
Goli and Adjé Boundary Value Problems  (2016) 2016:170 
DOI 10.1186/s13661-016-0676-6

R E S E A R C H Open Access

New existence results for some periodic
and Neumann-Steklov boundary value
problems with φ-Laplacian
Konan Charles Etienne Goli* and Assohoun Adjé

*Correspondence:
golietienne@gmail.com
UFR Mathématiques et
Informatique, Université Félix
Houphouet Boigny, Cocody,
Abidjan, 22 BP 582, Côte d’Ivoire

Abstract
We study the existence of solutions of the quasilinear equation

(φ(u′(t)))′ = f (t,u(t),u′(t)), a.e. t ∈ [0, T ],

with periodic or nonlinear Neumann-Steklov boundary conditions, where
φ : ]–a,a[→ R with 0 < a < +∞ is an increasing homeomorphism such that φ(0) = 0.
Combining some sign conditions and the lower and upper solution method, we
obtain the existence of solutions when there exists one lower solution or one upper
solution.
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1 Introduction
This work is devoted to the study of the existence of solutions of the quasilinear equation

(
φ
(
u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. t ∈ [, T], ()

with periodic boundary conditions

u′() = u′(T), u() = u(T), ()

or nonlinear Neumann-Steklov boundary conditions

φ
(
u′()

)
= g

(
u()

)
, φ

(
u′(T)

)
= gT

(
u(T)

)
, ()

where φ : ]–a, a[→R with  < a < +∞ is an increasing homeomorphism such that φ() =
, g, gT : R −→ R are continuous functions, and f : [, T] × R

 → R is assumed to be an
L-Carathéodory function.

Generally, in the lower and upper solution method, to show the existence of a solution
of a problem, we need the existence of at least one lower solution and at least one upper
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solution. In the case of the method of sign conditions, we usually need two sign conditions
to show the existence of at least one solution of a problem.

In , Bereanu and Mawhin [] proved, for continuous f , the existence of solutions
of problem ()-() under some sign conditions (see [] Theorem ) and when there exist
a lower solution and an upper solution, ordered or not, of problem ()-() (see [] Theo-
rem ).

In , Bereanu and Mawhin [] proved, for continuous f , the existence of solutions
of problem ()-() under some sign conditions (see [] Theorem ) and when there exist
a lower solution and an upper solution, ordered or not, of problem ()-() (see [] Theo-
rem ).

In the following results, we prove the existence of solutions of ()-() and ()-() when
we have only one sign condition and only one lower solution or only one upper solution.

After introducing notation and preliminary results in Section , in Section , combining
one sign condition and the existence of only one lower solution or only one upper solution
of problem ()-(), we prove the existence of at least one solution of problem ()-().

In Section , combining one sign condition and the existence of only one lower solu-
tion or only one upper solution of problem ()-(), we prove the existence of at least one
solution of problem ()-().

The results of this section enable us to obtain that, for some forced relativistic pendu-
lum equations with friction and Neumann-Steklov boundary conditions, the existence of
a lower solution or the existence of an upper solution is sufficient to obtain the existence
of a solution.

2 Notation and preliminaries
We denote:

• C = C([, T]), the Banach space of continuous functions on [, T];
• ‖u‖C = ‖u‖∞ = max{|u(t)|; t ∈ [, T]}, the norm of C;
• C = C([, T]), the Banach space of continuous functions on [, T] having continuous

first derivative on [, T];
• ‖u‖C = ‖u‖C + ‖u′‖C , the norm of C;
• AC = AC([, T]), the set of absolutely continuous functions on [, T];
• L = L(, T), the Banach space of Lebesgue-integrable functions on [, T];
• ‖x‖L =

∫ T
 |x(t)|dt, the norm of L;

• Br , the open ball of C with center  and radius r;
• dLS , the Leray-Schauder degree, and dB, the Brouwer degree;
• uL = min[,T] u and uM = max[,T] u for u ∈ C;
• Range(u) = {y ∈R; y = u(t) with t ∈ [, T]} for u ∈ C.
We introduce:
• the continuous operators P, K : C → C defined by

