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Abstract
We study the following initial-boundary value problem:

⎧
⎨

⎩

ut – (μ + α ∂
∂t )(

∂2u
∂x2

+ 1
x

∂u
∂x ) + f (u) = f1(x, t), 1 < x < R, t > 0,

ux(1, t) = h1u(1, t) + g1(t), u(R, t) = gR(t),
u(x, 0) = ũ0(x),

()

where μ > 0, α > 0, h1 ≥ 0, R > 1 are given constants and f , f1, g1, gR, ũ0 are given
functions. First, we use the Galerkin and compactness method to prove the existence
of a unique weak solution u(t) of Problem (1) on (0, T ), for every T > 0. Next, we study
the asymptotic behavior of the solution u(t) as t → +∞. Finally, we prove the
existence and uniqueness of a weak solution of Problem (1)1,2 associated with a
‘(N + 1)-points condition in time’ case,

u(x, 0) =
N∑

i=1

ηiu(x, Ti), ()

where (Ti ,ηi), i = 1, . . . ,N, are given constants satisfying

0 < T1 < T2 < · · · < TN–1 < TN ≡ T ,
N∑

i=1

|ηi| ≤ 1.

MSC: 34B60; 35K55; 35Q72; 80Axx

Keywords: nonlinear pseudoparabolic equation; Faedo-Galerkin approximation;
asymptotic behavior; ‘(N + 1)-points condition in time’

1 Introduction
Consider the following nonlinear pseudoparabolic equation:

ut –
(

μ + α
∂

∂t

)(
∂u
∂x +


x

∂u
∂x

)

+ f (u) = f(x, t),  < x < R, t > , (.)
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with the mixed inhomogeneous condition

ux(, t) = hu(, t) + g(t), u(R, t) = gR(t), (.)

and with the initial condition

u(x, ) = ũ(x), (.)

or the ‘(N + )-points condition in time’ case

u(x, ) =
N∑

i=

ηiu(x, Ti), (.a)

where (Ti,ηi), i = , . . . , N , are given constants satisfying

 < T < T < · · · < TN– < TN ≡ T ,
N∑

i=

|ηi| ≤ , (.)

here μ > , α > , R > , h ≥  are given constants and f , f, g, gR, ũ are given functions
satisfying conditions specified later.

The initial-boundary value problem (.)-(.) is classical and has a long history of appli-
cations and mathematical development. We refer to the monographs of Al’shin [], and of
Carroll and Showalter [] for references and results on pseudoparabolic or Sobolev type
equations. We also refer to [] for asymptotic behavior and to [] for nonlinear problems.
Problems of this type arise in material science and physics, which have been extensively
studied and several results concerning existence, regularity and asymptotic behavior have
been established.

Equation (.) arises within the frameworks of mathematical models in engineering and
physical sciences; see [–] and the references therein for interesting results on second
grade fluids or a fourth grade fluid or other unsteady flows. It is well known that fluid solid
mixtures are generally considered as second grade fluids and are modeled as fluids with
variable physical parameters, thus, an analysis is performed for a second grade fluid with
space dependent viscosity, elasticity and density.

In [], some unsteady flow problems of a second grade fluid were considered. The flows
are generated by the sudden application of a constant pressure gradient or by the impulsive
motion of a boundary. Here, the velocities of the flows are described by the partial differ-
ential equations and exact analytic solutions of these differential equations are obtained.
Suppose that the second grade fluid is in a circular cylinder and is initially at rest, and the
fluid starts suddenly due to the motion of the cylinder parallel to its length. The axis of the
cylinder is chosen as the z-axis. Using cylindrical polar coordinates, the governing partial
differential equation is

⎧
⎪⎨

⎪⎩

∂w
∂t = (ν + α ∂

∂t )( ∂

∂r + 
r

∂
∂r )w(r, t) – Nw,

w(a, t) = W , t > ,
w(r, ) = ,  ≤ r < a,

where w(r, t) is the velocity along the z-axis, ν is the kinematic viscosity, α is the material
parameter, and N is the imposed magnetic field. Under the boundary and initial condi-
tions, W is the constant velocity at r = a and a is the radius of the cylinder.
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In [], two types of time-dependent flows were investigated. An eigen function expan-
sion method was used to find the velocity distribution. The obtained solutions satisfy the
boundary and initial conditions and the governing equation. Remarkably some exact an-
alytic solutions are possible for flows involving second grade fluid with variable material
properties in terms of trigonometric and Chebyshev functions.

In [], Mahmood et al. have considered the longitudinal oscillatory motion of a second
grade fluid between two infinite coaxial circular cylinders, oscillating along their common
axis with given constant angular frequencies � and �. Velocity field and associated tan-
gential stress of the motion were determined by using Laplace and Hankel transforms.
In order to find exact analytic solutions for the flow of a second grade fluid between two
longitudinally oscillating cylinders, the following problem was studied:

⎧
⎪⎨

⎪⎩

∂v
∂t = (μ + α ∂

∂t )( ∂

∂r + 
r

∂
∂r )v(r, t), R < r < R, t > ,

v(R, t) = V sin(�t), v(R, t) = V sin(�t),
u(r, ) = , R ≤ r ≤ R,

(.)

where  < R < R, μ, α, V, �, � are positive constants. The solutions obtained have
been presented in the series form in terms of Bessel functions J(x), Y(x), J(x), Y(x),
J(x) and Y(x), satisfying the governing equation and all imposed initial and boundary
conditions.

The nonlinear parabolic problems of the form (.)-(.), with/without the term (urr +
γ

r ur), were also studied in [, ] and the references therein. In [], by using the Galerkin
and compactness method in appropriate Sobolev spaces with weight, the authors proved
the existence of a unique weak solution of the following initial and boundary value problem
for a nonlinear parabolic equation:

⎧
⎪⎨

⎪⎩

ut – a(t)(urr + γ

r ur) + F(r, u) = f (r, t),  < r < ,  < t < T ,
| limr→+ r

γ
 ur(r, t)| < +∞, ur(, t) + h(t)(u(, t) – ū) = ,

u(r, ) = u(r).
(.)

Furthermore, asymptotic behavior of the solution as t → +∞ was studied. In [], the
following nonlinear heat equation associated with Dirichlet-Robin conditions was inves-
tigated:

⎧
⎪⎨

⎪⎩

ut – ∂
∂x [μ(x, t)ux] + f (u) = f(x, t), (x, t) ∈ � × (, T),

ux(, t) = hu(, t) + g(t), –ux(, t) = hu(, t) + g(t),
u(x, ) = u(x).

(.)

The condition (.a), which we call ‘(N + )-points condition in time’, is known as
a drifted periodic condition; see []. Indeed, if u(t) =

∑N
i= ηiu(t + Ti), in the case of

 < |ηN | ≤ , then we have

u(t + T) =


ηN

[

u(t) –
N–∑

i=

ηiu(t + Ti)

]

= u(t) +
(


ηN

– 
)

u(t) –


ηN

N–∑

i=

ηiu(t + Ti), ∀t ≥ , (.)
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it means

u(t + T) = u(t) + δ(t), ∀t ≥ , (.)

with δ(t) = ( 
ηN

– )u(t) – 
ηN

∑N–
i= ηiu(t + Ti) satisfying the condition

δ(t) =
N∑

i=

ηiδ(t + Ti), ∀t ≥ . (.)

Note that (.) holds by the fact that

N∑

j=

ηjδ(t + Tj) =
N∑

j=

ηj

[(


ηN
– 

)

u(t + Tj) –


ηN

N–∑

i=

ηiu(t + Ti + Tj)

]

=
(


ηN

– 
) N∑

j=

ηju(t + Tj) –


ηN

N–∑

i=

ηi

N∑

j=

ηju(t + Ti + Tj)

=
(


ηN

– 
)

u(t) –


ηN

N–∑

i=

ηiu(t + Ti) = δ(t), ∀t ≥ . (.)

