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Abstract
In this paper, we study the blow-up phenomenon for some nonlinear parabolic
problems. Using the technique of differential inequalities, the lower bound for the
blow-up time is determined if a blow-up does really occur. Our result is obtained in a
bounded domain � ∈ R

N for any N ≥ 3.
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1 Introduction
Payne et al. [] studied the blow-up phenomenon for solutions to the following family of
mixed problems:

∂u
∂t

=
(
ρ
(|∇u|)u,i

)
,i + f (u) in � × (

, t∗), (.)

u(x, ) = g(x) ≥  in �, (.)

u(x, t) =  in ∂� × (
, t∗). (.)

They obtained a lower bound for the blow-up time t∗ if the blow-up does really occur
together with a criterion for getting a blow-up. Moreover, they proposed conditions that
ensure that a blow-up cannot occur. In this paper, we continue the work of Payne, Philip-
pin, and Schaefer. In [], they obtained the lower bound for the blow-up time of solutions
in a bounded domain � ∈ R

N for N = . If one is interested in generalizations to the case
N > , then one important tool, which is important for proving the results obtained in [],
namely, the Sobolev inequality is no longer applicable. There are only a few papers dealing
with a lower bound for the blow-up time when N >  (see [, ]). Our goal is to get a lower
bound for the blow-up time of the solutions to (.)-(.) in � ∈R

N for any N ≥ .
The study of finite-time blow-up of solutions to parabolic problems under a homoge-

neous Dirichlet boundary condition and Neumann condition has earned great attention
(see [–]). Recently, some papers began to consider the blow-up phenomena of these
problems under the Robin boundary conditions (see [–]). Many methods have been
used to study equations (.)-(.) (see [–]).

In this paper, � is a bounded star-shaped domain in R
N (N ≥ ) with smooth boundary

∂�. The operator ∇ is the gradient operator, and t∗ is the possible blow-up time. Fur-
thermore, i stands for the partial differentiation with respect to xi, i = , , , . . . , N . The
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repeated index indicates Einstein’s summation convention over the indices. We assume
that ρ is a positive C function that satisfies

ρ(s) + sρ ′(s) > , s > , (.)

so that (ρu,i),i is an elliptic operator. We also assume that ρ and f satisfy the conditions

 < f (s) ≤ a + asp, s > , (.)

and

ρ(s) ≥ b + bsq, s > , (.)

where p >  and  < q < p– , and a, a, b, b are positive constants. Using the maximum
principle, we can get that u is nonnegative in x and t ∈ [, t∗).

In the further discussions, we will use the following Hölder inequality:

∫

�

wx+x dx ≤
(∫

�

w
x
α dx

)α(∫

�

w
x

–α dx
)–α

, (.)

where  < α < , and x, x are positive constants.

2 Lower bound for the blow-up time
In this section, we define the auxiliary function ϕ = ϕ(t) as follows (see []):

ϕ(t) =
∫

�

u(n–)(q+)+ dx =
∫

�

uσ dx with σ = (n – )(q + ) + . (.)

We establish the following theorem.

Theorem  Assume that u = u(x, t) is the classical nonnegative solution of the mixed prob-
lem (.)-(.) in a bounded domain � ∈R

N (N ≥ ). Then the quantity ϕ(t) defined in (.)
satisfies the differential inequality

ϕ′(t) ≤ σa|�| 
σ
[
φ(t)

] σ–
σ + k

[
φ(t)

] (N–)α
Nα– + k

[
φ(t)

] (N–)α′
Nα′– , (.)

which yields that the blow-up time t∗ is bounded from below. We have

t∗ ≥
∫ +∞

φ()

dξ

σa|�| 
σ [ξ ] σ–

σ + k[ξ ]
(N–)α
Nα– + k[ξ ]

(N–)α′
Nα′–

, (.)

where |�| is the volume of the domain �, and k, k are positive constants that will be
defined later.

Proof First, we compute

ϕ′(t) = σ

∫

�

uσ–[(ρ
(|∇u|)u,i

)
,i + f (u)

]
dx

= –σ (σ – )
∫

�

uσ–ρ
(|∇u|)|∇u| dx + σ

∫

�

uσ–f (u) dx
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≤ –σ (σ – )
∫

�

u(n–)(q+)|∇u|(b + b|∇u|q)dx

+ σ

∫

�

uσ–(a + aup)dx. (.)

Using the equality

∣
∣∇un∣∣(q+) =

∣
∣nun–∇u

∣
∣(q+) = n(q+)u(n–)(q+)|∇u|(q+)

and the Hölder inequality, we get

ϕ′(t) ≤ –
σ (σ – )b

n(q+)

∫

�

∣
∣∇un∣∣(q+) dx + σa|�| 

σ
[
φ(t)

] σ–
σ + σa

∫

�

uσ+p– dx. (.)

If we set v = un, then we obtain

ϕ′(t) ≤ –
σ (σ – )b

n(q+)

∫

�

|∇v|(q+) dx + σa|�| 
σ
[
φ(t)

] σ–
σ + σa

∫

�

v(q+)+ γ
n dx, (.)

where γ = p––q > . After application of the Hölder and Schwarz inequalities, it follows

∫

�

∣
∣∇vq+∣∣ dx ≤ (q + )

(∫

�

|∇v|(q+) dx
) 

q+
(∫

�

|v|(q+) dx
) q

q+

≤ (q + )
∫

�

|∇v|(q+) dx + (q + )q
∫

�

|v|(q+) dx. (.)