P(u) = Pu = u() and K(u) = T–[gT
(
u(T)

)
– g

(
u()

)]
;

• the continuous operators Q, H : L → C defined by

Q(u) = Qu =

T

∫ T


u(s) ds and (Hu)(t) =

∫ t


u(s) ds, ∀t ∈ [, T].
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Definition . f : [, T] ×R
 →R is L-Carathéodory if:

(i) f (·, x, y) : [, T] →R is measurable for all (x, y) ∈R
;

(ii) f (t, ·, ·) : R →R is continuous for a.e. t ∈ [, T];
(iii) for each compact set A ⊂R

, there is a function μA ∈ L such that
|f (t, x, y)| ≤ μA(t) for a.e. t ∈ [, T] and all (x, y) ∈ A.

Definition . A solution of problem ()-() (resp ()-()) is a function u ∈ C satisfies
()-() (resp ()-()) such that φ(u′) ∈ AC and ‖u′‖∞ < a.

Definition . A function α ∈ C is a lower solution of problem ()-() if ‖α′‖∞ < a,
φ(α′) ∈ AC,

(
φ
(
α′(t)

))′ ≥ f
(
t,α(t),α′(t)

)
, a.e. t ∈ [, T], ()

α′() ≥ α′(T), and α() = α(T). ()

Definition . A function β ∈ C is an upper solution of problem ()-() if ‖β ′‖∞ < a,
φ(β ′) ∈ AC,

(
φ
(
β ′(t)

))′ ≤ f
(
t,β(t),β ′(t)

)
, a.e. t ∈ [, T], ()

β ′() ≤ β ′(T), and β() = β(T). ()

Definition . A function α ∈ C is a lower solution of problem ()-() if ‖α′‖∞ < a,
φ(α′) ∈ AC,

(
φ
(
α′(t)

))′ ≥ f
(
t,α(t),α′(t)

)
, a.e. t ∈ [, T], ()

φ
(
α′()

) ≥ g
(
α()

)
, and φ

(
α′(T)

) ≤ gT
(
α(T)

)
. ()

Definition . A function β ∈ C is an upper solution of problem ()-() if ‖β ′‖∞ < a,
φ(β ′) ∈ AC,

(
φ
(
β ′(t)

))′ ≤ f
(
t,β(t),β ′(t)

)
, a.e. t ∈ [, T], ()

φ
(
β ′()

) ≤ g
(
β()

)
, and φ

(
β ′(T)

) ≥ gT
(
β(T)

)
. ()

Remark . It is standard to show that the Nemytskii operator associated to f , Nf : C →
L, defined by

Nf (u) = f
(·, u(·), u′(·)) ()

is continuous and sends bounded sets into bounded sets.

3 Existence of solutions of periodic problem
3.1 Existence of solutions under two sign conditions
Lemma . For each h ∈ C, there exists a unique � := Qφ(h) ∈ Range(h) such that

∫ T


φ–(h(t) – �

)
dt = .

Moreover, the function Qφ : C →R is continuous.



Goli and Adjé Boundary Value Problems  (2016) 2016:170 Page 4 of 15

Proof See [], the proof of Lemma . �

Now, consider the family of boundary value problems (Pλ), λ ∈ [, ],

(Pλ)

{
(φ(u′(t)))′ = λNf (u)(t) + ( – λ)QNf (u), a.e. t ∈ [, T],
u′() = u′(T), u() = u(T).

For each λ ∈ [, ], problem (Pλ) can be written equivalently

⎧
⎪⎨

⎪⎩

(φ(u′(t)))′ = λNf (u)(t), a.e. t ∈ [, T],
u′() = u′(T), u() = u(T),
QNf (u) = .

