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1 Introduction
The Sturm-Liouville problem has many applications in different areas of science, for ex-
ample, engineering and mathematics. The classical Sturm-Liouville problem for a linear
differential equation of second order is a boundary value problem as the following one:

⎧
⎪⎨

⎪⎩

– d
dt [p(t) dx

dt ] + v(t)x = λr(t)x, t ∈ [a, b],
ax(a) + ax′(a) = ,
bx(b) + bx′(b) = .

(.)

Recently in [] the authors proposed an approach to the fractional version of the Sturm-
Liouville problem. They investigated the eigenvalues and eigenfunctions associated to
these operators and also theirs properties, with the objective of applying this generalized
Sturm-Liouville theory to fractional partial differential equations.

Fractional differential equations have attracted the attention of many researchers work-
ing in a variety of disciplines, due to the development and applications of these equations
in many fields such as engineering, mathematics, physics, chemistry, etc. For recent de-
velopments of the topic, we refer the reader to [–]. However, it has been noticed that
most of the work on the topic is concerned with Riemann-Liouville- or Caputo-type frac-
tional differential equations. Besides these fractional derivatives, another kind of fractional
derivatives found in the literature is the fractional derivative due to Hadamard, introduced
in  [], which differs from the aforementioned derivatives in the sense that the ker-
nel of the integral in the definition of Hadamard derivative contains a logarithmic function
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of arbitrary exponent. A detailed description of the Hadamard fractional derivative and
integral can be found in [, –].

The Langevin equation (first formulated by Langevin in ) is found to be an effective
tool to describe the evolution of physical phenomena in fluctuating environments []. For
some new developments on the fractional Langevin equation, see, for example, [–].

In this paper we introduce a new class of boundary value problems by combining Sturm-
Liouville and Langevin fractional differential equations. More precisely, we initiate the
study of the existence and uniqueness of solutions for the generalized Sturm-Liouville and
Langevin fractional differential equations of Hadamard type, with anti-periodic boundary
conditions of the form

{
Dβ ([p(t)Dα + r(t)]x(t)) = g(t, x(t)),  < t < T ,
x() = –x(T), Dαx() = –Dαx(T),

(.)

where Dρ denotes the Caputo-type Hadamard fractional derivative of order ρ , ρ ∈ {α,β}
with  < α,β < , p ∈ C([, T],R) with |p(t)| ≥ K > , r ∈ C([, T],R), and g ∈ C([, T] ×
R,R).

Note that:
• If r(t) ≡  for all t ∈ [, T], then the problem (.) is reduced to the Sturm-Liouville

fractional boundary value problem of Hadamard type of the form

{
Dβ (p(t)Dαx(t)) = g(t, x(t)),  < t < T ,
x() = –x(T), Dαx() = –Dαx(T).

(.)

• If p(t) ≡  and r(t) ≡ λ, λ ∈R, for t ∈ [, T], then the problem (.) is reduced to

{
Dβ (Dα + λ)x(t) = g(t, x(t)),  < t < T ,
x() = –x(T), Dαx() = –Dαx(T),

(.)

which is the Langevin fractional boundary value problem.
This paper is organized as follows. In Section , some necessary definitions and lemmas

that will be used to prove our main result are shown. In Section , we prove our main
results. By applying the Banach contraction mapping principle an existence and unique-
ness result is proved. Moreover, two existence results are established via Leray-Schauder
nonlinear alternative and Krasnosleskii’s fixed point theorem. Illustrative examples are
presented in Section .

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [, ]
and present preliminary results needed in our proofs later.

Definition . For an at least n-times differentiable function f : [,∞) →R, the Caputo-
type Hadamard derivative of fractional order α is defined as

Dαf (t) =


�(n – α)

∫ t



(

log
t
s

)n–α–

δnf (s)
ds
s

, n –  < α < n, n = [α] + ,

where δ = t d
dt , log(·) = loge(·), [α] denotes the integer part of the real number α.
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Definition . The Hadamard fractional integral of order α is defined as

Iαf (t) =


�(α)

∫ t



(

log
t
s

)α–

f (s)
ds
s

, α > ,

provided the integral exists.

