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Abstract
By using the Leggett-Williams norm-type theorem due to O’Regan and Zima and
constructing suitable Banach spaces and operators, we investigate the existence of
positive solutions for fractional p-Laplacian boundary value problems at resonance.
An example is given to illustrate the main results.

MSC: 34B15

Keywords: positive solutions; p-Laplacian operator; boundary value problem;
resonance; Fredholm operator

1 Introduction
Boundary value problems at resonance have attracted more and more attention. Many au-
thors studied the existence of solutions for these problems by using Mawhin’s continuous
theorem [] and its extension obtained by Ge and Ren []; see [–] and the references
cited therein. By using Leggett-Williams norm-type theorems due to O’Regan and Zima
[], the existence of positive solutions for the boundary value problems at resonance with
a linear derivative operator has been investigated (see [–]). To the best of our knowl-
edge, there is no paper to show the existence of a positive solution for boundary value
problems with a nonlinear derivative operator (for instance, p-Laplacian operator) at reso-
nance by using Leggett-Williams norm-type theorems. Motivated by the excellent results
mentioned above, we will discuss the existence of positive solutions for the p-Laplacian
boundary value problem

{
CDβ

+ [ϕp(CDα
+ x)](t) = f (t, (CDα

+ x)(t)), t ∈ (, ),
(CDα

+ x)() = (CDα
+ x)(), x(i)() = , i = , , , . . . , n – ,

(.)

where n –  < α ≤ n,  < β < , ϕp(s) = |s|p–s, p > , CDβ

+ is the Caputo fractional derivative
(see [, ]).

2 Preliminaries
For convenience, we introduce some notations and a theorem. For more details see [].

Assume that X, Y are real Banach spaces. A linear mapping L : dom L ⊂ X → Y is a
Fredholm operator of index zero (i.e. dim Ker L = codim Im L < +∞ and Im L is closed in
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Y ) and an operator N : X → Y is nonlinear. P : X → X and Q : Y → Y are projectors
with Im P = Ker L and Ker Q = Im L. J : Im Q → Ker L is a isomorphism since dim Im Q =
dim Ker L. Denote by LP the restriction of L to Ker P ∩ dom L → Im L and its inverse by KP .
So, x is a solution of Lx = Nx if and only if it satisfies x = (P + JQN)x + KP(I – Q)Nx.

Let C ⊂ X be a cone, γ : X → C be a retraction, � := P + JQN + KP(I – Q)N and �γ :=
� ◦ γ .

Theorem . [] Let �, � be open bounded subsets of X with � ⊂ � and C ∩ (� \
�) 	= ∅. Assume that L : dom L ⊂ X → Y is a Fredholm operator of index zero and the
following conditions are satisfied.

(C) QN : X → Y is continuous and bounded and KP(I – Q)N : X → X is compact on
every bounded subset of X ;

(C) Lx 	= λNx for all x ∈ C ∩ ∂� ∩ dom L and λ ∈ (, );
(C) γ maps subsets of � into bounded subsets of C;
(C) dB([I – (P + JQN)γ ]|Ker L, Ker L ∩ �, ) 	= , where dB stands for the Brouwer

degree;
(C) there exists u ∈ C \ {} such that ‖x‖ ≤ σ (u)‖�x‖ for x ∈ C(u) ∩ ∂�, where

C(u) = {x ∈ C : μu � x for some μ > } and σ (u) is such that
‖x + u‖ ≥ σ (u)‖x‖ for every x ∈ C;

(C) (P + JQN)γ (∂�) ⊂ C;
(C) �γ (� \ �) ⊂ C.
Then the equation Lx = Nx has at least one solution in the set C ∩ (� \ �).

Now, we present some fundamental facts on the fractional calculus theory which can be
found in [, ].

Definition . The Riemann-Liouville fractional integral of order α >  of a function y :
(,∞) → R is given by

Iα
+ y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

provided the right-hand side is pointwise defined on (,∞).