()

For each λ ∈ [, ], we associate with (Pλ) the nonlinear operator M(λ, ·), where M is de-
fined on [, ] × C by

M(λ, u) = P(u) + QNf (u) + H ◦ φ– ◦ (I – Qφ) ◦ [
λH(I – Q)Nf

]
(u). ()

Using the Arzelà-Ascoli theorem, we get that M is completely continuous.

Lemma . Assume that there exist R >  and ε ∈ {–, } such that

uL ≥ R and
∥
∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt

}
>  ()

and

uM ≤ –R and
∥∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt

}
< . ()

Then, for all sufficiently large ρ > ,

dLS
[
I – M(, ·), Bρ , 

]
= –ε,

and problem ()-() has at least one solution.

Proof Assume that there exists (λ, u) ∈ [, ] × C such that M(λ, u) = u.
We have u() = u() + [QNf (u)]. It follows that

∫ T


f
(
t, u(t), u′(t)

)
dt = . ()

Since

u′ =
(
M(λ, u)

)′ = φ– ◦ (I – Qφ) ◦ [
λH(I – Q)Nf

]
(u),

we get ‖u′‖∞ < a. If uL ≥ R or uM ≤ –R, by () and () we have

∫ T


f
(
t, u(t), u′(t)

)
dt = , ()
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which contradicts (); therefore, uL < R and uM > –R. Since u is continuous on [, T],
there exists (t, t) ∈ [, T] such that uL = u(t) and uM = u(t). We have

uM – uL =
∣
∣∣
∣

∫ t

t

u′(t) dt
∣
∣∣
∣ ≤

∣
∣∣
∣

∫ t

t

∣∣u′(t)
∣∣dt

∣
∣∣
∣ < a|t – t| < aT . ()

Using (), we have

uM < uL + aT < R + aT and uL > uM – aT > –R – aT .

It follows that ‖u‖∞ < R + aT .
Since ‖u′‖∞ < a and ‖u‖∞ < R + aT , we have

‖u‖C < R + (a + )T . ()

Let M be the operator given by (), and let ρ > R + a(T + ). Using () and the homotopy
invariance of the Leray-Schauder degree, we have

dLS
[
I – M(, ·), Bρ , 

]
= dLS

[
I – M(, ·), Bρ , 

]

= dLS
[
I – [P + QNf ], Bρ , 

]
.

But the range of the mapping u �→ P(u) + QNf (u) is contained in the subspace of constant
functions isomorphic to R, so, using the reduction property of Leray-Schauder degree [],
we have

dLS
[
I – [P + QNf ], Bρ , 

]
= dB

[
I – [P + QNf ]|R, ]–ρ,ρ[, 

]

= dB
[
–QNf , ]–ρ,ρ[, 

]

=



sign
[
–QNf (ρ)

]
–




sign
[
–QNf (–ρ)

]

= –ε.

By the existence property of the Leray-Schauder degree there exists u ∈ Bρ such that u =
M(, u), which is a solution of problem ()-(). �

Let us decompose any u ∈ C in the form u = u + ũ (u = u(), ũ() = ), and let C̃ = {u ∈
C : u() = }.

Lemma . The set S of solutions (u, ũ) ∈R× C̃ of problem

{
(φ (̃u′(t)))′ = Nf (u + ũ)(t) – QNf (u + ũ), a.e. t ∈ [, T],
u′() = u′(T), u() = u(T).

()

contains a continuum subset C whose projection on R is R and whose projection on C̃ is
contained in the ball Ba(T+).

Proof The proof is similar to the proof of Lemma  in []. �
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Theorem . Assume that there exist R >  and ε ∈ {–, } such that

uL ≥ R and
∥
∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt

}
≥  ()

and

uM ≤ –R and
∥∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt

}
≤ . ()

Then problem ()-() admits at least one solution.

Proof The proof is similar to the proof of Theorem  in [].
Let us consider the continuum C given by Lemma .. We have C = ∅ (see the proof of

Lemma  in []). Let (u, ũ) ∈ C . Using Lemma ., it follows that

(R + aT , ũ) ∈ C and (–R – aT , ũ) ∈ C.