Lemma . ([]) Let u ∈ ACn
δ [a, b] or Cn

δ [a, b] and α ∈ C, where Xn
δ [a, b] = {f : [a, b] →

C : δn–f (t) ∈ X[a, b]}. Then we have

(
IαDαu

)
(t) = u(t) –

n–∑

k=

ck(log t)k ,

where ck ∈ R, k = , , , . . . , n – , (n = [α] + ).

For the sake of convenience, we set the constants

μ =
p()
p(T)

, ξ = μr(T) – r() and η = Iα

(

p

)

(T). (.)

Observe that μ >  and η �= . For g ∈ C([, T] ×R,R), we use the following notation:

Iα(gx)(t) =


�(α)

∫ t



(

log
t
s

)α–

g
(
s, x(s)

)ds
s

.

Lemma . The problem (.) is equivalent to the following fractional integral equation:

x(t) = Iα

(

p

Iβgx

)

(t) – Iα

(
r
p

x
)

(t)

+
(

–μ

μ + 
Iβ (gx)(T) +

ξ

μ + 
x(T)

)

Iα

(

p

)

(t)

–



[

Iα

(

p

Iβgx

)

(T) – Iα

(
r
p

x
)

(T)

+
(

–μ

μ + 
Iβ (gx)(T) +

ξ

μ + 
x(T)

)

η

]

, (.)

where μ, ξ , and η are defined by (.).

Proof Taking the Hadamard fractional integral of order β to both sides of the problem
(.) and applying Lemma ., we obtain

p(t)Dαx(t) + r(t)x(t) = Iβ (gx)(t) + c, c ∈R,

which yields

Dαx(t) =
Iβ (gx)(t) – r(t)x(t) + c

p(t)
. (.)
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The boundary condition Dαx() = –Dαx(T) implies

c =
–μ

μ + 
Iβ (gx)(T) +

ξ

μ + 
x(T).

Using the Hadamard fractional integral of order α to both sides of (.) and applying
Lemma . again, we have

x(t) = Iα

(

p

Iβgx

)

(t) – Iα

(
r
p

x
)

(t) + cIα

(

p

)

(t) + c, (.)

where c ∈ R. By utilizing the anti-periodic boundary condition x() = –x(T), it follows
that

c = –



[

Iα

(

p

Iβgx

)

(T) – Iα

(
r
p

x
)

(T) + cIα

(

p

)

(T)
]

.

Substituting the constants c and c into (.), we get the fractional integral equation (.)
as desired.

Conversely, it can easily be shown by direct computation that the integral equation (.)
satisfies the problem (.). This completes the proof. �

3 Main results
Let C = C([, T],R) be the Banach space of all continuous functions from [, T] to R en-
dowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [, T]}. Define an operator A : C → C
by

Ax(t) = Iα

(

p

Iβgx

)

(t) – Iα

(
r
p

x
)

(t)

+
(

–μ

μ + 
Iβ (gx)(T) +

ξ

μ + 
x(T)

)

Iα

(

p

)

(t)

–



[

Iα

(

p

Iβgx

)

(T) – Iα

(
r
p

x
)

(T)

+
(

–μ

μ + 
Iβ (gx)(T) +

ξ

μ + 
x(T)

)

η

]

. (.)

Observe that the problem (.) has solutions if and only if the operator A has fixed points.
Define the constants p∗ = inft∈[,T] |p(t)| and r∗ = supt∈[,T] |r(t)| and set


 =
(log T)α+β

p∗�(α + β + )
+

μ|η|(log T)β

(μ + )�(β + )
, (.)


 =
r∗(log T)α

p∗�(α + )
+

|ξ ||η|
(μ + )

, (.)


 = 
L + 
. (.)

3.1 Existence and uniqueness result
In this subsection we give one existence and uniqueness result, by using the Banach con-
traction mapping principle.
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Theorem . Assume that:

(H) there exists a constant L >  such that |g(t, x) – g(t, y)| ≤ L|x – y|, for each t ∈ [, T] and
x, y ∈R.

If


 < , (.)

where 
 is defined by (.), then the problem (.) has a unique solution on [, T].

Proof To prove that the problem (.) has a unique solution, we consider a fixed point
problem, x = Ax, where the operator A is defined as in (.). To accomplish our purpose,
we apply the Banach contraction mapping principle to show that A has a unique fixed
point.

