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Abstract
A Crank-Nicolson-type difference scheme is presented for the spatial variable
coefficient subdiffusion equation with Riemann-Liouville fractional derivative. The
truncation errors in temporal and spatial directions are analyzed rigorously. At each
time level, it results in a linear system in which the coefficient matrix is tridiagonal and
strictly diagonally dominant, so it can be solved by the Thomas algorithm. The
unconditional stability and convergence of the scheme are proved in the discrete L2
norm by the energy method. The convergence order is min{2 – α

2 , 1 + α} in the
temporal direction and two in the spatial one. Finally, numerical examples are
presented to verify the efficiency of our method.
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1 Introduction
In recent years, fractional differential equations have captured great attention of research
in different domains. This facts reflect the ability of fractional calculation to describe many
phenomena in different disciplines such as semiconductors, mechanics, signal processing,
porous media, anomalous diffusion, and so on [–]. Employing fractional derivatives to
describe the procedure of anomalous diffusion, we get the time fractional subdiffusion
equation [, , ]:

∂u(x, t)
∂t

= D–α
t

[
Kr

∂u(x, t)
∂x

]
+ f (x, t), ()

where D–α
t ( < α < ) denotes the Riemann-Liouville fractional derivative operator de-

fined as

D–α
t u(t) =


Γ (α)

d
dt

∫ t



u(s)
(t – s)–α

ds. ()

Some researchers considered the similar form with Caputo derivative:

C
Dα

t u(x, t) =
∂u(x, t)

∂x + g(x, t), ()
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where C
Dα

t denotes Caputo’s derivative operator defined by

C
Dα

t u(t) =


Γ ( – α)

∫ t



du(s)
ds

(t – s)–α ds, α ∈ (, ). ()

We have the following relation between the Caputo and Riemann-Liouville fractional
derivatives.

Let y(t) be an (m–) times continuously differentiable function in the interval [, T] with
y(m)(t) integrable in [, T]. For every p, if  ≤ m –  ≤ p ≤ m, then the Riemann-Liouville
fractional derivative Dp

t y(t) exists, and the following equality holds []:

Dp
t y(t) =

m–∑
j=

y(j)()tj–p

Γ ( + j – p)
+ C

D
p
t y(t)

=
m–∑
j=

y(j)()tj–p

Γ ( + j – p)
+


Γ (m – p)

∫ t



y(m)(s)
(t – s)p–m+ ds. ()

Much remarkable work has been done theoretically for diffusion and fractional prob-
lems [–]. Marin and Marinescu [] studied the asymptotic partition of total energy
for the solutions of the mixed initial boundary value problem within the context of the
thermoelasticity of initially stressed bodies, and Hameed et al. [] derived and analyzed
a mathematical model subject to low Reynolds number and long wavelength approxima-
tions in order to study the peristaltic motion of fractional second-grade fluid in a vertical
tube. In the regard of numerical work for time-fractional diffusion equations, Langlands
and Henry [] obtained an implicit numerical method for the homogeneous problem
and discussed the accuracy and stability of their scheme. Zhuang et al. [] integrated the
linear and nonlinear subdiffusion equations about the time variable t and then approxi-
mated the obtained equivalent equations numerically with the idea of numerical integrals.
Yuste and Acedo [] developed an explicit scheme and gave a strict proof of the stability
of the explicit scheme, and then Yuste [] analyzed the weighted average finite difference
scheme by the von Neumann method.

One main approximation approach to a discrete analog of the time-fractional derivative
is an L formula. Sun and Wu [] first derived a fully discrete difference scheme employ-
ing the L approximation, where the truncation error was proved to be of order  – α in
temporal accuracy. Lin and Xu [] constructed an effective numerical method by employ-
ing the finite difference scheme in time and using the Legendre spectral methods in space.
Chen et al. [] gave an implicit numerical scheme for the problem and proved the un-
conditional stability and L-norm convergence. Gao and Sun [] applied the L formula
to approximate the Caputo time-fractional derivative and developed a compact finite dif-
ference scheme to promote the spatial accuracy for the fractional subdiffusion equation.
They obtained the fourth-order convergence rate in spatial direction. Another main way
to a discrete analog of the fractional derivative is the shifted Grünwald-Letnikov formula.
Very recently, Deng’s group [, ] has presented a high-order discrete analog of the
space-fractional derivative by assembling the shifted GL operator with different weights.