Let v = R + aT + ũ and v = –R – aT + ũ.
Since

∀t ∈ [, T], –aT < ũ(t) < aT and – a < ũ′(t) < a,

for all t ∈ [, T], we have

v(t) = R + aT + ũ(t) > R + aT – aT = R, –a < v′
(t) < a,

v(t) = –R – aT + ũ(t) < –R – aT + aT = –R, and – a < v′
(t) < a.

Applying (), we have ε{QNf (v)} ≥ , and applying (), we have ε{QNf (v)} ≤ .
We deduce, using the intermediate value theorem for a continuous functions on a con-

nected set, that there exists (w, w̃) ∈ C such that

QNf (w + w̃) = .

Therefore, w = w + w̃ is a solution of problem ()-(). �

3.2 Existence of solutions under one sign condition and only one lower solution
or only one upper solution

For α ∈ C, let us define two functions γ : [, T] ×R→ R and γ : [, T] ×R→ R by

γ(t, x) =

{
α(t) if x < α(t),
x if x ≥ α(t),

and γ(t, x) =

{
α(t) if x > α(t),
x if x ≤ α(t).

We introduce the following lemma (see [], Lemma . and Corollary .).

Lemma . For u ∈ C, the following three properties are true.
(a) For i ∈ {, }, d

dt γi(t, u(t)) exists for a.e. t ∈ [, T].



Goli and Adjé Boundary Value Problems  (2016) 2016:170 Page 7 of 15

(b)
d
dt

γ
(
t, u(t)

)
=

{
α′(t) if u(t) < α(t),
u′(t) if u(t) ≥ α(t),

and

d
dt

γ
(
t, u(t)

)
=

{
α′(t) if u(t) > α(t),
u′(t) if u(t) ≤ α(t).

(c) For i ∈ {, }, if (un)n ⊂ C is such that un → u in C, then γi(·, un) → γi(·, u) in C,
and for almost every t ∈ [, T], limn→∞ d

dt γi(t, un(t)) = d
dt γi(t, u(t)).

Theorem . Assume that:
(i) there exists a lower solution α of problem ()-();

(ii) there exists R >  such that

uL ≥ R and
∥
∥u′∥∥∞ < a ⇒

∫ T


f
(
t, u(t), u′(t)

)
dt > . ()

Then problem ()-() admits at least one solution.

Proof
Step : The modified problem.
Consider the function δ : R → R given by δ(x) = max{–a, min{x, a}}. Consider the func-

tion f ∗ : [, T] ×R
 −→ R given by

f ∗(t, u, v) = f
(

t,γ
(
t, u(t)

)
, δ

(
d
dt

γ
(
t, u(t)

)
))

+ u(t) – γ
(
t, u(t)

)
, ()

which is an L-Carathéodory function. Consider the modified problem

{
(φ(u′(t)))′ = f ∗(t, u(t), u′(t)), a.e. t ∈ [, T],
u′() = u′(T), u() = u(T).

()

Step : Any solution of problem () is a solution of problem ()-().
Let u be a solution of problem (). We prove that α(t) ≤ u(t) for all t ∈ [, T].
Let us assume on the contrary that, for some t ∈ [, T],

max
t∈[,T]

[
α(t) – u(t)

]
= α(t) – u(t) > .

If t ∈], T[, then α′(t) = u′(t); hence, φ(α′(t)) = φ(u′(t)). We can find ω >  such that
for all t ∈ ]t, t + ω[, α(t) > u(t). We have

∀t ∈ ]t, t + ω[, γ
(
t, u(t)

)
= α(t) and δ

(
d
dt

γ
(
t, u(t)

))
= α′(t)

for a.e. t ∈ ]t, t + ω[.
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It follows that, for all t ∈ ]t, t + ω[,

φ
(
α′(t)

)
– φ

(
u′(t)

)
=

∫ t

t

[(
φ
(
α′(s)

))′ – f
(
s,α(s),α′(s)

)
+

(
α(s) – u(s)

)]
ds

≥
∫ t

t

(
α(s) – u(s)

)
ds > .