We define supt∈[,T] |g(t, )| = M < ∞, and choose

R ≥ 
M
 – 


, (.)

where 
 and 
 are defined by (.) and (.), respectively. Now, we show that ABR ⊂ BR,
where BR = {x ∈ C : ‖x‖ ≤ R}. For any x ∈ BR, we have

∣
∣Ax(t)

∣
∣ ≤ Iα

(


|p| Iβ
(|gx|

)
)

(t) + Iα

( |r|
|p| |x|

)

(t)

+
(

μ

(μ + )
Iβ

(|gx|
)
(T) +

|ξ |
(μ + )

∣
∣x(T)

∣
∣

)

Iα

(


|p|
)

(t)

+



[

Iα

(


|p| Iβ |gx|
)

(T) + Iα

( |r|
|p| |x|

)

(T)

+
(

μ

(μ + )
Iβ

(|gx|
)
(T) +

|ξ |
(μ + )

∣
∣x(T)

∣
∣

)

|η|
]

≤ Iα

(


|p| Iβ
(|gx – g| + |g|

)
)

(T) + Iα

( |r|
|p| |x|

)

(T)

+
(

μ

(μ + )
Iβ

(|gx – g| + |g|
)
(T) +

|ξ |
(μ + )

∣
∣x(T)

∣
∣

)

Iα

(


|p|
)

(T)

+



Iα

(


|p| Iβ
(|gx – g| + |g|

)
)

(T) +



Iα

( |r|
|p| |x|

)

(T)

+



(
μ

(μ + )
Iβ

(|gx – g| + |g|
)
(T) +

|ξ |
(μ + )

∣
∣x(T)

∣
∣

)

|η|

≤ 


(
RL + M

p∗

)
(log T)α+β

�(α + β + )
+




(
Rr∗

p∗

)
(log T)α

�(α + )

+



(
μ|η|

(μ + )

)

(RL + M)
(log T)β

�(β + )
+

|ξ ||η|
(μ + )

R

= 
M + 
R ≤ R.

This implies that ABR ⊂ BR.
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By (H), for any x, y ∈ BR, we have

∣
∣Ax(t) – Ay(t)

∣
∣

≤ 
p∗

Iα+β
(|gx – gy|

)
(T) +

r∗

p∗
‖x – y‖Iα()(T) +

|η|μ
(μ + )

Iβ
(|gx – gy|

)
(T)

+ |η|‖x – y‖ |ξ |
(μ + )

+


p∗
Iα+β

(|gx – gy|
)
(T) +

r∗

p∗
‖x – y‖Iα()(T)

+
|η|μ

(μ + )
Iβ

(|gx – gy|
)
(T) +

|η||ξ |
(μ + )

‖x – y‖

≤ L‖x – y‖(log T)α+β

p∗�(α + β + )
+

r∗‖x – y‖(log T)α

p∗�(α + )
+

|η|μ
(μ + )

L‖x – y‖(log T)β

�(β + )

+
|η||ξ |

(μ + )
‖x – y‖ +

L‖x – y‖(log T)α+β

p∗�(α + β + )
+

r∗‖x – y‖(log T)α

p∗�(α + )

+
|η|μ

(μ + )
L‖x – y‖(log T)β

�(β + )
+

|η||ξ |
(μ + )

‖x – y‖

= 
‖x – y‖.

As 
 < , A is a contraction. Therefore, we see from the Banach contraction mapping
principle that the operatorA has a fixed point which is the unique solution of the boundary
value problem (.). This completes the proof. �

If r(t) ≡  for t ∈ [, T], then we have ξ =  and r∗ =  and we also get the following
result.

Corollary . Suppose that the condition (H) holds. If 
L < , where 
 is defined by
(.), then the problem (.) has a unique solution on [, T].

If p(t) ≡  and r(t) ≡ λ for t ∈ [, T] and λ ∈ R, then we obtain p∗ = , r∗ = |λ|, μ = ,
ξ = , η = (log T)α

�(α+) , and the following corollary.

Corollary . Assume that the condition (H) is satisfied. If




(


�(α + β + )
+


�(α + )�(β + )

)

L(log T)α+β +


|λ| (log T)α

�(α + )
< ,

then the problem (.) has a unique solution on [, T].

3.2 Existence results
Now we give an existence result via Leray-Schauder nonlinear alternative.

Theorem . (Nonlinear alternative for single valued maps []) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C and  ∈ U . Suppose that A : Ū → C is
a continuous, compact (that is, A(Ū) is a relatively compact subset of C) map. Then either

(i) A has a fixed point in Ū , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with x = λA(x).