With η = η = · · · = ηN– = , ηN = , (.a) leads to the T-periodic condition

u(x, ) = u(x, T), (.)

and with η = η = · · · = ηN– = , ηN = –, we have the anti-periodic condition

u(x, ) = –u(x, T). (.)

The present paper is concerned with the second grade fluid in a circular cylinder asso-
ciated with the initial condition (.) or the drifted periodic condition (.). The extensive
study of such flows is motivated by both their fundamental interest and their practical im-
portance; see []. The arrangement of the paper is as follows. In Section , we present pre-
liminaries. In Section , under appropriate conditions, we prove the existence of a unique
weak solution of Problem (.)-(.). In Section , we consider asymptotic behavior of the
solution of Problem (.)-(.), as t → +∞. Finally, in Section , we establish the existence
and uniqueness of a weak solution of Problem (.), (.), (.a).

Because of the mathematical context, the results obtained here generalize relative to the
ones in [, ], by using the same techniques and with some appropriate modifications.
On the other hand, the fixed point method is also applied.

2 Preliminaries
Put � = (, R), QT = �× (, T), T > . We omit the definitions of the usual function spaces:
Cm(�), Lp(�), W m,p(�). We define W m,p = W m,p(�), Lp = W ,p(�), Hm = W m,(�),  ≤
p ≤ ∞, m = , , . . . . The norm in L is denoted by ‖ · ‖. We also denote by (·, ·) the scalar
product in L. We denote by ‖ · ‖X the norm of a Banach space X and by X ′ the dual
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space of X. We denote by Lp(, T ; X),  ≤ p ≤ ∞, the Banach space of the real functions
u : (, T) → X measurable, such that

‖u‖Lp(,T ;X) =
(∫ T



∥
∥u(t)

∥
∥p

X dt
)/p

< ∞ for  ≤ p < ∞,

and

‖u‖L∞(,T ;X) = ess sup
<t<T

∥
∥u(t)

∥
∥

X for p = ∞.

On H, we shall use the following norm:

‖v‖H =
(‖v‖ + ‖vx‖)/. (.)

We put

V =
{

v ∈ H : v(R) = 
}

. (.)

V is a closed subspace of H and on V two norms ‖v‖H and ‖vx‖ are equivalent norms.
Note that L, H are also the Hilbert spaces with the corresponding scalar products

〈u, v〉 =
∫ R


xu(x)v(x) dx, 〈u, v〉 + 〈ux, vx〉, (.)

respectively. The norms in L and H induced by the corresponding scalar products are
denoted by ‖ · ‖ and ‖ · ‖, respectively. V is continuously and densely embedded in L.
Identifying L with (L)′ (the dual of L), we have V ↪→ L ↪→ V ′; On the other hand, the
notation 〈·, ·〉 is used for the pairing between V and V ′.

We then have the following lemmas, the proofs of which can be found in [].

Lemma . We have the following inequalities:

(i) ‖v‖ ≤ ‖v‖ ≤ √
R‖v‖ for all v ∈ L,

(ii) ‖v‖H ≤ ‖v‖ ≤ √
R‖v‖H for all v ∈ H.

(.)

Lemma . The imbedding H ↪→ C(�) is compact.

Lemma . The imbedding V ↪→ C(�) is compact and

(i) ‖v‖C(�) ≤ √
R – ‖vx‖ for all v ∈ V ,

(ii) ‖v‖ ≤ R – √


‖vx‖ for all v ∈ V ,

(iii) ‖v‖ ≤
√

R


(R – )‖vx‖ for all v ∈ V .

(.)

Remark . On L, two norms v �−→ ‖v‖ and v �−→ ‖v‖ are equivalent. So are two norms
v �−→ ‖v‖H and v �−→ ‖v‖ on H, and four norms v �−→ ‖v‖H , v �−→ ‖v‖, v �−→ ‖vx‖ and
v �−→ ‖vx‖ on V .
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Consider a(·, ·) is the symmetric bilinear form on V × V defined by

a(u, w) = 〈ux, wx〉 + hu()w() for all u, w ∈ V , (.)

with h ≥  is given constant.
Then the symmetric bilinear form a(·, ·) is continuous on V × V and coercive on V .
We have also the following lemma.

Lemma . There exists the Hilbert orthonormal base {wj} of L consisting of the eigen-
functions wj corresponding to the eigenvalue λ̄j such that

{
 < λ̄ ≤ λ̄ ≤ · · · ≤ λ̄j ≤ λ̄j+ ≤ · · · , limj→+∞ λ̄j = +∞,
a(wj, w) = λ̄j〈wj, w〉 for all w ∈ V , j = , , . . . .

Furthermore, the sequence {wj/
√

λ̄j} is also the Hilbert orthonormal base of V with respect
to the scalar product a(·, ·).

On the other hand, we have wj satisfying the following boundary value problem:

{
–(wjxx + 

x wjx) = λ̄jwj in (, R),
wjx() – hwj() = wj(R) = , wj ∈ C∞([, R]).

The proof of Lemma . can be found in [], p., Theorem ., with H = L and a(·, ·)
as defined by (.).

3 The existence and the uniqueness
Now, we shall consider Problem (.)-(.) with α > , μ > , h ≥  are constants and
make the following assumptions:

(H) ũ ∈ V ;
(H) g, gR ∈ W ,(, T), ũx() – hũ() = g(), ũ(R) = gR();
(H) f ∈ L(, T ; L);
(H) f ∈ C(R;R) satisfies the condition that there exists positive constant δ such that

(y – z)
(
f (y) – f (z)

) ≥ –δ|y – z| for all y, z ∈R.

In the case g �=  or gR �= , it is clearly that Problem (.)-(.) reduces to a problem with
homogeneous boundary conditions by the suitable transformation. Indeed, put

ϕ(x, t) =
(x – R)g(t) + [h(x – ) + ]gR(t)

 + (R – )h
.

By the transformation v(x, t) = u(x, t) – ϕ(x, t), Problem (.)-(.) becomes the following
problem:

⎧
⎪⎨

⎪⎩

vt – (μ + α ∂
∂t )( ∂v

∂x + 
x

∂v
∂x ) + f (v + ϕ) = f(x, t),  < x < R, t > ,

vx(, t) – hv(, t) = v(R, t) = ,
v(x, ) = ṽ(x),

(.)
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where

⎧
⎪⎨

⎪⎩

f(x, t) = f(x, t) – 
+(R–)h

[(x – R)g ′
(t) + [h(x – ) + ]g ′

R(t)]
+ 

+(R–)h
[ μ

x (g(t) + hgR(t)) + α
x (g ′

(t) + hg ′
R(t))],

ṽ(x) = ũ(x) – ϕ(x, ),
(.)

and ũ, g, gR satisfying the condition ũx() – hũ() = g(), ũ(R) = gR().

Remark . The weak formulation of the initial-boundary value problem (.) can be
given in the following manner: Find v ∈ L∞(, T ; V ) with tvt ∈ L(, T ; V ), such that v
satisfies the following variational equation:

⎧
⎪⎨

⎪⎩

d
dt [〈v(t), w〉 + αa(v(t), w)] + μa(v(t), w) + 〈f (v(t) + ϕ(t)), w〉

= 〈f(t), w〉 for all w ∈ V , a.e., t ∈ (, T),
v() = ṽ,

(.)

where a(·, ·) is the symmetric bilinear form on V × V defined by (.).

Then we have the following theorem.

Theorem . Let T >  and (H)-(H) hold. Then Problem (.) has a unique weak solu-
tion v such that

v ∈ L∞(, T ; V ) and tvt ∈ L(, T ; V ). (.)

Moreover, if (H) is replaced by f ∈ L(QT ), then the solution v satisfies

v ∈ L∞(, T ; V ) and vt ∈ L(, T ; V ). (.)