Since φ is an increasing homeomorphism, φ(α′(t)) – φ(u′(t)) >  ⇒ α′(t) – u′(t) > , a con-
tradiction.

If t ∈ {, T}, then α′() – u′() =  = α′(T) – u′(T). We can find ω >  such that for all
t ∈ ],ω[, α(t) > u(t). We have

∀t ∈ ],ω[, γ
(
t, u(t)

)
= α(t) and δ

(
d
dt

γ
(
t, u(t)

)
)

= α′(t) for a.e. t ∈ ],ω[.

It follows that, for all t ∈ ],ω[,

φ
(
α′(t)

)
– φ

(
u′(t)

)
=

∫ t



[(
φ
(
α′(s)

))′ – f
(
s,α(s),α′(s)

)
+

(
α(s) – u(s)

)]
ds

≥
∫ t



(
α(s) – u(s)

)
ds > .

Since φ is an increasing homeomorphism, φ(α′(t)) – φ(u′(t)) >  ⇒ α′(t) – u′(t) > , a con-
tradiction.

In consequence, we have that α(t) ≤ u(t) for all t ∈ [, T]. Therefore, u is a solution of
problem ()-().

Step : Existence of solutions of problem ().
Let � = [αL,αM] × [–a, a]. Since f is an L-Carathéodory function, there exists ϕ ∈ L

such that, for a.e. t ∈ [, T] and all (x, y) ∈ �, |f (t, x; y)| ≤ ϕ(t). Let R = max{|αL|, |αL –

T ‖ϕ‖L |, R + aT}. By (), if u ∈ C is such that ‖u′‖∞ < a and uL ≥ R, then

∫ T


f ∗(t, u(t), u′(t)

)
dt > . ()

Moreover, if u ∈ C is such that ‖u′‖∞ < a and uM ≤ –R, then

u(t) ≤ αL and u(t) ≤ αL –

T

‖ϕ‖L ∀t ∈ [, T].

It follows that

∫ T


f ∗(t, u(t), u′(t)

)
dt =

∫ T



(
f
(
t,α(t),α′(t)

)
+ u(t) – α(t)

)
dt

≤
∫ T



(
f
(
t,α(t),α′(t)

)
+ αL –


T

‖ϕ‖L – α(t)
)

dt

≤
∫ T



(
f
(
t,α(t),α′(t)

)
–


T

‖ϕ‖L +
(
αL – α(t)

))
dt

≤ . ()
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Using (), (), and Theorem ., we deduce that problem () has at least one solution,
which is also a solution of problem ()-() by step . �

Theorem . Assume that:
(i) there exists an upper solution β of the problem ()-();

(ii) there exists R >  such that

uM ≤ –R and
∥
∥u′∥∥∞ < a ⇒

∫ T


f
(
t, u(t), u′(t)

)
dt < . ()

Then problem ()-() admits at least one solution.

Proof The proof is similar to the proof of Theorem .. �

4 Existence of solutions of Neumann-Steklov problem
4.1 Existence of solutions under two sign conditions
Consider the family of boundary value problems (Pλ), λ ∈ [, ]:

(Pλ)

⎧
⎪⎨

⎪⎩

(φ(u′(t)))′ = λNf (u)(t) + ( – λ)[QNf (u) – K(u)], a.e. t ∈ [, T],
φ(u′()) = λg(u()),
φ(u′(T)) = λgT (u(T)).

For each λ ∈ [, ], problem (Pλ) can be written equivalently

⎧
⎪⎨

⎪⎩

(φ(u′(t)))′ = λNf (u)(t), a.e. t ∈ [, T],
φ(u′()) = λg(u()), φ(u′(T)) = λgT (u(T)),
QNf (u) – K(u) = .