The Crank-Nicolson difference scheme is a classical method for difference approxima-
tion. The works employing the CN method for fractional problems constantly emerge.
Zhang et al. [] presented a Crank-Nicolson-type difference scheme for a subdiffusion
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equation with Riemann-Liouville fractional derivative, where the discrete H norm con-
vergence was proved rigorously, and the maximum norm error estimate was given. Based
on a Crank-Nicolson-type discretization, Wang and Vong [] proposed a second-order
accuracy formula to approximate the time-fractional derivative and established a compact
finite difference scheme for solving the modified anomalous fractional subdiffusion equa-
tion. For more applications of the Crank-Nicolson scheme, we refer the reader to [–].

The works we listed are mostly focused on the subdiffusion equation with constant coef-
ficient. However, many practical applications involved variable diffusion coefficients [–
]. For example, the flow of heat in a rod is constituted by composite heat-conducting ma-
terials, which means that the diffusion coefficient may vary with space variable. In view
of some external heat source, Zhao [] considered the Caputo-fractional subdiffusion
equation with spatially variable coefficient:

C
Dα

t u(x, t) =
∂

∂x

(
ϕ(x)

∂u
∂x

)
+ g(x, t). ()

Employing an L formula, she obtained the convergence of order  – α in the temporal
direction and fourth-order approximation order in space. Vong et al. [] considered the
same equation under Neumann boundary conditions and obtained the global convergence
of order O(τ –α + h). Metzler et al. [] suggested the following fractional model equation
for anomalous diffusion:

D


dw
t P(r, t) =


rds–

∂

∂r

(
rds– ∂P(r, t)

∂r

)
, r > , t > , ()

where P(r, t) is the probability density of random walks on fractals, dw >  is the anoma-
lous diffusion exponent, ds is just the spectral dimension of the fractal, and ds = df

dw
with df

denoting fractal dimension of the underlying object. Employing () and neglecting the co-
efficient 

rds– (which has no impact on difference approximation), () can be transformed
into equation ().

If u(x, t) is suitably smooth in time, then we have the following relationship [, ]:

D–α
t

[C
Dα

t u(x, t)
]

=
∂u(x, t)

∂t
. ()

Therefore, implementing the operator D–α
t on both sides of (), we derive the following

Riemann-Liouville fractional subdiffusion equation with spatially variable coefficient:

∂u(x, t)
∂t

= D–α
t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
+ f (x, t), ()

where f (x, t) = D–α
t g(x, t).

From the preceding discussion we see that equation () is a more general form. In this
paper, we consider the difference scheme of (). As far as we know, the difference scheme
for this equation has not been proposed by now. In the present work, we establish a Crank-
Nicolson-type difference scheme for the spatial variable coefficient problem () by the dis-
crete Riemann-Liouville fractional derivative with L formula. The CN-type scheme re-
sults in a linear system in which the coefficient matrix is tridiagonal and strictly diagonally
dominant, so the Thomas algorithm suits.
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The content of this paper is organized as follows. In Section , we introduce essential no-
tation and some preliminary lemmas and then construct the Crank-Nicolson-type finite
difference scheme. The unique solvability, unconditional stability, and the L-norm con-
vergence are proved in Section  by the energy method. Some examples are listed in Sec-
tion  to verify our theoretical analysis and testify the validation of our difference scheme.
Finally, a brief conclusion ends this work.

2 Derivation of a CN-type difference scheme
Consider the following subdiffusion equation with spatially variable coefficient combined
with initial boundary value conditions:

∂u(x, t)
∂t

= D–α
t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
+ f (x, t),  < x < L,  < t ≤ T , ()

u(, t) = Φ(t), u(L, t) = Φ(t),  < t ≤ T , ()

u(x, ) = Ψ (x),  ≤ x ≤ L, ()

where  < α < , and we suppose that c ≤ ϕ(x) ≤ c and ϕ(x), f (x, t), Φ(t), Φ(t), Ψ (x) are
sufficiently smooth functions.