Proof The proof consists of several steps.
Step . The Faedo-Galerkin approximation (introduced by Lions []).
Consider the basis {wj} for V as in Lemma .. We find the approximate solution of

Problem (.) in the form

vm(t) =
m∑

j=

cmj(t)wj, (.)

where the coefficients cmj satisfy the system of nonlinear differential equations

⎧
⎪⎨

⎪⎩

〈v′
m(t), wj〉 + αa(v′

m(t), wj) + μa(vm(t), wj) + 〈f (vm(t) + ϕ(t)), wj〉
= 〈f(t), wj〉,  ≤ j ≤ m,

vm() = vm,
(.)

and

vm =
m∑

j=

αmjwj → ṽ strongly in V . (.)
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The system of equations (.) can be rewritten in form

⎧
⎨

⎩

c′
mj(t) + μλ̄j

+αλ̄j
cmj(t) + 

+αλ̄j
〈f (vm(t) + ϕ(t)), wj〉 = 

+αλ̄j
〈f(t), wj〉,

cm() = αmj,  ≤ j ≤ m.
(.)

It is clear that for each m there exists a solution vm(t) in the form (.) which satisfies
(.) almost everywhere on  ≤ t ≤ T̃m for some T̃m,  < T̃m ≤ T . The following estimates
allow one to take T̃m = T for all m.

Step . A priori estimates.
(a) The first estimate. Multiplying the jth equation of (.) by cmj(t) and summing up

with respect to j, afterward, integrating by parts with respect to the time variable from 
to t, we get after some rearrangements

∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

)
+ μ

∫ t


a
(
vm(s), vm(s)

)
ds + 

∫ t



〈
f
(
vm(s) + ϕ(s)

)
, vm(s)

〉
ds

= ‖vm‖
 + αa(vm, vm) + 

∫ t



〈
f(s), vm(s)

〉
ds. (.)

By vm → ṽ strongly in V , we have

‖vm‖
 + αa(vm, vm) ≤ C for all m, (.)

where C always indicates a bound depending on ṽ.
By the assumptions (H), and with ε > , we estimate without difficulty the following

terms in (.):


∫ t



〈
f
(
vm(s) + ϕ(s)

)
, vm(s)

〉
ds

= 
∫ t



〈
f
(
vm(s) + ϕ(s)

)
– f

(
ϕ(s)

)
, vm(s)

〉
ds + 

∫ t



〈
f
(
ϕ(s)

)
, vm(s)

〉
ds

≥ –δ

∫ t



∥
∥vm(s)

∥
∥

 ds – 
∫ t



∥
∥f

(
ϕ(s)

)∥
∥



∥
∥vm(s)

∥
∥

 ds

≥ –(δ + ε)
∫ t



∥
∥vm(s)

∥
∥

 ds –

ε

∫ T



∥
∥f

(
ϕ(s)

)∥
∥

 ds; (.)


∫ t



〈
f(s), vm(s)

〉
ds ≤ ‖f‖L(,T ;L) +

∫ t



∥
∥f(s)

∥
∥



∥
∥vm(s)

∥
∥

 ds. (.)

Hence, it follows from (.)-(.) that

Sm(t) ≤ C()
T +

∫ t


C()

T (s)Sm(s) ds, (.)

where
⎧
⎪⎨

⎪⎩

Sm(t) = ‖vm(t)‖
 + αa(vm(t), vm(t)) + μ

∫ t
 a(vm(s), vm(s)) ds,

C()
T = C + ‖f‖L(,T ;L) + 

ε

∫ T
 ‖f (ϕ(s))‖

 ds,
C()

T (s) = δ + ε + ‖f(s)‖, C()
T ∈ L(, T).

(.)
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By Gronwall’s lemma, we obtain from (.)

Sm(t) ≤ C()
T exp

(∫ t


C()

T (s) ds
)

≤ CT (.)

for all m ∈ N, for all t,  ≤ t ≤ T̃m ≤ T , i.e., T̃m = T , where CT always indicates a bound
depending on T .

(b) The second estimate. Multiplying the jth equation of the system (.) by tc′
mj(t) and

summing up with respect to j, we have


∥
∥tv′

m(t)
∥
∥

 + αa
(
tv′

m(t), tv′
m(t)

)
+ μ

d
dt

a
(
tvm(t), tvm(t)

)

= μta
(
vm(t), vm(t)

)
– 

〈
tf

(
vm(t) + ϕ(t)

)
, tv′

m(t)
〉
+ 

〈
tf(t), tv′

m(t)
〉
. (.)

Integrating (.), we get


∫ t



∥
∥sv′

m(s)
∥
∥

 ds + α

∫ t


a
(
sv′

m(s), sv′
m(s)

)
ds + μa

(
tvm(t), tvm(t)

)

= μ

∫ t


sa

(
vm(s), vm(s)

)
ds – 

∫ t



〈
sf

(
vm(s) + ϕ(s)

)
, sv′

m(s)
〉
ds

+ 
∫ t



〈
sf(s), sv′

m(s)
〉
ds. (.)

We shall estimate the terms of (.) as follows:

μ

∫ t


sa

(
vm(s), vm(s)

)
ds ≤ μT

∫ t


a
(
vm(s), vm(s)

)
ds ≤ TSm(t) ≤ CT ; (.)


∫ t



〈
sf(s), sv′

m(s)
〉
ds ≤ 

∫ t



∥
∥sf(s)

∥
∥

 ds +



∫ t



∥
∥sv′

m(s)
∥
∥

 ds

≤ CT +



∫ t



∥
∥sv′

m(s)
∥
∥

 ds. (.)

Note that

∣
∣ϕ(x, t)

∣
∣ ≤ (R – )

 + (R – )h

∣
∣g(t)

∣
∣ +

h(R – ) + 
 + (R – )h

∣
∣gR(t)

∣
∣

≤ [
R + h(R – )

][∣
∣g(t)

∣
∣ +

∣
∣gR(t)

∣
∣
]
,

hence

∣
∣vm(x, s)

∣
∣ +

∣
∣ϕ(x, s)

∣
∣ ≤ ∥

∥vm(s)
∥
∥

C(�) +
[
R + h(R – )

](∣
∣g(s)

∣
∣ +

∣
∣gR(s)

∣
∣
)

≤ √
R – 

√
Sm(s)

α
+

[
R + h(R – )

](‖g‖C([,T]) + ‖gR‖C([,T])
)

≤
√

(R – )CT

α
+

[
R + h(R – )

](‖g‖C([,T]) + ‖gR‖C([,T])
)

≡ C̄T . (.)
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This implies


∫ t



〈
sf

(
vm(s) + ϕ(s)

)
, sv′

m(s)
〉
ds ≤ 

∫ t



∥
∥sf

(
vm(s) + ϕ(s)

)∥
∥

 ds +



∫ t



∥
∥sv′

m(s)
∥
∥

 ds

≤ 
∫ t


s

∫ R


x sup

|z|≤C̄T

f (z) dx ds +



∫ t



∥
∥sv′

m(s)
∥
∥

 ds

≤ CT +



∫ t



∥
∥sv′

m(s)
∥
∥

 ds. (.)

It follows from (.)-(.) and (.) that

∫ t



∥
∥sv′

m(s)
∥
∥

 ds + α

∫ t


a
(
sv′

m(s), sv′
m(s)

)
ds + μa

(
tvm(t), tvm(t)

) ≤ CT (.)

for all m ∈N, for all t ∈ [, T], ∀T > , where CT always indicates a bound depending on T .
By (tvmx)′ = tv′

mx + vmx and (.) we deduce that

∥
∥(tvmx)′

∥
∥

L(QT ) ≤ ∥
∥tv′

mx
∥
∥

L(QT ) + ‖vmx‖L(QT )

≤
√

∫ T


a
(
sv′

m(s), sv′
m(s)

)
ds +

√
T‖vm‖L∞(,T ;V ) ≤ CT . (.)

Step . The limiting process.
By (.), (.) and (.) we deduce that there exists a subsequence of {vm}, still de-

noted by {vm} such that

{
vm → v in L∞(, T ; V ) weak∗,
(tvm)′ → (tv)′ in L(, T ; V ) weak.

(.)