()

For each λ ∈ [, ], we associate with (Pλ) the nonlinear operator M(λ, ·), where M is de-
fined on [, ] × C by

M(λ, u) = P(u) + QNf (u) – K(u) + H ◦ φ– ◦ [
λH(I – Q)Nf (u) + λG(u)

]
()

with

G(u)(t) =
(

 –
t
T

)
g

(
u()

)
+

t
T

gT
(
u(T)

)
, ∀t ∈ [, T]. ()

Using the Arzelà-Ascoli theorem, we get that M is completely continuous.

Lemma . Assume that there exist R >  and ε ∈ {–, } such that

uL ≥ R and
∥∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt – TK(u)

}
>  ()

and

uM ≤ –R and
∥
∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt – TK(u)

}
< . ()
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Then, for all sufficiently large ρ > ,

dLS
[
I – M(, ·), Bρ , 

]
= –ε,

and problem ()-() has at least one solution.

Proof Assume that there exists (λ, u) ∈ [, ] × C such that M(λ, u) = u.
We have

u() = u() +
[
QNf (u) – T–(gT

(
u(T)

)
– g

(
u()

))]
.

It follows that

∫ T


f
(
t, u(t), u′(t)

)
dt – TK(u) = . ()

Since

u′ =
(
M(λ, u)

)′ = φ– ◦ [
λH(I – Q)Nf (u) + λG(u)

]
,

we have ‖u′‖∞ < a. If uL ≥ R or uM ≤ –R, then by () and () we have

∫ T


f
(
t, u(t), u′(t)

)
dt – TK(u) = , ()

which contradicts (); therefore, uL < R and uM > –R. Since u is continuous on [, T],
there exists (t, t) ∈ [, T] such that uL = u(t) and uM = u(t). We have

uM – uL =
∣∣
∣∣

∫ t

t

u′(t) dt
∣∣
∣∣ ≤

∣∣
∣∣

∫ t

t

∣
∣u′(t)

∣
∣dt

∣∣
∣∣ < a|t – t| < aT . ()

Using (), we have

uM < uL + aT < R + aT and uL > uM – aT > –R – aT .

It follows that ‖u‖∞ < R + aT . Since ‖u′‖∞ < a and ‖u‖∞ < R + aT , we have

‖u‖C < R + (a + )T . ()

Let M be the operator given by () and let ρ > R + a(T + ). Using () and the homotopy
invariance of the Leray-Schauder degree, we have

dLS
[
I – M(, ·), Bρ , 

]
= dLS

[
I – M(, ·), Bρ , 

]

= dLS
[
I – [P + QNf – K], Bρ , 

]
.

But the range of the mapping u �→ P(u) + QNf (u) – K(u) is contained in the subspace of
constant functions isomorphic to R, so, using the reduction property of Leray-Schauder
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degree [], it follows that

dLS
[
I – [P + QNf – K], Bρ , 

]
= dB

[
I – [P + QNf – K]|R, ]–ρ,ρ[, 

]

= dB
[
–QNf + K , ]–ρ,ρ[, 

]

=



sign
[
–QNf (ρ) + K(ρ)

]

–



sign
[
–QNf (–ρ) + K(–ρ)

]

= –ε.

Then, by the existence property of the Leray-Schauder degree there exists u ∈ Bρ such that
u = M(, u), which is a solution of problem ()-(). �

Let us decompose any u ∈ C in the form u = u + ũ (u = u(), ũ() = ), and let C̃ = {u ∈
C : u() = }.

Lemma . The set S of solutions (u, ũ) ∈R× C̃ of problem

⎧
⎪⎨

⎪⎩

(φ (̃u′(t)))′ = Nf (u + ũ)(t) – QNf (u + ũ)
+ T–[gT (u + ũ(T)) – g(u)], a.e. t ∈ [, T],

φ (̃u′()) = g(u), φ (̃u′(T)) = gT (u + ũ(T)),
()

contains a continuum subset C whose projection on R is R and whose projection on C̃ is
contained in the ball Ba(T+).