Definition . The Caputo fractional derivative of order δ >  of a function y : (,∞) →
R is given by

CDδ
+ y(t) =


�(n – δ)

∫ t


(t – s)n–δ–y(n)(s) ds,

provided that the right-hand side is pointwise defined on (,∞), where n = [δ] + .

Lemma . [, ] Assume f ∈ L[, ], q > p ≥ , q > , then

CDp
+ Iq

+ f (t) = Iq–p
+ f (t), CDp

+ Ip
+ f (t) = f (t).

Lemma . [, ] Assume p > , then

Ip
+

CDp
+ f (t) = f (t) + c + ct + · · · + cn–tn–,

where n is an integer and n –  < p ≤ n.
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Since CDβ

+ [ϕp(CDα
+ ·)] is a nonlinear operator, we cannot solve the problem (.) by The-

orem .. Based on this, we prove the following lemma.

Lemma . u(t) is a solution of the following problem:

{
(CDβ

+ u)(t) = f (t,ϕq(u(t))), t ∈ [, ],
u() = u(),

(.)

if and only if x(t) is a solution of (.), where x(t) = Iα
+ϕq(u(t)), 

p + 
q = .

Proof Assume that u(t) is a solution of the problem (.) and x(t) = Iα
+ϕq(u(t)). Then u(t) =

[ϕp(CDα
+ x)](t) and x(i)() = , i = , , , . . . , n – . Replaces u(t) with [ϕp(CDα

+ x)](t) in (.),
we can see that x(t) is a solution of (.).

On the other hand, if x(t) is a solution of (.) and u(t) = [ϕp(CDα
+ x)](t), substituting u(t)

for [ϕp(CDα
+ x)](t) in (.), we can see that u(t) satisfies (.). �

In this paper, we will always suppose that f ∈ [, ] ×R →R is continuous, p > , ϕp(s) =
s · |s|p–, 

p + 
q = , α > ,  < β < .

3 Main result
Let X = Y = C[, ] with the norm ‖u‖ = maxt∈[,] |u(t)|. Take a cone

C =
{

u(t) ∈ X | u(t) ≥ , t ∈ [, ]
}

.

Define operator L : dom L ⊂ X → Y and N : X → Y as follows:

(Lu)(t) =
(CDβ

+ u
)
(t), (Nu)(t) = f

(
t,ϕq

(
u(t)

))
,

where

dom L =
{

u(t) | u(t), CDβ

+ u(t) ∈ X, u() = u()
}

.

Then the problem (.) can be written by

Lu = Nu, u ∈ dom L.

Lemma . L is a Fredholm operator of index zero. KP is the inverse of L|dom L∩Ker P , where
KP : Im L → dom L ∩ Ker P is given by

KPy(t) =


�(β)

[∫ t


(t – s)β–y(s) ds –


β

∫ 


( – s)βy(s) ds

]
.

Proof It is easy to see that

Ker L = {c | c ∈R}, Im L =
{

y ∈ Y
∣∣∣ ∫ 


( – s)β–y(s) ds = 

}
,

and Im L ⊂ Y is closed.
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Define P : X → X, Q : Y → Y as

Pu =
∫ 


u(t) dt, Qy = β

∫ 


( – s)β–y(s) ds.

Obviously, P : X → X, Q : Y → Y are projectors and Im P = Ker L, X = Ker P ⊕ Ker L.
It is easy to see that Im L ⊂ Ker Q. Conversely, if y(t) ∈ Ker Q, take u(t) = 

�(β)
∫ t

 (t –
s)β–y(s) ds. Then u(t) ∈ dom L and Lu = CDβ

+ u(t) = y(t). These imply Ker Q ⊂ Im L. There-
fore Im L = Ker Q. For y ∈ Y , y = (y – Qy) + Qy ∈ Im L + Im Q. If y ∈ Im L ∩ Im Q, then
y = Qy and y ∈ Im L = Ker Q. This means that y = , i.e. Y = Im L ⊕ Im Q. So, dim Ker L =
codim Im L =  < +∞. L is a Fredholm operator of index zero.