Using a compactness lemma ([], Lions, p.) applied to (.), we can extract from the
sequence {vm} a subsequence, still denoted by {vm}, such that

tvm → tv strongly in L(QT ). (.)

By the Riesz-Fischer theorem, we can extract from {vm} a subsequence, still denoted by
{vm}, such that

vm(x, t) → v(x, t) a.e. (x, t) in QT . (.)

Because f is continuous, then

f
(
vm(x, t) + ϕ(x, t)

) → f
(
v(x, t) + ϕ(x, t)

)
a.e. (x, t) in QT . (.)

On the other hand, by (H), it follows from (.) that

∣
∣f

(
vm(x, t) + ϕ(x, t)

)∣
∣ ≤ sup

|z|≤C̄T

∣
∣f (z)

∣
∣ ≤ CT , (.)

where CT is a constant independent of m.
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Using the dominated convergence theorem, (.), and (.) yield

f (vm + ϕ) → f (v + ϕ) strongly in L(QT ). (.)

Passing to the limit in (.) by (.), (.), (.), we have
⎧
⎪⎨

⎪⎩

d
dt [〈v(t), w〉 + αa(v(t), w)] + μa(v(t), w) + 〈f (v(t) + ϕ(t)), w〉

= 〈f(t), w〉 for all w ∈ V , a.e. t ∈ (, T),
v() = ṽ.

(.)

Step . Uniqueness of the solution.
First, we shall need the following lemma.

Lemma . Let v be the weak solution of the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt – (μ + α ∂
∂t )( ∂v

∂x + 
x

∂v
∂x ) = f̃ (x, t),  < x < R,  < t < T ,

vx(, t) – hv(, t) = v(R, t) = ,
v(x, ) = ṽ(x),
v ∈ L∞(, T ; V ), tvt ∈ L(, T ; V ).

(.)

Then

∥
∥v(t)

∥
∥

 + αa
(
v(t), v(t)

)
+ μ

∫ t


a
(
v(s), v(s)

)
ds

≥ ‖ṽ‖
 + αa(ṽ, ṽ) + 

∫ t



〈
f̃ (s), v(s)

〉
ds. (.)

Furthermore, if ṽ =  then the equality in (.) follows.

Lemma . is a slight improvement of a lemma used in [] (see also Lions’ book []).
Now, we will prove the uniqueness of the solution.
Let v and v be two weak solutions of (.). Then v = v –v is a weak solution of Problem

(.) with the right-hand side function replaced by f̃ (x, t) = –f (v + ϕ) + f (v + ϕ) and
ṽ = . Using Lemma ., we get

∥
∥v(t)

∥
∥

 + αa
(
v(t), v(t)

)
+ μ

∫ t


a
(
v(s), v(s)

)
ds

= –
∫ t



〈
f (v + ϕ) – f (v + ϕ), v(s)

〉
ds. (.)

By (H), we obtain
∫ t



〈
f (v + ϕ) – f (v + ϕ), v(s)

〉
ds ≥ –δ

∫ t



∥
∥v(s)

∥
∥

 ds. (.)

It follows from (.), (.) that

σ (t) ≡ ∥
∥v(t)

∥
∥

 + α
∥
∥vx(t)

∥
∥

 + μ

∫ t



∥
∥vx(s)

∥
∥

 ds

≤ δ

∫ t



∥
∥v(s)

∥
∥

 ds ≤ δ

∫ t


σ (s) ds. (.)
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By Gronwall’s lemma v = v – v = .
Assume now that (H) is replaced by f ∈ L(QT ), then we only show that {v′

m} is bounded
in L(, T ; V ).

Indeed, multiplying the jth equation of (.) by c′
mj(t) and summing up with respect to

j, afterward, integrating with respect to the time variable from  to t, we get after some
rearrangements


∫ t



(∥
∥v′

m(s)
∥
∥

 + αa
(
v′

m(s), v′
m(s)

))
ds + μa

(
vm(t), vm(t)

)

= μa(vm, vm) + 
∫ t



〈
f(s), v′

m(s)
〉
ds – 

∫ t



〈
f
(
vm(s) + ϕ(s)

)
, v′

m(s)
〉
ds. (.)

By the same estimates as above, we obtain

⎧
⎪⎨

⎪⎩

μa(vm, vm) ≤ μ

α
C;


∫ t

 〈f(s), v′
m(s)〉ds ≤ ‖f‖

L(QT ) + 

∫ t

 ‖v′
m(s)‖

 ds;
–

∫ t
 〈f (vm(s) + ϕ(s)), v′

m(s)〉ds ≤ T(R – ) sup|z|≤C̄T f (z) +
∫ t

 ‖v′
m(s)‖

 ds.
(.)

This implies

∫ t



(∥
∥v′

m(s)
∥
∥

 + αa
(
v′

m(s), v′
m(s)

))
ds + μa

(
vm(t), vm(t)

)

≤ μ

α
C + ‖f‖

L(QT ) + T
(
R – 

)
sup

|z|≤C̄T

f (z) ≤ CT . (.)

Then the sequence {v′
m} is bounded in L(, T ; V ).

Applying a similar argument used in the proof of Theorem ., the limit v of the sequence
{vm} in suitable function spaces, is a unique weak solution of Problem (.) satisfying (.).

Therefore, Theorem . is proved. �

4 Asymptotic behavior of the solution as t → +∞
In this part, let T > , (H)-(H) hold. Then there exists a unique solution u = v + ϕ of
Problem (.)-(.) such that

u – ϕ = v ∈ L∞(, T ; V ) and t(ut – ϕt) = tvt ∈ L(, T ; V ).

We shall study asymptotic behavior of the solution u(t) as t → +∞.
We make the following supplementary assumptions on the functions f(x, t), g(t), gR(t):

(H′
) g, gR ∈ W ,(R+), ũx() – hũ() = g(), ũ(R) = gR(), there exist the positive con-

stants C̄, C̄R, γ̄, γ̄R, such that

∣
∣gi(t)

∣
∣ +

∣
∣g ′

i(t)
∣
∣ ≤ C̄ie–γ̄it , ∀t ≥ , i ∈ {, R};

(H′
) f ∈ L∞(,∞; L), there exist the positive constants C, γ and the function f∞ ∈ L,

such that

∥
∥f(t) – f∞

∥
∥

 ≤ Ce–γt ∀t ≥ ;
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(H′
) f ∈ C(R;R) satisfies the condition that there exists a positive constant δ, with  < δ <

μ

R(R–) , such that

(y – z)
(
f (y) – f (z)

) ≥ –δ|y – z| for all y, z ∈R.

First, we consider the following stationary problem:

{
–μ( ∂u

∂x + 
x

∂u
∂x ) + f (u) = f∞(x),  < x < R,

ux(, t) – hu(, t) = u(R, t) = .
(.)

The weak solution of problem (.) is obtained from the following variational problem:
Find u∞ ∈ V such that

μa(u∞, w) +
〈
f (u∞), w

〉
= 〈f∞, w〉 (.)

for all w ∈ V , where a(·, ·) is the symmetric bilinear form on V × V defined by (.).
We then have the following theorem.

Theorem . Let (H′
), (H′

) hold. Then there exists a unique solution u∞ of the variational
problem (.) such that u∞ ∈ V .

Proof Consider the basis {wj} for V as in Lemma .. Put

ym =
m∑

j=

dmjwj, (.)

where dmj satisfy the following nonlinear equation system:

μa(ym, wj) +
〈
f (ym), wj

〉
= 〈f∞, wj〉,  ≤ j ≤ m. (.)

By Brouwer’s lemma (see Lions [], Lemma ., p.), it follows from the hypotheses
(H′

), (H′
) that system (.), (.) has a solution ym.

Multiplying the jth equation of system (.) by dmj, then summing up with respect to j,
we have

μa(ym, ym) +
〈
f (ym), ym

〉
= 〈f∞, ym〉. (.)