For a finite difference approximation, we suppose that M and N are two positive integers
and let h = L

M and τ = T
N be space and temporal step lengths, respectively. Define xi =

ih,  ≤ i ≤ M, tn = nτ ,  ≤ n ≤ N , Ωh = {xi |  ≤ i ≤ M}, Ωτ = {tn |  ≤ n ≤ N}, and, in
addition, tk– 


= (k – 

 )τ , xi– 


= (i – 
 )h.

For any grid function u = {un
i |  ≤ i ≤ M,  ≤ n ≤ N}, we denote

δxun
i– 


=


h
(
un

i – un
i–

)
, δ

x un
i =


h
(
δxun

i+ 


– δxun
i– 



)
, ()

un– 


i =


(
un

i + un–
i

)
, δtu

n– 


i =

τ

(
un

i – un–
i

)
. ()

The following lemmas are needed for our error analysis.

Lemma  ([]) For  < α <  and y ∈ C[, tn], we have:


Γ (α)

∫ t



y′(s) ds
(tn – s)α

–
τα–

Γ ( + α)

[
y(tn) –

n–∑
k=

(an–k– – an–k)y(tk) – an–y()

]

=
n∑

k=

∫ tk

tk–

Lτ ,α,n(s)y′′(s) ds = O
(
τ +α

)
, ()

where ak = (k + )α – kα , and for s ∈ (tk–, tk),

Lτ ,α,n(s) =


Γ ( + α)

{
(tn – s)α –

[
s – tk–

τ
(tn – tk)α +

tk – s
τ

(tn – tk–)α
]}

. ()

Furthermore,

n∑
k=

∫ tk

tk–

Lτ ,α,n(s) ds ≤ 
Γ ( + α)

[
α


+

+α

 + α
–

(
 + α–)]τ +α . ()
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Lemma  ([]) Let y ∈ C[tk–, tk]. Then



[
y′(tk) + y′(tk–)

]
=


τ

[
y(tk) – y(tk–)

]

+
τ 



∫ 



[
y()

(
tk– 


+

sτ


)
+ y()

(
tk– 


–

sτ


)](
 – s)ds. ()

Now we define the grid function Un
i = u(xi, tn),  ≤ i ≤ M,  ≤ n ≤ N , and, in addition,

denote ϕ(xi+ 


) by ϕi+ 


.

Lemma  Suppose u ∈ C[xi, xi+]. Then

δxUi+ 


= u′(xi+ 


) +
h


∫ 



[
u′′

(
xi+ 


+

h


t
)

– u′′
(

xi+ 


–
h


t
)]

( – t) dt, ()

δxUi+ 


= u′(xi+ 


) +
h



∫ 



[
u()

(
xi+ 


+

h


t
)

+ u()
(

xi+ 


–
h


t
)]

( – t) dt, ()

δxUi+ 


= u′(xi+ 


) +
h



∫ 



[
u()

(
xi+ 


+

h


t
)

– u()
(

xi+ 


–
h


t
)]

( – t) dt

+
h


u()(xi+ 


). ()

Proof Employing the Taylor expansion with integral remainder, we have:

Ui+ = u(xi+ 


) +
h


u′(xi+ 


) +
h


 ∫ 


u′′

(
xi+ 


+

th


)
( – t) dt, ()

Ui = u(xi+ 


) –
h


u′(xi+ 


) +
h


 ∫ 


u′′

(
xi+ 


–

th


)
( – t) dt. ()

Then subtracting these two equalities, we get the first statement. The proofs of the other
two are similar by using an expansion of higher order. �

Now we analyze the truncation error of the L analog for the Riemann-Liouville frac-
tional derivative.

