)

I
+

γ ε|y||x|
I

≤
√

γ K(ε)√
I

+
γ ε


.

Then, given Ī > , choose I so that I ≥ Ī , by using Lemma .(ii), provided

I(t) ≥ max

{
γ K

 (ε)
ε ;

γ K
 (ε)

ε ; 
}

,

we have
∣
∣
∣
∣
yf (t, x)

I

∣
∣
∣
∣ ≤ ε


+

γ ε


;

∣
∣
∣
∣
yxfx(t, x)

I

∣
∣
∣
∣ ≤ ε


+

γ ε


.

Since ε >  is arbitrary, (ii) is proved.
(iii) From (.) we deduce that

∣
∣
∣
∣
f (t, x)

I

∣
∣
∣
∣ ≤ K

 (ε)
I

+
γ ε|x|

I
≤ K

 (ε)
I

+
γ ε


;

∣
∣
∣
∣
xf 

x (t, x)
I

∣
∣
∣
∣ ≤ MK

 (ε)
I

+
γ ε|x|

I
≤ MK

 (ε)
I

+
γ ε


;

∣
∣
∣
∣
xf (t, x)fx(t, x)

I

∣
∣
∣
∣ ≤ MK(ε)K(ε)

I
+

γ ε|x|
I

≤ MK(ε)K(ε)
I

+
γ ε


.

Then, given Ī > , choose I so that I ≥ Ī , by using Lemma .(ii), provided

I(t) ≥ max

{
K

 (ε)
ε

;
MK

 (ε)
ε

;
MK(ε)K(ε)

ε
; 

}

,
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we have
∣
∣
∣
∣
f (t, x)

I

∣
∣
∣
∣ ≤ ε


+

γ ε


;

∣
∣
∣
∣
xf 

x (t, x)
I

∣
∣
∣
∣ ≤ ε


+

γ ε


;

∣
∣
∣
∣
xf 

x (t, x)
I

∣
∣
∣
∣ ≤ ε


+

γ ε


.

Since ε >  is arbitrary, we get (iii). �

For t ∈ [, π ], set

a(t) =
∂�(t, θ , I)

∂I
=

–x[f (t, x) – xfx(t, x)]
I ,

a(t) =
∂�(t, θ , I)

∂θ
= a(t) + a(t), where

a(t) =
–y(f (t, x) + xfx(t, x))

γ I
, a(t) =

–b(t)yx
γ I

;

a(t) =
∂�(t, θ , I)

∂θ
= x

[
b(t)x + f (t, x)

]
–

y[b(t) + fx(t, x)]
γ  .

Using Lemma ., Lemma ., and Lemma ., we have the following.

Lemma . For t, s ∈ [, π ], the following conclusions hold:
(i) a(t) = o( 

I
), as I → +∞;

(ii) a(t) = o(); |a(t)| ≤ b∞
γ

as I → +∞;
(iii) a(t) · a(s) = o(), as I → +∞.
Here and below o() denotes a generic infinitesimal as I → ∞.

Let us consider the variational equation (.) with respect to the initial value I. One can
verify that

θ̇I = a(t)
∂I
∂I

+ a(t)
∂θ

∂I
, İI = –a(t)

∂I
∂I

+ a(t)
∂θ

∂I
. (.)

For convenience, we set σ = e
–πb∞

γ , σ = e
πb∞

γ . Then we have the following.

Lemma . For all t ∈ (, π ], I → +∞, we have:
(i) θI (t; θ, I) → ;

(ii) σ( + o()) ≤ II (t; θ, I) ≤ σ( + o());
(iii) σ( + o()) ≤ θθ (t; θ, I) ≤ σ( + o()).