By using (H), we obtain

〈
f (ym), ym

〉
=

∫ R


x
(
f
(
ym(x)

)
– f ()

)
ym(x) dx +

∫ R


xf ()ym(x) dx

≥ –δ

∫ R


xy

m(x) dx +
∫ R


xf ()ym(x) dx

≥ –δ‖ym‖
 – ε‖ym‖

 –


ε

∫ R


xf () dx

= –(δ + ε)‖ym‖
 –


ε

(
R – 

)
f (). (.)
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By using the inequalities (.)(iii), (.), we obtain from (.)

μ‖ymx‖
 ≤ μa(ym, ym) ≤ (δ + ε)‖ym‖

 +


ε

(
R – 

)
f () + ‖f∞‖‖ym‖

≤ (δ + ε)‖ym‖
 +


ε

(
R – 

)
f () +


ε

‖f∞‖
 + ε‖ym‖



≤ (δ + ε)
R


(R – )‖ymx‖
 +


ε

((
R – 

)
f () + ‖f∞‖


)
. (.)

By  < δ < μ

R(R–) , choose ε >  such that  < δ + ε < μ

R(R–) .
Hence, we deduce from (.) that

‖ymx‖ ≤ C̃, (.)

C̃ is a constant independent of m.
By means of (.) and Lemma ., the sequence {ym} has a subsequence still denoted by

{ym} such that

{
ym → u∞ in V weakly,
ym → u∞ in C([, R]) strongly.

(.)

On the other hand, by (.) and the continuity of f , we have

f (ym) → f (u∞) in C([, R]
)

strongly. (.)

Passing to the limit in equation (.), we find without difficulty from (.), (.) that
u∞ satisfies the equation

μa(u∞, wj) +
〈
f (u∞), wj

〉
= 〈f∞, wj〉. (.)

Equation (.) holds for every j = , , . . . , i.e., (.) holds.
The solution of Problem (.) is unique, which can be showed by the same arguments

as in the proof of Theorem ..
This completes the proof of Theorem .. �

Now we consider asymptotic behavior of the solution u(t) as t → +∞.
We then have the following theorem.

Theorem . Let (H), (H′
)-(H′

) hold. Let f satisfy the following condition, in addition:

(
H′′


) ∀M > ,∃kM > :

∣
∣f (y) – f (z)

∣
∣ ≤ kM|y – z|, ∀y, z ∈ [–M, M]. (.)

Then we have

∥
∥u(t) – u∞

∥
∥

 ≤ C̄e–γ t , ∀t ≥ , (.)

where γ > , C̄ >  are constants independent of t.



Ngoc et al. Boundary Value Problems  (2016) 2016:137 Page 15 of 26

Proof Put Zm(t) = vm(t) – ym. Let us subtract (.) from (.) to obtain
⎧
⎪⎨

⎪⎩

〈Z′
m(t), wj〉 + αa(Z′

m(t), wj) + μa(Zm(t), wj) + 〈f (vm(t) + ϕ(t)) – f (ym), wj〉
= 〈f(t) – f∞, wj〉,  ≤ j ≤ m,

Zm() = vm – ym.
(.)

By multiplying (.) by cmj(t) – dmj and summing up in j, we obtain




d
dt

[∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)]
+ μa

(
Zm(t), Zm(t)

)

+
〈
f
(
vm(t) + ϕ(t)

)
– f

(
ym + ϕ(t)

)
, Zm(t)

〉
+

〈
f
(
ym + ϕ(t)

)
– f (ym), Zm(t)

〉

=
〈
f(t) – f(t), Zm(t)

〉
+

〈
f(t) – f∞, Zm(t)

〉
. (.)

By the assumptions (H)-(H), (H′
)-(H′

), (H′′
) and using the inequality (.)(iii), and

with ε > , we estimate without difficulty the following terms in (.):
(i) Estimate 〈f (vm(t) + ϕ(t)) – f (ym + ϕ(t)), Zm(t)〉:

〈
f
(
vm(t) + ϕ(t)

)
– f

(
ym + ϕ(t)

)
, Zm(t)

〉 ≥ –δ
∥
∥Zm(t)

∥
∥

 ≥ –δ
R


(R – )∥∥Zmx(t)
∥
∥



≥ –δ
R


(R – )a
(
Zm(t), Zm(t)

)
. (.)

(ii) Estimate 〈f (ym + ϕ(t)) – f (ym), Zm(t)〉.
Note that from the inequalities

∣
∣ϕ(x, t)

∣
∣ ≤ [

R + h(R – )
][∣

∣g(t)
∣
∣ +

∣
∣gR(t)

∣
∣
] ≤ [

R + h(R – )
]
(C̄ + C̄R),

‖ym‖C(�) ≤ √
R – ‖ymx‖ ≤ √

R – C̃, (.)

‖ym + ϕ‖C(�) ≤ √
R – C̃ +

[
R + h(R – )

]
(C̄ + C̄R) = M,

and (H′′
), we deduce that

∣
∣f

(
ym + ϕ(t)

)
– f (ym)

∣
∣ ≤ kM

∣
∣ϕ(x, t)

∣
∣ ≤ kM

(∣
∣g(t)

∣
∣ +

∣
∣gR(t)

∣
∣
) ≤ kM�(t), (.)

where

�(t) = C̄e–γ̄t + C̄Re–γ̄Rt . (.)

Hence

∥
∥f

(
ym + ϕ(t)

)
– f (ym)

∥
∥

 =
∫ R


x
∣
∣f

(
ym + ϕ(t)

)
– f (ym)

∣
∣ dx ≤ 


(
R – 

)
k

M�(t). (.)

Thus

〈
f
(
ym + ϕ(t)

)
– f (ym), Zm(t)

〉 ≤ 
ε

∥
∥f

(
ym + ϕ(t)

)
– f (ym)

∥
∥

 +
ε


∥
∥Zm(t)

∥
∥



≤ 
ε



(
R – 

)
k

M�(t)

+
ε


R


(R – )a
(
Zm(t), Zm(t)

)
. (.)



Ngoc et al. Boundary Value Problems  (2016) 2016:137 Page 16 of 26

(iii) Estimate 〈f(t) – f(t), Zm(t)〉.
We have

f(x, t) – f(x, t) = –


 + (R – )h

[
(x – R)g ′

(t) +
[
h(x – ) + 

]
g ′

R(t)
]

+


 + (R – )h

[
μ

x
(
g(t) + hgR(t)

)
+

α

x
(
g ′

(t) + hg ′
R(t)

)
]

,

∣
∣ϕ(x, t)

∣
∣ ≤ [

R + h(R – )
][∣

∣g(t)
∣
∣ +

∣
∣gR(t)

∣
∣
]
,

∣
∣ϕt(x, t)

∣
∣ ≤ [

R + h(R – )
][∣

∣g ′
(t)

∣
∣ +

∣
∣g ′

R(t)
∣
∣
]
.

(.)

Hence

∣
∣f(x, t) – f(x, t)

∣
∣ ≤ [

R + h(R – )
](∣

∣g ′
(t)

∣
∣ +

∣
∣g ′

R(t)
∣
∣
)

+


 + (R – )h
(α + μ)

[∣
∣g(t)

∣
∣ +

∣
∣g ′

(t)
∣
∣ +

∣
∣gR(t)

∣
∣ +

∣
∣g ′

R(t)
∣
∣
]

≤ [
R + h(R – )

]
�(t) +


 + (R – )h

(α + μ)�(t)

=
(

R + h(R – ) +
α + μ

 + (R – )h

)

�(t) ≡ D̄R�(t). (.)

It follows that

∥
∥f(t) – f(t)

∥
∥

 =
∫ R


x
∣
∣f(x, t) – f(x, t)

∣
∣ dx ≤ 


(
R – 

)
D̄

R�(t). (.)

Thus

〈
f(t) – f(t), Zm(t)

〉 ≤ 
ε

∥
∥f(t) – f(t)

∥
∥

 +
ε


∥
∥Zm(t)

∥
∥



≤ 
ε



(
R – 

)
D̄

R�(t) +
ε


R


(R – )a
(
Zm(t), Zm(t)

)
. (.)