Theorem . Assume that:
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(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
ϕ ∈ C([, T],R+) such that

∣
∣g(t, x)

∣
∣ ≤ ϕ(t)ψ

(|x|) for each (t, x) ∈ [, T] ×R; (.)

(H) there exists a constant M >  such that

( – 
)M
‖ϕ‖ψ(M)


> , 
 < , (.)

where 
, 
 are defined by (.) and (.), respectively.

Then the boundary value problem (.) has at least one solution on [, T].

Proof Let the operator A be defined as in (.). Now, we are going to prove that the oper-
ator A maps bounded sets (balls) into bounded sets in C([, T],R). For ρ > , we define a
bounded ball Bρ = {x ∈ C([, T],R) : ‖x‖ ≤ ρ}. Then, for t ∈ [, T], we have

∣
∣(Ax)(t)

∣
∣ ≤ Iα

(


|p| Iβ
(|gx|

)
)

(t) + Iα

( |r|
|p| |x|

)

(t) +
(

μ

(μ + )
Iβ

(|gx|
)
(T)

+
|ξ |

(μ + )
∣
∣x(T)

∣
∣

)

Iα

(


|p|
)

(t) +



[

Iα

(


|p| Iβ |gx|
)

(T)

+ Iα

( |r|
|p| |x|

)

(T) +
(

μ

(μ + )
Iβ

(|gx|
)
(T) +

|ξ |
(μ + )

∣
∣x(T)

∣
∣

)

|η|
]

≤ ‖ϕ‖ψ(|x|)
p∗

Iα+β ()(T) +
ρr∗

p∗
Iα()(T) +

|η|μ‖ϕ‖ψ(|x|)
(μ + )

Iβ ()(T)

+
|η||ξ |ρ
(μ + )

+
‖ϕ‖ψ(|x|)

p∗
Iα+β ()(T) +

ρr∗

p∗
Iα()(T)

+
|η|μ‖ϕ‖ψ(|x|)

(μ + )
Iβ ()(T) +

|η||ξ |ρ
(μ + )

≤ ‖ϕ‖ψ(ρ)
 + ρ
,

which leads to

‖Ax‖ ≤ ‖ϕ‖ψ(ρ)
 + ρ
. (.)

Next we will show that the operator A maps bounded sets into equicontinuous sets of
C([, T],R). Let τ, τ ∈ [, T] such that τ < τ and x ∈ Bρ . Then we have

∣
∣(Ax)(τ) – (Ax)(τ)

∣
∣

≤ ‖ϕ‖ψ(ρ)
p∗�(α + β)

[∫ τ



(

log
τ

s

)α+β– ds
s

–
∫ τ



(

log
τ

s

)α+β– ds
s

]

+
ρr∗

p∗�(α)

[∫ τ



(

log
τ

s

)α– ds
s

–
∫ τ



(

log
τ

s

)α– ds
s

]

+
(

μ‖ϕ‖ψ(ρ)(log T)β

(μ + )�(β + )
+

ρ|ξ |
(μ + )

)

· 
p∗�(α)
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×
[∫ τ



(

log
τ

s

)α– ds
s

–
∫ τ



(

log
τ

s

)α– ds
s

]

=
‖ϕ‖ψ(ρ)

p∗�(α + β + )
∣
∣(log τ)α+β – (log τ)α+β

∣
∣ +

ρr∗

p∗�(α + )
∣
∣(log τ)α – (log τ)α

∣
∣

+
(

μ‖ϕ‖ψ(ρ)(log T)β

(μ + )�(β + )
+

ρ|ξ |
(μ + )

)

· 
p∗�(α + )

· ∣∣(log τ)α – (log τ)α
∣
∣.

As τ → τ, the right-hand side of the above inequality tends to zero independently of x ∈
Bρ . Therefore by the Arzelá-Ascoli theorem the operator A : C([, T],R) → C([, T],R)
is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Theorem .) once
we have proved the boundedness of the set of the solutions to the equations x = νAx for
ν ∈ (, ).