Proof The proof is similar to the proof of Lemma  in []. �

Theorem . Assume that there exist R >  and ε ∈ {–, } such that

uL ≥ R and
∥
∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt – TK(u)

}
≥  ()

and

uM ≤ –R and
∥∥u′∥∥∞ < a ⇒ ε

{∫ T


f
(
t, u(t), u′(t)

)
dt – TK(u)

}
≤ , ()

Then problem ()-() admits at least one solution.

Proof The proof is similar to that of Theorem  in [] and that of Theorem .. �

4.2 Existence of solutions under one sign condition and only one lower solution
or only one upper solution

Theorem . Assume that:
(i) there exists a lower solution α of problem ()-();
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(ii) there exists R >  such that

uL ≥ R and
∥∥u′∥∥∞ < a

⇒
∫ T


f
(
t, u(t), u′(t)

)
dt – gT

(
u(T)

)
+ g

(
u()

)
> .

()

Then problem ()-() admits at least one solution.

Proof
Step : The modified problem.
Consider the functions f ∗ : [, T] ×R

 −→ R, g∗
 : R−→ R, and g∗

T : R −→R given by

f ∗(t, u, v) = f
(

t,γ
(
t, u(t)

)
, δ

(
d
dt

γ
(
t, u(t)

)))
+ u(t) – γ

(
t, u(t)

)
, ()

g∗
(u) =

{
g(u) if α() ≤ u,
g(α()) + arctan(u – α()) if u < α(),

()

and

g∗
T (u) =

{
gT (u) if α(T) ≤ u,
gT (α(T)) – arctan(u – α(T)) if u < α(T).

()

The function f ∗ is an L-Carathéodory function, and g∗
 and g∗

T are continuous. Consider
the modified problem

⎧
⎪⎨

⎪⎩

(φ(u′(t)))′ = f ∗(t, u(t), u′(t)), a.e. t ∈ [, T],
φ(u′()) = g∗

(u()),
φ(u′(T)) = g∗

T (u(T)).
()

Step : Any solution of problem () is a solution of problem ()-().
Let u be a solution of problem (). We prove that α(t) ≤ u(t) for all t ∈ [, T].
Let us assume on the contrary that, for some t ∈ [, T],

max
t∈[,T]

[
α(t) – u(t)

]
= α(t) – u(t) > .

If t ∈ ], T[, then α′(t) = u′(t); hence, φ(α′(t)) = φ(u′(t)). We can find ω >  such that
for all t ∈ ]t, t + ω[, α(t) > u(t). We have

∀t ∈ ]t, t + ω[, γ
(
t, u(t)

)
= α(t) and δ

(
d
dt

γ
(
t, u(t)

))
= α′(t)

for a.e. t ∈ ]t, t + ω[.

It follows that, for all t ∈ ]t, t + ω[,

φ
(
α′(t)

)
– φ

(
u′(t)

)
=

∫ t

t

[(
φ
(
α′(s)

))′ – f
(
s,α(s),α′(s)

)
+

(
α(s) – u(s)

)]
ds

≥
∫ t

t

(
α(s) – u(s)

)
ds > .
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Since φ is an increasing homeomorphism, φ(α′(t)) – φ(u′(t)) >  ⇒ α′(t) – u′(t) > , a con-
tradiction.

If t = , then

φ
(
α′()

) ≤ φ
(
u′()

)
= g

(
α()

)
+ arctan

(
u() – α()

)
< g

(
α()

)
,

a contradiction with the definition of a lower solution.
If t = T , then

φ
(
α′(T)

) ≥ φ
(
u′(T)

)
= gT

(
α(T)

)
– arctan

(
u(T) – α(T)

)
> gT

(
α(T)

)
,

a contradiction with the definition of a lower solution.
In consequence, we have that α(t) ≤ u(t) for all t ∈ [, T]. Therefore, u is a solution of

problem ()-().
Step : Existence of solutions of problem ()-().
Let � = [αL,αM] × [–a, a]. Since f is an L-Carathéodory function, there exists ϕ ∈ L

such that, for a.e. t ∈ [, T] and all (x, y) ∈ �, |f (t, x; y)| ≤ ϕ(t).
Let

R = max

{
|αL|,

∣
∣∣
∣αL +


T

(
gT

(
α(T)

)
– g

(
α()

)
– π

)
–


T

‖ϕ‖L

∣
∣∣
∣, R + aT

}
.