Proof From the variational equations (.), one has

θI (t) = e
∫ t

 a(s) ds ·
∫ t


e–

∫ s
 a(t) dta(s) · II (s) ds

= e
∫ t

(a(s)+a(s)) ds ·
∫ t


e–

∫ s
(a(t)+a(t)) dta(s) · II (s) ds,

here we have used θI () = . Then, if
∫ t

 a(s) · II (s) ds ≥  for t ∈ (, π ], by Lemma .(ii),
we have

σ 

(
 + o()

)
∫ t


a(s) · II (s) ds ≤ θI (t) ≤ σ 


(
 + o()

)
∫ t


a(s) · II (s) ds; (.)
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and if
∫ t

 a(s) · II (s) ds ≤  for t ∈ (, π ], by Lemma .(ii), we have

σ 

(
 + o()

)
∫ t


a(s) · II (s) ds ≥ θI (t) ≥ σ 


(
 + o()

)
∫ t


a(s) · II (s) ds. (.)

On the other hand, by the variational equations (.), we have

II (t) = e–
∫ t

 a(s) ds ·
(

 +
∫ t


e
∫ s

 a(t) dta(s) · θI (s) ds
)

= e–
∫ t

(a(s)+a(s)) ds ·
(

 +
∫ t


e
∫ s

(a(t)+a(t)) dta(s) · θI (s) ds
)

,

here we have used II () = . Now we will discuss it in the following two cases:
Case . If

∫ t
 a(s) · II (s) ds ≥  and a(t) ≥  for t ∈ (, π ], or

∫ t
 a(s) · II (s) ds ≤  and

a(t) ≤  for t ∈ (, π ], then by Lemma .(ii) and (iii), we have

II (t) ≤ σ
(
 + o()

)
+ σ 


(
 + o()

)
∫ t


a(s) ·

(∫ s


a(t) · II (t) dt

)

ds

= σ
(
 + o()

)
+ o()

∫ t



∫ s


II (t) dt ds (.)

and

II (t) ≥ σ
(
 + o()

)
+ σ 


(
 + o()

)
∫ t


a(s) ·

(∫ s


a(t) · II (t) dt

)

ds

= σ
(
 + o()

)
+ o()

∫ t



∫ s


II (t) dt ds. (.)

Case . If
∫ t

 a(s) · II (s) ds ≥  and a(t) ≤  for t ∈ (, π ], or
∫ t

 a(s) · II (s) ds ≤  and
a(t) ≥  for t ∈ (, π ], by Lemma .(ii) and (iii), we get

II (t) ≤ σ
(
 + o()

)
+ σ 


(
 + o()

)
∫ t


a(s) ·

(∫ s


a(t) · II (t) dt

)

ds

= σ
(
 + o()

)
+ o()

∫ t



∫ s


II (t) dt ds (.)

and

II (t) ≥ σ
(
 + o()

)
+ σ 


(
 + o()

)
∫ t


a(s) ·

(∫ s


a(t) · II (t) dt

)

ds

= σ
(
 + o()

)
+ o()

∫ t



∫ s


II (t) dt ds. (.)

Hence, for t ∈ (, π ], I → +∞, by Lemma .(i) and (.)-(.), we have

θI (t) → 

and

σ
(
 + o()

) ≤ II (t; θ, I) ≤ σ
(
 + o()

)
.
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Thus, (i) and (ii) are proved.
To prove (iii), we consider the variational equation of (.) about θ,

θ̇θ = a(t)
∂I
∂θ

+ a(t)
∂θ

∂θ
, İθ = –a(t)

∂I
∂θ

+ a(t)
∂θ

∂θ
. (.)

Similar to the proof of (ii), one can see that

σ
(
 + o()

) ≤ θθ (t; θ, I) ≤ σ
(
 + o()

)

for t ∈ (, π ], I → +∞. This proves the statement of Lemma .. �

Now, we further give the growth estimates on the function a(t).

Lemma . Let d satisfy (D).
(i) If |x(t; θ, I)| ≤ d for t ∈ [, π ], θ ∈R, and I ∈R+, then there exists a constant

Kd > , such that |a(t)| ≤ Kd
I(t) .