Let x be a solution of the operator equation x = Ax. Then, for t ∈ [, T], by directly
computation, we have

∣
∣x(t)

∣
∣ ≤ ‖ϕ‖ψ(‖x‖)
 + ‖x‖
, (.)

which yields

( – 
)‖x‖
‖ϕ‖ψ(‖x‖)


≤ ,

where the constants 
 and 
 are defined by (.) and (.), respectively. From (H),
there exists a positive constant M such that ‖x‖ �= M. Let us set

U =
{

x ∈ C
(
[, T],R

)
: ‖x‖ < M

}
.

We observe that the operator A : U → C([, T],R) is continuous and completely contin-
uous. From the choice of U , there is no x ∈ ∂U such that x = νAx for some ν ∈ (, ).
Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem .), we see
that the operator A has a fixed point x ∈ U which is a solution of the problem (.). The
proof is completed. �

Corollary . Suppose that the condition (H) is satisfied. If there exists a positive constant
M such that

M
‖ϕ‖ψ(M)


> , (.)

then the problem (.) has at least one solution on [, T].

Corollary . Assume that the condition (H) is fulfilled. If there exists a positive constant
M such that

( – 
 |λ| (log T)α

�(α+) )M

‖ϕ‖ψ(M)( 

�(α+β+) + 
�(α+)�(β+) )(log T)α+β

> , (.)
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with



|λ| (log T)α

�(α + )
< , (.)

then the problem (.) has at least one solution on [, T].

Our last existence result is based on Krasnoselskii’s fixed point theorem.

Theorem . (Krasnoselskii’s fixed point theorem []) Let M be a closed, bounded, con-
vex, and nonempty subset of a Banach space X. Let A, B be operators such that

(a) Ax + By ∈ M where x, y ∈ M;
(b) A is compact and continuous;
(c) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Theorem . Let g : [, T] × R → R be a continuous function satisfying (H) in Theo-
rem .. In addition, assume that:

(H) |g(t, x)| ≤ ω(t), ∀(t, x) ∈ [, T] ×R, and ω ∈ C([, T],R+).

If

L
 <  and 
 < , (.)

where 
 and 
 are defined by (.) and (.), respectively, then the boundary value prob-
lem (.) has at least one solution on [, T].

Proof We decompose the operator A defined in (.), into two operators A and A on
B� = {x ∈ C : ‖x‖ ≤ �} by

Ax(t) = –Iα

(
r
p

x
)

(t) +
ξ

μ + 
x(T)Iα

(

p

)

(t) +



Iα

(
r
p

x
)

(T)

–
ηξ

(μ + )
x(T),

Ax(t) = Iα

(

p

Iβgx

)

(t) +
–μ

μ + 
Iβ (gx)(T)Iα

(

p

)

(t) –



Iα

(

p

Iβgx

)

(T)

+
ημ

(μ + )
Iβ (gx)(T),

with � satisfying

� ≥ ‖ω‖


 – 

, (.)

and ‖ω‖ = supt∈[,T] |ω(t)|. Note that the ball B� is a closed, bounded, and convex subset of
the Banach space C .

To prove that Ax + Ay ∈ B� , we let x, y ∈ B� . Then we get

∣
∣Ax(t) + Ay(t)

∣
∣

≤ Iα

( |r|
|p| |x|

)

(t) +
|ξ |

(μ + )
∣
∣x(T)

∣
∣Iα

(


|p|
)

(t) +



Iα

( |r|
|p| |x|

)

(T)
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+
|η||ξ |

(μ + )
∣
∣x(T)

∣
∣ + Iα

(


|p| Iβ
(|gy|

)
)

(t) +
μ

(μ + )
Iβ

(|gy|
)
(T)Iα

(


|p|
)

(t)

+



Iα

(


|p| Iβ
(|gy|

)
)

(T) +
|η|μ

(μ + )
Iβ

(|gy|
)
(T)

≤ �
 + ‖ω‖
 ≤ �.

It follows that Ax + Ay ∈ B� . Thus condition (a) of Theorem . is satisfied. To prove
that A is a contraction mapping, for x, y ∈ B� , we have

∣
∣Ax(t) – Ay(t)

∣
∣ ≤ Iα

(


|p| Iβ
(|gx – gy|

)
)

(t) +
μ

(μ + )
Iβ

(|gx – gy|
)
(T)Iα

(


|p|
)

(t)

+



Iα

(


|p| Iβ
(|gx – gy|

)
)

(T) +
|η|μ

(μ + )
Iβ

(|gx – gy|
)
(T)

≤ L
‖x – y‖,

which is a contraction, since L
 < . Therefore, the condition (c) of Theorem . is ful-
filled.