By (), if u ∈ C is such that ‖u′‖∞ < a and uL ≥ R, then

∫ T


f ∗(t, u(t), u′(t)

)
dt – g∗

T
(
u(T)

)
+ g∗


(
u()

)
> . ()

Moreover, if u ∈ C is such that ‖u′‖∞ < a and uM ≤ –R, then

u(t) ≤ αL and u(t) ≤ αL +

T

(
gT

(
α(T)

)
– g

(
α()

)
– π

)
–


T

‖ϕ‖L , ∀t ∈ [, T].

It follows that
∫ T


f ∗(t, u(t), u′(t)

)
dt – g∗

T
(
u(T)

)
+ g∗


(
u()

)

=
∫ T



(
f
(
t,α(t),α′(t)

)
+ u(t) – α(t)

)
dt – gT

(
α(T)

)

+ arctan
(
u(T) – α(T)

)
+ g

(
α()

)
+ arctan

(
u() – α()

)

≤
∫ T



(
f
(
t,α(t),α′(t)

)
+ αL +


T

(
gT

(
α(T)

)
– g

(
α()

)
– π

)
–


T

‖ϕ‖L – α(t)
)

dt

– gT
(
α(T)

)
+ arctan

(
u(T) – α(T)

)
+ g

(
α()

)
+ arctan

(
u() – α()

)

<
∫ T



(
f
(
t,α(t),α′(t)

)
–


T

‖ϕ‖L +
(
αL – α(t)

))
dt

< . ()

Using (), (), and Theorem ., we deduce that problem () has at least one solution,
which is also a solution of problem ()-() by step . �
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Theorem . Assume that:
(i) there exists an upper solution β of problem ()-();

(ii) there R >  such that

uM ≤ –R and
∥
∥u′∥∥∞ < a

⇒
∫ T


f
(
t, u(t), u′(t)

)
dt – gT

(
u(T)

)
+ g

(
u()

)
< .

()

Then problem ()-() admits at least one solution.

Proof The proof is similar to that of Theorem .. �

Corollary . Assume that:
(a) there exists A ∈R such that f (t, u, v) ≥ A for a.e. t ∈ [, T] and all (u, v) ∈R× [–a, a];
(b) limx→+∞(g(x) – gT (x)) = +∞;
(c) there exists a lower solution α of problem ()-().

Then problem ()-() admits at least one solution.

Proof By (a) we have

∫ T


f
(
t, u(t), u′(t)

)
dt – gT

(
u(T)

)
+ g

(
u()

) ≥ AT + g(x) – gT (x). ()

By (b) there exists R >  such that () is true. By Theorem . problem ()-() admits at
least one solution. �

Corollary . Assume that:
(a) there exists A ∈R such that f (t, u, v) ≤ A for a.e. t ∈ [, T] and all (u, v) ∈R× [–a, a];
(b) limx→–∞(g(x) – gT (x)) = –∞;
(c) there exists an upper solution β of problem ()-().

Then problem ()-() admits at least one solution.

Proof The proof is similar to that of Corollary .. �

Example . Consider the problem

⎧
⎨

⎩

( u′(t)√
–(u′(t))

)′ = t –  + sin(u(t)) + u′(t) for a.e. t ∈ [, ],
u′()√

–(u′())
= (u()) –  and u′()√

–(u′())
= –eu() + .

We can see that |f (t, u, v)| ≤  for all (t, u, v) ∈ [, T] × R × [–, ], α(t) =  is a lower so-
lution, and limx→+∞(x + ex – ) = +∞. Using Corollary ., we deduce the existence of at
least one solution.
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