(ii) If |x(t; θ, I)| ≥ d for t ∈ [, π ], θ ∈R, and I ∈R+, then there exists a constant
Ld > , such that |a(t)| ≥ Ld

I(t) . Moreover, |x(t; θ, I)| ≥ d implies that a(t) < .

Proof (i) If |x(t; θ, I)| ≤ d for t ∈ [, π ], θ ∈R, and I ∈R+, we write

Md = max
|x|≤d,t∈[,π ]

∣
∣f (t, x) – xfx(t, x)

∣
∣.

Then

∣
∣a(t)

∣
∣ =

∣
∣
∣
∣
–x[f (t, x) – xfx(t, x)]

I

∣
∣
∣
∣ ≤ |x|Md

I(t)
.

Set Kd = dMd
 , we have |a(t)| ≤ Kd

I(t) .
(ii) If |x(t; θ, I)| ≥ d for t ∈ [, π ], θ ∈ R and I ∈ R+, then from condition (D), one

can see that x[f (t, x) – xfx(t, x)] > , sgn(x)[f (t, x) – xfx(t, x)] > b∞. Hence, a(t) <  and

∣
∣a(t)

∣
∣ =

∣
∣
∣
∣
–x[f (t, x) – xfx(t, x)]

I

∣
∣
∣
∣ ≥ |x|b∞

I(t)
.

Thus, putting Ld = db∞
 , we have |a(t)| ≥ Ld

I(t) . This completes the proof. �

Write a(t) = a+
 (t) – a–

 (t), where a±
 (t) = max{±a(t), }. To see that the integral of a+

 (t)
on [, π ] is smaller than the integral of a–

 (t) on [, π ], we need the following simple
lemma.

Lemma . Let d be as in Theorem .. Define the set t = {t ∈ [, π ]||x(t; θ, I)| ≤ d}.
Then there exist Ī > , K > , such that |t| ≤ K√

I
, for all I ≥ Ī.

Proof By Lemma .(i), we have t →  when and only when θ → .
According to the coordinate transformation (.), we see that | tanθ | ≤ d√

γ I(t)
when

θ → . Therefore, by using Lemma .(ii), we know that there exist Ī > , K > , such
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that

|t| ≤ K√
I

for all I ≥ Ī. Lemma . follows. �

Lemma . If I  , then
∫ π

 a(s) ds < .

Proof According to the above discussions and Lemma .(ii), we have

∫ π


a(s) ds =

(∫

a(s)≤
a(s) ds +

∫

a(s)≥
a(s) ds

)

≤ –
(

Ld

(kI)

(
π – |t|) –

Kd

(kI) |t|
)

≤
(

(k
Kd + k

 Ld)K√
I(kkI)

–
πLd

(kI)

)

.

So, if
√

I > (k
 Kd+k

 Ld)K
πk

 Ld
, then

∫ π

 a(s) ds < . �

Therefore, in view of Lemma .(ii) and Lemma ., when I  , the following cannot
occur:

∫ π


a(s) · II (s) ds ≥ ,

then by (.), the case of

σ 

(
 + o()

)
∫ π


a(s) · II (s) ds ≤ θI (π ) ≤ σ 


(
 + o()

)
∫ π


a(s) · II (s) ds

does not happen. Hence, by (.), Lemma .(ii), and Lemma ., we have

θI (π ) ≤ σ 

(
 + o()

)
∫ π


a(s) · II (s) ds

≤ σ 

(
 + o()

)
∫ π


a(s) ds < 

if I  .
Using similar arguments to [], one may extend the Poincaré map P to a new one which

is a globally monotone twist map and which is guaranteed by the Aubry-Mather theorem
[]. From the above discussion, we come to the conclusion that there exists ε > , such
that for any α ∈ (γπ , γπ +ε), equation (.) has a solution zα(t) = (xα(t), x′

α(t)) of Aubry-
Mather type with rotation number α. Thus, the proof of Theorem . is completed.
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