By using the continuity of the function g , we deduce that the operator A is continuous.
For x ∈ B� , it follows that

‖Ax‖ ≤ �
,

which implies that the operator A is uniformly bounded on B� . Now we are going to
prove that A is equicontinuous. For τ, τ ∈ [, T] such that τ < τ and for x ∈ B� , we have

∣
∣Ax(τ) – Ax(τ)

∣
∣

≤ �r∗

p∗�(α + )
∣
∣(log τ)α – (log τ)α

∣
∣ +

�|ξ |
p∗(μ + )�(α + )

∣
∣(log τ)α – (log τ)α

∣
∣,

which is independent of x and tends to zero as τ → τ. Hence A is equicontinuous.
Therefore A is relatively compact on B� , and by Arzelá-Ascoli theorem, A is compact
on B� . Thus the condition (b) of Theorem . is fulfilled. Therefore all conditions of The-
orem . are satisfied, and consequently, the problem (.) has at least one solution on
[, T]. This completes the proof. �

Corollary . Suppose that the conditions (H) and (H) are satisfied. If 
L < , where

 is defined by (.), then the problem (.) has at least one solution on [, T].

Corollary . Assume that the conditions (H) and (H) are fulfilled. If




(


�(α + β + )
+


�(α + )�(β + )

)

L(log T)α+β <  and


|λ| (log T)α

�(α + )
< ,

then the problem (.) has at least one solution on [, T].

4 Examples
In this section, we present some examples to illustrate our results.
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Example . Consider the following generalized Sturm-Liouville and Langevin equations
via Hadamard fractional derivatives with anti-periodic boundary conditions:

{
D/([(t/ + )D/ + (t/ + )]x(t)) = g(t, x(t)), t ∈ [, ],
x() = –x(), D/x() = –D/x().

(.)

Here α = /, β = /, p(t) = t/ + , r(t) = t/ + , and T = . From the given infor-
mation, we find that μ = ., |ξ | = ., η = ., p∗ = ,
r∗ = ., 
 = ., and 
 = ..

(i) Let g : [, ] ×R →R with

g(t, x) =



(
x + |x|
|x| + 

)

cos π t +



. (.)

Then we have |g(t, x) – g(t, y)| ≤ (/)|x – y| and (H) is satisfied with L = /. Thus

 = . < . Hence, by Theorem ., the problem (.) with (.) has a unique
solution on [, ].

(ii) Let now g : [, ] ×R →R with

g(t, x) = 
( |x|

|x| + 

)

cos π t +



. (.)

From (.), we have |g(t, x) – g(t, y)| ≤ |x – y| with L =  and |g(t, x)| ≤  cos π t + / for
all (t, x) ∈ [, T] ×R, and thus (H) and (H) are satisfied. Therefore, we have

L
 = . <  and 
 = ..

Thus all assumptions of Theorem . are satisfied, and consequently the problem (.)
with g given by (.) has at least one solution on [, ].

Remark . Theorem . cannot be applied to the problem (.) with g given by (.)
since 
 = . > .

Example . Consider the following generalized Sturm-Liouville and Langevin equations
via Hadamard fractional derivatives with anti-periodic boundary conditions:

{
D/([p(t)D/ + r(t)]x(t)) = 

t+ ( x(t)
(+|x(t)|) + 

 ), t ∈ [, e],
x() = –x(e), D/x() = –D/x(e).

(.)

Here α = /, β = /, T = e, and g(t, x) = (/(t + ))((x/(( + |x|))) + (/)). Since
|g(t, x)| ≤ (/(t + ))((|x|/) + (/)), we set ϕ(t) = /(t + ) and ψ(|x|) = (/)|x| + (/).

(i) The Sturm-Liouville case. Let

r(t) ≡  and p(t) = 
√

t + . (.)

We can find that μ = ., ξ = , η = ., and 
 = ..
Therefore, there exists a constant M > . satisfying inequality (.). Thus,
by Corollary ., the problem (.) with (.) has at least one solution on [, e].
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(ii) The Langevin case. For t ∈ [, e], let

r(t) ≡ 


and p(t) ≡ . (.)

Then there exists a positive constant M > ., which satisfies the inequality
(.). Therefore, by Corollary ., the problem (.) with (.) has at least one solution
on [, e].
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