For y ∈ Im L, it is clear that KPy ∈ dom L ∩ Ker P and LKPy = y. On the other hand, if
u ∈ dom L ∩ Ker P, by Lemma ., we get

KPLu(t) =


�(β)

[∫ t


(t – s)β–Lu(s) ds –


β

∫ 


( – s)βLu(s) ds

]

= Iβ

+
CDβ

+ u(t) – Iβ+
+

CDβ

+ u()

= u(t) + c – Iβ+
+

CDβ

+ u().

Thus,
∫ 

 KPLu(t) dt =
∫ 

 u(t) dt + c – Iβ+
+

CDβ

+ u(). It follows from u ∈ Ker P and KPLu ∈
Ker P that c – Iβ+

+
CDβ

+ u() = . So, we have KPLu = u, u ∈ dom L ∩ Ker P. �

Define J : Im Q → Ker L as J(c) = c, c ∈R.
Thus, JQN + KP(I – Q)N : X → X is given by

[
JQN + KP(I – Q)N

]
u(t) =

∫ 


G(t, s)f

(
s,ϕq

(
u(s)

))
ds, (.)

where

G(t, s) =

{
β( – s)β–( – tβ

�(β+) + 
�(β+) ) – (–s)β

�(β+) + (t–s)β–

�(β) ,  ≤ s < t ≤ ,

β( – s)β–( – tβ
�(β+) + 

�(β+) ) – (–s)β
�(β+) ,  ≤ t ≤ s < .

Lemma . QN : X → Y is continuous and bounded and KP(I – Q)N : � → X is compact,
where � ⊂ X is bounded.

Proof Assume that � ⊂ X is bounded. There exists a constant M > , such that |Nu| =
|f (t,ϕq(u(t)))| ≤ M, t ∈ [, ], u ∈ �. So, |QNu| ≤ M, u ∈ �, i.e. QN(�) is bounded. Based
on the definition of Q and the continuity of f we know that QN : X → Y is continuous.

For u ∈ �, we have

∣∣KP(I – Q)Nu(t)
∣∣

=
∣∣∣∣ 
�(β)

[∫ t


(t – s)β–(I – Q)Nu(s) ds –


β

∫ 


( – s)β (I – Q)Nu(s) ds

]∣∣∣∣
≤ 

�(β)

∫ t


(t – s)β–∣∣Nu(s)

∣∣ds +


�(β)

∫ t


(t – s)β–∣∣QNu(s)

∣∣ds
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+


β�(β)

∫ 


( – s)β

∣∣Nu(s)
∣∣ds +


β�(β)

∫ 


( – s)β

∣∣QNu(s)
∣∣ds

≤ M
�(β + )

< +∞.

Thus, |KP(I – Q)N(�) is bounded.
For u ∈ �,  ≤ t < t ≤ , we get

∣∣KP(I – Q)Nu(t) – KP(I – Q)Nu(t)
∣∣

=


�(β)

∣∣∣∣
∫ t


(t – s)β–(I – Q)Nu(s) ds –

∫ t


(t – s)β–(I – Q)Nu(s) ds

∣∣∣∣
=


�(β)

∣∣∣∣
∫ t



[
(t – s)β– – (t – s)β–](I – Q)Nu(s) ds +

∫ t

t

(t – s)β–(I – Q)Nu(s) ds
∣∣∣∣

≤ M
�(β)

[∫ t



[
(t – s)β– – (t – s)β–]ds +

∫ t

t

(t – s)β– ds
]

=
M

�(β + )
[
tβ
 – tβ

 + (t – t)β
]
.

It follows from the uniform continuity of tβ and t on [, ] that KP(I – Q)N(�) are equicon-
tinuous on [, ]. By the Arzela-Ascoli theorem, we see that KP(I – Q)N(�) is compact.

�

In order to prove our main result, we need the following conditions.

(H) There exists a constant R > , such that f (t, u) < , t ∈ [, ], u > R.
(H) There exist nonnegative functions a(t), b(t) with maxt∈[,]


�(β)

∫ t
 (t – s)(β–)a(s) ds :=

A < +∞, maxt∈[,]


�(β)
∫ t

 (t – s)(β–)b(s) ds := B < /, such that

∣∣f (t, u)
∣∣ ≤ a(t) + b(t)ϕp

(|u|).