(iv) Estimate 〈f(t) – f∞, Zm(t)〉.

〈
f(t) – f∞, Zm(t)

〉 ≤ 
ε

∥
∥f(t) – f∞

∥
∥

 +
ε


∥
∥Zm(t)

∥
∥



≤ 
ε

C
 e–γt +

ε


R


(R – )a
(
Zm(t), Zm(t)

)
. (.)

It follows from (.), (.), (.), (.), and (.) that




d
dt

[∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)]
+

[

μ –
(

δ +
ε



)
R


(R – )
]

a
(
Zm(t), Zm(t)

)

≤ 
ε

[
C

 e–γt +
(
R – 

)(
k

M + D̄
R
)
�(t)

]
= ψ̃(t). (.)

By  < δ < μ

R(R–) , choose ε >  such that γ̃ = μ – (δ + ε
 ) R

 (R – ) > .
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Put γ̄ = min{γ, γ̄, γ̄R}, we have ψ̃(t) ≤ C̄e–γ̄t for all t ≥  and

d
dt

[∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)]
+ γ̃ a

(
Zm(t), Zm(t)

) ≤ ψ̃(t) = C̄e–γ̄t . (.)

By

a
(
Zm(t), Zm(t)

)
=




a
(
Zm(t), Zm(t)

)
+




a
(
Zm(t), Zm(t)

)

≥ 


a
(
Zm(t), Zm(t)

)
+



∥
∥Zmx(t)

∥
∥



≥ 



α

αa
(
Zm(t), Zm(t)

)
+





R(R – )

∥
∥Zm(t)

∥
∥



≥ β
(∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

))
, (.)

where β = 
 min{ 

α
, 

R(R–) }.
It follows from (.), (.) that

d
dt

[∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)]

+ γ̃ β
(∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)) ≤ C̄e–γ̄t . (.)

Choose γ >  such that γ < min{γ̄, γ̃ β}, then we have from (.)

d
dt

[∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)]

+ γ
[∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)] ≤ C̄e–γ̄t . (.)

Hence, we obtain from (.)

∥
∥Zm(t)

∥
∥

 + αa
(
Zm(t), Zm(t)

)

≤
[
∥
∥Zm()

∥
∥

 + αa
(
Zm(), Zm()

)
+

C̄

γ̄ – γ

]

e–γ t . (.)

Letting m → +∞ in (.) we obtain

∥
∥v(t) – u∞

∥
∥

 + αa
(
v(t) – u∞, v(t) – u∞

)

≤ lim inf
m→+∞

[∥
∥vm(t) – ym

∥
∥

 + αa
(
vm(t) – ym, vm(t) – ym

)]

≤
(

‖ṽ – u∞‖
 + αa(ṽ – u∞, ṽ – u∞) +

C̄

γ̄ – γ

)

e–γ t for all t ≥ , (.)

or

∥
∥v(t) – u∞

∥
∥

 ≤ D̃e–γ t for all t ≥ , (.)

where

D̃ =

√


min(,α)

(

‖ṽ – u∞‖
 + αa(ṽ – u∞, ṽ – u∞) +

C̄

γ̄ – γ

)

. (.)
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Note that

∣
∣ϕ(x, t)

∣
∣ ≤ [

R + h(R – )
][∣

∣g(t)
∣
∣ +

∣
∣gR(t)

∣
∣
] ≤ [

R + h(R – )
](

C̄e–γ̄t + C̄Re–γ̄Rt)

=
[
R + h(R – )

]
�(t);

∣
∣ϕx(x, t)

∣
∣ =

g(t) + hgR(t)
 + (R – )h

≤  + h

 + (R – )h

[∣
∣g(t)

∣
∣ +

∣
∣gR(t)

∣
∣
]

≤  + h

 + (R – )h

(
C̄e–γ̄t + C̄Re–γ̄Rt) ≤  + h

 + (R – )h
�(t);

∥
∥ϕ(t)

∥
∥

 =
∥
∥ϕ(t)

∥
∥

 +
∥
∥ϕx(t)

∥
∥



≤ 

(
R – 

)
[
[
R + h(R – )

] +
(

 + h

 + (R – )h

)]

�(t) ≤ D̃
e–γ t . (.)

It follows from (.), (.) that

∥
∥u(t) – u∞

∥
∥

 =
∥
∥v(t) + ϕ(t) – u∞

∥
∥

 ≤ ∥
∥v(t) – u∞

∥
∥

 +
∥
∥ϕ(t)

∥
∥

 ≤ D̃e–γ t +
∥
∥ϕ(t)

∥
∥



≤ (D̃ + D̃)e–γ t for all t ≥ . (.)

This completes the proof of Theorem .. �

5 The existence and uniqueness of a weak solution with respect to
(N + 1)-points condition in time

In this section, we shall consider Problem (.), (.), (.a) with μ > , α > , R > , h ≥ 
being given constants and Ti, ηi, i = , . . . , N , are given constants satisfying (.).

We make the following assumptions:

(H̄) g, gR ∈ W ,(, T), g, gR satisfying the (N + )-points condition in t, i.e.,

g() =
N∑

i=

ηig(Ti), gR() =
N∑

i=

ηigR(Ti);

(H̄) f, f ′
 ∈ L(QT ), f satisfying the (N + )-points condition in time, i.e., f(x, ) =

∑N
i= ηif(x, Ti).

Remark . An example of the functions g, gR satisfying (H̄) are

gk(t) = βkept ,

where p > , βk , k ∈ {, R} are constants. It is obvious that (H̄) holds, because

gk(t) =
N∑

i=


N

e–pTiβkep(t+Ti) =
N∑

i=


N

e–pTi gk(t + Ti) =
N∑

i=

ηigk(t + Ti),

with

ηi =

N

e–pTi , i = , . . . , N ,
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and

gk() =
N∑

i=

ηigk(Ti), k ∈ {, R},

N∑

i=

|ηi| =
N∑

i=


N

e–pTi ≤
N∑

i=


N

= .

Similarly, by the transformation v(x, t) = u(x, t) – ϕ(x, t), with

ϕ(x, t) =
(x – R)g(t) + [h(x – ) + ]gR(t)

 + (R – )h

and by ϕ(x, ) =
∑N

i= ηiϕ(, Ti), Problem (.), (.), (.a) reduces to the following prob-
lem:

⎧
⎪⎨

⎪⎩

vt – (μ + α ∂
∂t )( ∂v

∂x + 
x

∂v
∂x ) + f (v + ϕ) = f(x, t),  < x < R,  < t < T ,

vx(, t) – hv(, t) = v(R, t) = ,
v(x, ) =

∑N
i= ηiv(x, Ti),

(.)

where f(x, t) is defined by (.).

Remark . The weak formulation of Problem (.) can be given in the following manner:
Find v ∈ L∞(, T ; V ) with vt ∈ L(, T ; V ), such that v satisfies the following variational
equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ T
 〈v′(t), w(t)〉dt + α

∫ T
 a(v′(t), w(t)) dt + μ

∫ T
 a(v(t), w(t)) dt

+
∫ T

 〈f (v(t) + ϕ(t)), w(t)〉dt
=

∫ T
 〈f(t), w(t)〉dt for all w ∈ L(, T ; V ),

v() =
∑N

i= ηiv(Ti),

(.)

where a(·, ·) is the symmetric bilinear form on V × V defined by (.).

Then we have the following theorem.

Theorem . Let T >  and (H̄), (H̄), (H′
) hold. Then Problem (.) has a ‘(N + )-points

condition in time’ weak solution v such that

v ∈ L∞(, T ; V ) and vt ∈ L(, T ; V ). (.)

Furthermore, if N = , then the solution is unique.

Proof The proof consists of several steps.
Step . The Faedo-Galerkin approximation (introduced by Lions []).
Consider the basis {wj} for V as in Lemma .. Let Wm be the linear space generated by

w, w, . . . , wm. We consider the following problem:
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Find a function vm(t) in the form (.) satisfying the nonlinear differential equation sys-
tem (.) and the (N + )-points condition in time

vm() =
N∑

i=

ηivm(Ti). (.)