Combining (.) and (.), we easily obtain

ϕ′(t) ≤ –
σ (σ – )b

n(q+)(q + )

∫

�

∣∣∇vq+∣∣ dx +
qσ (σ – )b

n(q+)

∫

�

v(q+) dx + σa|�| 
σ
[
φ(t)

] σ–
σ

+ σa

∫

�

v(q+)+ γ
n dx. (.)

We choose x, x, and α such that

x + x = (q + ), x · 
α

=
σ

n
, x · 

 – α
= (q + )

N
N – 

,

so that

x =
σ

n
(q + ) 

N–

(q + ) N
N– – σ

n
, x = (q + ) –

σ

n
(q + ) 

N–

(q + ) N
N– – σ

n
,

α =
(q + ) 

N–

(q + ) N
N– – σ

n
.

Then the Hölder inequality (.) yields

∫

�

v(q+) dx ≤
(∫

�

v
σ
n dx

)α(∫

�

v(q+) N
N– dx

)–α

. (.)
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We follow the same procedure for x′
, x′

, and α′, that is, we choose them such that

x′
 + x′

 = (q + ) +
γ

n
, x · 

α′ =
σ

n
, x′

 · 
 – α′ = (q + )

N
N – 

,

so that

x′
 =

σ

n
(q + ) 

N– – γ

n

(q + ) N
N– – σ

n
,

x′
 = (q + ) +

γ

n
–

σ

n
(q + ) 

N– – γ

n

(q + ) N
N– – σ

n
,

α′ =
(q + ) 

N– – γ

n

(q + ) N
N– – σ

n
,

and obtain

∫

�

v(q+)+ γ
n dx ≤

(∫

�

v
σ
n dx

)α′(∫

�

v(q+) N
N– dx

)–α′

. (.)

Stressing the Sobolev inequality gives W ,
 ↪→ L

N
N– for N ≥ . Consequently, we get

∥∥vq+∥∥
N

N– (–α)

L
N

N–
≤ c

N
N– (–α)


∥∥∇vq+∥∥
N

N– (–α)
L (.)

and

∥
∥vq+∥∥

N
N– (–α′)

L
N

N–
≤ c

N
N– (–α′)


∥
∥∇vq+∥∥

N
N– (–α′)
L , (.)

where c is the best embedding constant (see []).
A combination of (.) and (.) leads to

∫

�

v(q+) dx ≤ c
N(–α)

N–


(∫

�

v
σ
n dx

)α(∫

�

∣
∣∇vq+∣∣ dx

) N(–α)
N–

. (.)

An application of the Young inequality yields

∫

�

v(q+) dx ≤ Nα – 
N – 

c
N(–α)

Nα–
 ε

– N(–α)
Nα–



(∫

�

v
σ
n dx

) (N–)α
Nα–

+
N( – α)

N – 
ε

∫

�

∣
∣∇vq+∣∣ dx, (.)

where ε is a positive constant to be determined later.
A combination of (.) and (.) also leads to

∫

�

v(q+)+ γ
n dx ≤ Nα′ – 

N – 
c

N(–α′)
Nα′–

 ε
– N(–α′)

Nα′–


(∫

�

v
σ
n dx

) (N–)α′
Nα′–

+
N( – α′)

N – 
ε

∫

�

∣
∣∇vq+∣∣ dx, (.)

where ε is a positive constant to be determined later.
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Combining (.), (.), and (.), we obtain

ϕ′(t) ≤ –
[

σ (σ – )b

n(q+)(q + )
–

qσ (σ – )b

n(q+)
N( – α)

N – 
ε – σa

N( – α′)
N – 

ε

]∫

�

∣
∣∇vq+∣∣ dx

+ σa|�| 
σ
[
φ(t)

] σ–
σ +

Nα – 
N – 

c
N(–α)

Nα–
 ε

– N(–α)
Nα–


qσ (σ – )b

n(q+)

[
φ(t)

] (N–)α
Nα–

+
Nα′ – 
N – 

c
N(–α′)

Nα′–
 ε

– N(–α′)
Nα′–


[
φ(t)

] (N–)α′
Nα′– . (.)

By choosing ε and ε small enough such that

σ (σ – )b

n(q+)(q + )
–

qσ (σ – )b

n(q+)
N( – α)

N – 
ε – σa

N( – α′)
N – 

ε ≥  (.)

we get the differential inequality

ϕ′(t) ≤ σa|�| 
σ
[
φ(t)

] σ–
σ + k

[
φ(t)

] (N–)α
Nα– + k

[
φ(t)

] (N–)α′
Nα′– (.)

with k = Nα–
N– c

N(–α)
Nα–

 ε
– N(–α)

Nα–
 and k = Nα′–

N– c
N(–α′)

Nα′–
 ε

– N(–α′)
Nα′–

 .
Inequality (.) can be rewritten as

dφ

σa|�| 
σ [φ(t)] σ–

σ + k[φ(t)]
(N–)α
Nα– + k[φ(t)]

(N–)α′
Nα′–

≤ dt. (.)

An integration of (.) from  to t leads to

∫ φ(t)

φ()

dξ

σa|�| 
σ [ξ ] σ–

σ + k[ξ ]
(N–)α
Nα– + k[ξ ]

(N–)α′
Nα′–

≤ t. (.)

Taking the limit as t −→ t∗, we obtain

∫ +∞

φ()

dξ

σa|�| 
σ [ξ ] σ–

σ + k[ξ ]
(N–)α
Nα– + k[ξ ]

(N–)α′
Nα′–

≤ t∗, (.)

and the proof is complete. �
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