(H) f (t, u) ≥ –( – t)–βϕp(u)/β , t ∈ [, ], u > .
(H) There exist r > , t ∈ [, ], and M ∈ (, ) such that

G(t, s)f (s, u) ≥  – M

M
ϕp(u), s ∈ [, ), Mr ≤ u ≤ r.

(H) G(t, s)f (s, u) ≥ –ϕp(u), s ∈ [, ), t ∈ [, ], u ≥ .

Lemma . If the conditions (H) and (H) hold, the set

� =
{

u(t) | (Lu)(t) = λNu(t), u(t) ∈ C ∩ dom L,λ ∈ (, )
}

is bounded.

Proof For u(t) ∈ �, we get QNu(t) =  and u(t) = λIβ

+ Nu(t) + u(). By (H) and QNu(t) =
, there exists t ∈ [, ] such that ϕq(u(t)) ≤ R. This, together with u(t) = λIβ

+ Nu(t) +
u(), means

u() ≤ u(t) +
∣∣λIβ

+ Nu(t)
∣∣ ≤ ϕp(R) +

∣∣Iβ

+ Nu(t)
∣∣.
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Thus, we have

u(t) ≤ u() +
∣∣λIβ

+ Nu(t)
∣∣ ≤ ϕp(R) +

∣∣Iβ

+ Nu(t)
∣∣ +

∣∣Iβ

+ Nu(t)
∣∣. (.)

It follows from (H) that

u(t) ≤ ϕp(R) +


�(β)

∫ t


(t – s)β–∣∣f (s,ϕq

(
u(s)

))∣∣ds

+


�(β)

∫ t


(t – s)β–∣∣f (s,ϕq

(
u(s)

))∣∣ds

≤ ϕp(R) +


�(β)

∫ t


(t – s)β–[a(s) + b(s)u(s)

]
ds

+


�(β)

∫ t


(t – s)β–[a(s) + b(s)u(s)

]
ds

≤ ϕp(R) + 
(
A + B‖u‖).

Therefore,

‖u‖ ≤ ϕp(R) + A
 – B

< +∞.

This means that � is bounded. �

Theorem . Assume that the conditions (H)-(H) hold. Then the boundary value prob-
lem (.) has at least one positive solution.

Proof Set

� =
{

u ∈ X | M‖u‖ <
∣∣u(t)

∣∣ < r < R, t ∈ [, ]
}

, � =
{

u ∈ X | ‖u‖ < R
}

,

where R > max{ϕp(R),�(β + )A} is large enough such that � ⊃ �. Clearly, � and �

are open bounded sets of X, � ⊂ � and C ∩ (� \ �) 	= ∅.
In view of Lemmas ., ., and ., L is a Fredholm operator of index zero and the

conditions (C), (C) of Theorem . are fulfilled.
Define γ : X → C as (γ u)(t) = |u(t)|, u(t) ∈ X. Then γ : X → C is a retraction and (C)

holds.
Let u(t) ∈ Ker L ∩ ∂�, then u(t) ≡ c = ±R, t ∈ [, ]. Define

H(c,λ) = c – λ|c| – λβ

∫ 


( – s)β–f

(
s,ϕq

(|c|))ds.

If c = R, λ ∈ [, ], by (H), we get

H(R,λ) = R – λR – λβ

∫ 


( – s)β–f

(
s,ϕq(R)

)
ds > .

If c = –R, λ ∈ [, ], by (H), we obtain

H(–R,λ) = –R – λR – λβ

∫ 


( – s)β–f

(
s,ϕq(R)

)
ds < –( + λ)R + λR = –R.

So, we have H(u,λ) 	= , u ∈ Ker L ∩ ∂�, λ ∈ [, ].
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Therefore,

dB
([

I – (P + JQN)γ
]|Ker L, Ker L ∩ �, 

)
= dB

(
H(·, )|Ker L, Ker L ∩ �, 

)
= dB

(
H(·, )|Ker L, Ker L ∩ �, 

)
= dB(I|Ker L, Ker L ∩ �, ) =  	= .