We consider the initial value problem given by (.), where vm is given in Wm.
It is clear that for each m, there exists a solution vm(t) in the form (.) which satisfies

(.) almost everywhere on  ≤ t ≤ T̃m for some T̃m,  < T̃m ≤ T . The following a priori
estimates allow us to take T̃m = T for all m.

Step . A priori estimates.
Multiplying the jth equation of (.) by cmj(t) and summing up with respect to j, we get

d
dt

[∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

)]

+ μa
(
vm(t), vm(t)

)
+ 

〈
f
(
vm(t) + ϕ(t)

)
, vm(t)

〉
= 

〈
f(t), vm(t)

〉
. (.)

By the same estimates as in Section , and with ε > , we obtain


〈
f
(
vm(t) + ϕ(t)

)
, vm(t)

〉
= 

〈
f
(
vm(t) + ϕ(t)

)
– f

(
ϕ(t)

)
, vm(t)

〉
+ 

〈
f
(
ϕ(t)

)
, vm(t)

〉

≥ –(δ + ε)
R


(R – )a
(
vm(t), vm(t)

)
–


ε

∥
∥f

(
ϕ(t)

)∥
∥

; (.)


〈
f(t), vm(t)

〉 ≤ 
ε

∥
∥f(t)

∥
∥

 + ε
∥
∥vm(t)

∥
∥

 ≤ 
ε

∥
∥f(t)

∥
∥

 + ε
R


(R – )∥∥vmx(t)
∥
∥



≤ 
ε

∥
∥f(t)

∥
∥

 + ε
R


(R – )a
(
vm(t), vm(t)

)
. (.)

Hence, it follows from (.)-(.) that

d
dt

[∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

)]
+ 

[

μ – (δ + ε)
R


(R – )
]

a
(
vm(t), vm(t)

)

≤ 
ε

(∥
∥f(t)

∥
∥

 +
∥
∥f

(
ϕ(t)

)∥
∥



)
. (.)

By  < δ < μ

R(R–) , choose ε >  such that μ – (δ + ε) R
 (R – ) > .

Similar to (.), we get

a
(
vm(t), vm(t)

) ≥ β
(
αa

(
vm(t), vm(t)

)
+

∥
∥vm(t)

∥
∥



)
, (.)

where β = 
 min{ 

α
, 

R(R–) }.
It follows from (.), (.) that

d
dt

[∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

)]
+ γ

(∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

)) ≤ f∗(t), (.)

where γ = β[μ – (δ + ε) R
 (R – )], f∗(t) = 

ε
(‖f(t)‖

 + ‖f (ϕ(t))‖
).



Ngoc et al. Boundary Value Problems  (2016) 2016:137 Page 21 of 26

Integrating (.), we have

∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

) ≤
[

‖vm‖
 + αa(vm, vm) +

∫ t


eγ sf∗(s) ds

]

e–γ t

≤ ρ +
(‖vm‖

 + αa(vm, vm) – ρ)e–γ t , (.)

where ρ = sup≤t≤T ρ(t), with

ρ(t) =

{


eγ t–

∫ t
 eγ sf∗(s) ds,  < t ≤ T ,


γ

f∗(), t = .
(.)

Therefore, if we choose vm such that ‖vm‖
 + αa(vm, vm) ≤ ρ, we obtain from (.)

that

∥
∥vm(t)

∥
∥

 + αa
(
vm(t), vm(t)

) ≤ ρ, i.e., T̃m = T for all m, (.)

hence

∥
∥vm(Ti)

∥
∥

 + αa
(
vm(Ti), vm(Ti)

) ≤ ρ for all i = , , . . . , N , and for all m. (.)

In the space Wm of linear combinations of the functions w, w, . . . , wm, we consider the
norm vm �−→ ‖vm‖∗ = (‖vm‖

 + αa(vm, vm))/. Hence

∥
∥
∥
∥
∥

N∑

i=

ηivm(Ti)

∥
∥
∥
∥
∥∗

≤
N∑

i=

∥
∥ηivm(Ti)

∥
∥∗ =

N∑

i=

|ηi|
∥
∥vm(Ti)

∥
∥∗ ≤

N∑

i=

|ηi|ρ ≤ ρ. (.)

Let B̄m(ρ) = {vm ∈ Wm : ‖vm‖∗ ≤ ρ} be a closed ball in the space Wm. Let us define

Fm : B̄m(ρ) → B̄m(ρ)

vm �−→Fm(vm) =
N∑

i=

ηivm(Ti).
(.)

We prove that Fm is a contraction. Let vm, v̄m ∈ B̄m(ρ) and let ym(t) = vm(t) – v̄m(t),
where vm(t) and v̄m(t) are solutions of the system (.) on [, T] satisfying the initial con-
ditions vm() = vm and v̄m() = v̄m, respectively. Then ym(t) satisfies the following differ-
ential equation system:

〈
y′

m(t), wj
〉
+ αa

(
y′

m(t), wj
)

+ μa
(
ym(t), wj

)

+
〈
f
(
vm(t) + ϕ(t)

)
– f

(
v̄m(t) + ϕ(t)

)
, wj

〉
= , (.)

 ≤ j ≤ m, with the initial condition

ym() = vm – v̄m. (.)
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By using the same arguments as before, we can show that

d
dt

[∥
∥ym(t)

∥
∥

 + αa
(
ym(t), ym(t)

)]
+ γ̄

[∥
∥ym(t)

∥
∥

 + αa
(
ym(t), ym(t)

)] ≤ , (.)

where γ̄ = β[μ – δ R
 (R – )] > , β = 

 min{ 
α

, 
R(R–) }.

Integrating the inequality (.), we obtain

∥
∥ym(t)

∥
∥∗ ≤ e–γ̄ t‖vm – v̄m‖∗ for all t ∈ [, T], (.)

hence
∥
∥
∥
∥
∥

N∑

i=

ηiym(Ti)

∥
∥
∥
∥
∥∗

≤
N∑

i=

∥
∥ηiym(Ti)

∥
∥∗ =

N∑

i=

|ηi|
∥
∥ym(Ti)

∥
∥∗

≤
N∑

i=

|ηi|e–γ̄ Ti‖vm – v̄m‖∗ ≤ e–γ̄ T‖vm – v̄m‖∗,

or

∥
∥Fm(vm) – Fm(v̄m)

∥
∥∗ ≤ e–γ̄ T‖vm – v̄m‖∗, (.)

i.e., Fm is a contraction.
Therefore, there exists a unique function vm ∈ B̄m(ρ) such that the solution of the ini-

tial value problem (.) is a solution of the system (.), (.). This solution satisfies the
inequality (.) a.e., in [, T].

On the other hand, we multiplying the jth equation of (.) by c′
mj(t) and summing up

with respect to j, afterward integrating with respect to the time variable from  to T , we
get after some rearrangements


∫ T



(∥
∥v′

m(t)
∥
∥

 + αa
(
v′

m(t), v′
m(t)

))
dt + μ

∫ T



d
dt

a
(
vm(t), vm(t)

)
dt

= 
∫ T



〈
f(t), v′

m(t)
〉
dt – 

∫ T



〈
f
(
vm(t) + ϕ(t)

)
, v′

m(t)
〉
dt. (.)

From (.), we obtain

∣
∣
∣
∣

∫ T



d
dt

a
(
vm(t), vm(t)

)
dt

∣
∣
∣
∣ =

∣
∣a

(
vm(T), vm(T)

)
– a

(
vm(), vm()

)∣
∣

≤ a
(
vm(T), vm(T)

)
+ a

(
vm(), vm()

)

≤ 
α

[∥
∥vm(T)

∥
∥

∗ +
∥
∥vm()

∥
∥

∗
] ≤ 

α
ρ; (.)


∫ T



〈
f(t), v′

m(t)
〉
dt ≤ 

∫ T



∥
∥f(t)

∥
∥

 dt +



∫ T



∥
∥v′

m(t)
∥
∥

 dt. (.)