Thus, (C) holds.
Set u(t) = , t ∈ [, ], then u ∈ C \{}, C(u) = {u ∈ C | u(t) > , t ∈ [, ]}. Take σ (u) =

 and u ∈ C(u) ∩ ∂�. Then Mr ≤ u(t) ≤ r, t ∈ [, ]. By (H), we get

�u(t) =
∫ 


u(s) ds +

∫ 


G(t, s)f

(
s,ϕq

(
u(s)

))
ds

≥
∫ 


u(s) ds +

∫ 



 – M

M
u(s) ds

≥ Mr + ( – M)r = r = ‖u‖.

Thus, ‖u‖ ≤ σ (u)‖�u‖, for u ∈ C(u) ∩ ∂�. So, (C) holds.
For u(t) ∈ ∂�, t ∈ [, ], by the condition (H), we have

(P + JQN)γ (u) =
∫ 



∣∣u(s)
∣∣ds + β

∫ 


( – s)β–f

(
s,ϕq

(∣∣u(s)
∣∣))ds

≥
∫ 



∣∣u(s)
∣∣ds –

∫ 



∣∣u(s)
∣∣ds = .

So, (P + JQN)γ (∂�) ⊂ C. Hence, (C) holds.
For u(t) ∈ � \ �, t ∈ [, ], it follows from (H) that

(�γ u)(t) =
∫ 



∣∣u(s)
∣∣ds +

∫ 


G(t, s)f

(
s,ϕq

(∣∣u(s)
∣∣))ds ≥

∫ 



∣∣u(s)
∣∣ds –

∫ 



∣∣u(s)
∣∣ds = .

So, (C) is satisfied.
By Theorem ., we confirm that the equation Lu = Nu has a positive solution u. Based

on Lemma ., the problem (.) has at least one positive solution. �

4 Examples
To illustrate our main result, we present an example.

Let us consider the following boundary value problem:

⎧⎨
⎩

CD


+ [ϕ 


(CD



+ x)](t) = 

 ( – t) 
 – 

 ( – t) 
 |CD



+ x(t)| 

 , t ∈ (, ),

x() = , (CD


+ x)() = (CD



+ x)().

(.)

On the basis of Lemma ., it is sufficient to examine the issue

{
CD



+ u(t) = 

 ( – t) 
 – 

 ( – t) 
 |u(t)|, t ∈ [, ],

u() = u().
(.)
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Corresponding to the problem (.), we have f (t, u) = 
 ( – t) 

 – 
 ( – t) 

 |u| 
 , p = 

 ,
q = , α = 

 , β = 
 . So,

G(t, s) =

⎧⎪⎨
⎪⎩


 ( – s)– 

 ( – t



�( 
 )

+ 
�( 

 )
) – (–s)




�( 
 )

+ (t–s)– 


�( 
 )

,  ≤ s < t ≤ ,


 ( – s)– 

 ( – t



�( 
 )

+ 
�( 

 )
) – (–s)




�( 
 )

,  ≤ t ≤ s < .

Take R = , a(t) = , b(t) = 
 , r = ., t = , and M = ..

Clearly, (H) holds. By simple calculations, we can see that

∣∣f (t, u)
∣∣ ≤ a(t) + b(t)ϕp

(|u|),

A = max
t∈[,]


�( 

 )

∫ t


(t – s)– 

 ds =


.
< +∞,

B = max
t∈[,]


�( 

 )

∫ t


(t – s)– 

 · 


ds =


.
<




,

f (t, u) ≥ –



( – t)

 u


 , u > ,

G(t, s)f (s, u) ≥ .


–
.


u




≥ .
.

u

 , . ≤ u ≤ ., s ∈ [, ),

G(t, s)f (s, u) ≥ –u

 , u ≥ , s ∈ [, ), t ∈ [, ].

So, the conditions (H)- (H) hold. By Theorem ., we can conclude that the problem
(.) has at least one positive solution.
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