Note that

∥
∥ϕ(t)

∥
∥

C([,R]) ≤ [
R + h(R – )

]
sup

≤t≤T

(∣
∣g(t)

∣
∣ +

∣
∣gR(t)

∣
∣
)

(.)



Ngoc et al. Boundary Value Problems  (2016) 2016:137 Page 23 of 26

and

∥
∥vm(t) + ϕ(t)

∥
∥

C([,R]) ≤ ∥
∥vm(t)

∥
∥

C([,R]) +
∥
∥ϕ(t)

∥
∥

C([,R])

≤ √
R – 

ρ√
α

+
[
R + h(R – )

]
sup

≤t≤T

(∣
∣g(t)

∣
∣ +

∣
∣gR(t)

∣
∣
)

= M(T). (.)

Hence

∣
∣f

(
vm(x, t) + ϕ(x, t)

)∣
∣ ≤ sup

|z|≤M(T)

∣
∣f (z)

∣
∣. (.)

This implies

–
∫ T



〈
f
(
vm(t) + ϕ(t)

)
, v′

m(t)
〉
dt ≤ 

∫ T



∥
∥f

(
vm(t) + ϕ(t)

)∥
∥

 dt +



∫ T



∥
∥v′

m(t)
∥
∥

 dt

≤ M(T) +



∫ T



∥
∥v′

m(t)
∥
∥

 dt, (.)

where M(T) = T(R – ) sup|z|≤M f (z).
It follows from (.), (.), (.), and (.) that

∫ T



(∥
∥v′

m(t)
∥
∥

 + αa
(
v′

m(t), v′
m(t)

))
dt ≤ 

α
μρ + M(T) + 

∫ T



∥
∥f(t)

∥
∥

 dt ≤ CT (.)

for all m ∈N, for all t ∈ [, T], where CT always indicates a bound depending on T .
Step . The limiting process.
By (.) and (.) we deduce that there exists a subsequence of {vm}, still denoted by

{vm} such that

{
vm → v in L∞(, T ; V ) weak∗,
v′

m → v′ in L(, T ; V ) weak.
(.)

From (.), we obtain

v() =
N∑

i=

ηiv(Ti). (.)

Indeed, we prove (.) as follows.
By ‖vm()‖∗ = ‖vm‖∗ ≤ ρ , and the imbedding V ↪→ C(�) is compact, there exists a

subsequence of {vm}, still denoted by {vm} such that

{
vm → ṽ in V weakly,
vm → ṽ in C([, R]) strongly.

(.)

From the equality vm(t) = vm() +
∫ t

 v′
m(s) ds, we deduce from (.) and (.) that

v(t) = ṽ +
∫ t


v′(s) ds. (.)
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This implies v() = ṽ and

{
vm → v() in V weakly,
vm → v() in C([, R]) strongly.

(.)

From (.), we obtain

〈
vm(), wj

〉
=

N∑

i=

ηi
〈
vm(Ti), wj

〉

=
N∑

i=

ηi

[
〈
vm(), wj

〉
+

∫ Ti



〈
v′

m(t), wj
〉
dt

]

, ∀j ∈N. (.)

By (.), (.) and (.), we deduce that

〈
v(), wj

〉
=

N∑

i=

ηi

[
〈
v(), wj

〉
+

∫ Ti



〈
v′(t), wj

〉
dt

]

=
N∑

i=

ηi
〈
v(Ti), wj

〉
, ∀j ∈N. (.)

Hence v() =
∑N

i= ηiv(Ti), therefore, (.) is proved.
Using a compactness lemma ([], Lions, p.) applied to (.), we can extract from

the sequence {vm} a subsequence, still denoted by {vm}, such that

vm → v strongly in L(QT ). (.)

By the Riesz-Fischer theorem, we can extract from {vm} a subsequence, still denoted by
{vm}, such that

vm(x, t) → v(x, t) a.e. (x, t) in QT .

Because f is continuous, we have

f
(
vm(x, t) + ϕ(x, t)

) → f
(
v(x, t) + ϕ(x, t)

)
a.e. (x, t) in QT . (.)

Using the dominated convergence theorem, (.) and (.) yield

f (vm + ϕ) → f (v + ϕ) strongly in L(QT ). (.)

Denote by {ζi, i = , , . . .} the orthonormal base in the real Hilbert space L(, T). The
set {ζiwj, i, j = , , . . .} forms an orthonormal base in L(, T ; V ). From (.) we have

∫ T



〈
v′

m(t), wjζi(t)
〉
dt + α

∫ T


a
(
v′

m(t), wjζi(t)
)

dt + μ

∫ T


a
(
vm(t), wjζi(t)

)
dt

+
∫ T



〈
f
(
vm(t) + ϕ(t)

)
, wjζi(t)

〉
dt =

∫ T



〈
f(t), wjζi(t)

〉
dt (.)

for all i, j,  ≤ j ≤ m, i ∈N.
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For i, j fixed, we deduce from (.) that

∫ T



〈
f
(
vm(t) + ϕ(t)

)
, wjζi(t)

〉
dt →

∫ T



〈
f
(
v(t) + ϕ(t)

)
, wjζi(t)

〉
dt. (.)

Passing to the limit in (.) by (.), (.), we obtain

∫ T



〈
v′(t), wjζi(t)

〉
dt + α

∫ T


a
(
v′(t), wjζi(t)

)
dt + μ

∫ T


a
(
v(t), wjζi(t)

)
dt

+
∫ T



〈
f
(
v(t) + ϕ(t)

)
, wjζi(t)

〉
dt =

∫ T



〈
f(t), wjζi(t)

〉
dt. (.)

Equation (.) holds for every i, j ∈N, i.e., the equation

∫ T



〈
v′(t), w(t)

〉
dt + α

∫ T


a
(
v′(t), w(t)

)
dt + μ

∫ T


a
(
v(t), w(t)

)
dt

+
∫ T



〈
f
(
v(t) + ϕ(t)

)
, w(t)

〉
dt =

∫ T



〈
f(t), w(t)

〉
dt for all w ∈ L(, T ; V ) (.)

is fulfilled.
Step . Uniqueness of the solutions.
Assume now that N =  is satisfied. Let v and v be two solutions of (.). Then v = v –v

satisfies the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ T
 〈v′(t), w(t)〉dt + α

∫ T
 a(v′(t), w(t)) dt + μ

∫ T
 a(v(t), w(t)) dt

+
∫ T

 〈f (v(t) + ϕ(t)) – f (v(t) + ϕ(t)), w(t)〉dt = , ∀w ∈ L(, T ; V ),
v() = ηN v(T), |ηN | ≤ ,
v ∈ L∞(, T ; V ), vt ∈ L(, T ; V ).

(.)

Taking w = v in (.) and using (.), we get

∫ T



〈
v′(t), v(t)

〉
dt =



∥
∥v(T)

∥
∥

 –


∥
∥v()

∥
∥

 =


(
 – η

N
)∥
∥v(T)

∥
∥

 ≥ ;

∫ T


a
(
v′(t), v(t)

)
dt =




a
(
v(T), v(T)

)
–




a
(
v(), v()

)
(.)

=


(
 – η

N
)
a
(
v(T), v(T)

) ≥ .

Hence

μ

∫ T


a
(
v(t), v(t)

)
dt ≤ –

∫ T



〈
f
(
v(t) + ϕ(t)

)
– f

(
v(t) + ϕ(t)

)
, v(t)

〉
dt

≤ δ

∫ T



∥
∥v(t)

∥
∥

 dt ≤ δ
R


(R – )
∫ T



∥
∥vx(t)

∥
∥

 dt

≤ δ
R


(R – )
∫ T


a
(
v(t), v(t)

)
dt. (.)

By  < δ < μ

R(R–) , implies δ R
 (R – ) < μ, we deduce from (.) that

∫ T
 a(v(t), v(t)) dt =

, i.e., v = v – v = .
This completes the proof of Theorem .. �
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