Lemma  Let u(x, t) ∈ C,([, L] × [, T]), ϕ(x) ∈ C[, L]. Then for the truncation error,
we have:

D–α
t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
(xi, tn)

=
τα–

Γ ( + α)

[
δx(ϕδxU)n

i –
n–∑
k=

(an–k– – an–k)δx(ϕδxU)k
i – an–δx(ϕδxU)

i

]

+
tα–
n

Γ (α)
δx(ϕδxU)

i + (R)n
i ,  ≤ i ≤ M – ,  ≤ n ≤ N , ()
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where (R)n
i = (R)n

i + (R)n
i , and

∣∣(R)n
i
∣∣ ≤ 


max

≤x≤L
≤t≤T

[∣∣∣∣D–α
t

∂

∂x

(
ϕ

∂u
∂x

)∣∣∣∣ +
∣∣∣∣D–α

t
∂

∂x

(
ϕ

∂u
∂x

)∣∣∣∣

+



∣∣∣∣ϕ(x)D–α
t

∂u
∂x

∣∣∣∣
]

h, ()

∣∣(R)n
i
∣∣ ≤ 

Γ ( + α)

[
α


+

+α

 + α
–

(
 + α–)]

· max
≤x≤L
≤t≤T

[∣∣∣∣ ∂

∂x ∂t

(
ϕ(x)

∂u
∂x

)∣∣∣∣ +



∣∣∣∣ϕ(x)
∂u

∂x ∂t

∣∣∣∣
]
τ +α . ()

Proof Let D–α
t u = w and W n

i = w(xi, tn). Then

D–α
t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
=

∂

∂x

(
ϕ(x)

∂w
∂x

)
. ()

It follows from Lemma  that

δx(ϕδxW )n
i =


h
(
ϕi+ 


δxW n

i+ 


– ϕi– 

δxW n

i– 


)

=

h
(
ϕi+ 


w′

x(xi+ 


, tn) – ϕi– 


w′
x(xi– 


, tn)

)

+
h



h
[
ϕi+ 


w()

x (xi+ 


, tn) – ϕi– 


w()
x (xi– 


, tn)

]

+ ϕi+ 


h



∫ 



[
w()

x

(
xi+ 


+

t


h
)

– w()
x

(
xi+ 


–

t


h
)]

( – t) dt

– ϕi– 


h



∫ 



[
w()

x

(
xi– 


+

t


h
)

– w()
x

(
xi– 


–

t


h
)]

( – t) dt

=
∂

∂x

(
ϕ(x)

∂w
∂x

)
(xi, tn) +

h


(
ϕw()

x
)′

x(ξ , tn)

+
h



∫ 



[(
ϕw′

x
)()

x

(
xi +

t


h, tn

)
+

(
ϕw′

x
)()

x

(
xi –

t


h, tn

)]
( – t) dt

+ ϕi+ 


h



∫ 



[
w()

x

(
xi+ 


+

t


h, tn

)
– w()

x

(
xi+ 


–

t


h, tn

)]
( – t) dt

– ϕi– 


h



∫ 



[
w()

x

(
xi– 


+

t


h, tn

)
– w()

x

(
xi– 


–

t


h, tn

)]

· ( – t) dt, ()

where ξ ∈ [xi–, xi+]. So we have

∂

∂x

(
ϕ(x)

∂w
∂x

)
(xi, tn) = δx(ϕδxW )n

i + (R)n
i , ()
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where

∣∣(R)n
i
∣∣ ≤ 


max

≤x≤L
≤t≤T

[∣∣∣∣D–α
t

∂

∂x

(
ϕ

∂u
∂x

)∣∣∣∣ +
∣∣∣∣D–α

t
∂

∂x

(
ϕ

∂u
∂x

)∣∣∣∣

+



∣∣∣∣ϕ(x)D–α
t

∂u
∂x

∣∣∣∣
]

h. ()

It follows from () and () that

δx(ϕδxW )n
i =

[
D–α

t δx(ϕδxU)
]
(xi, tn)

=
τα–

Γ ( + α)

[
δx(ϕδxU)n

i –
n–∑
k=

(an–k– – an–k)δx(ϕδxU)k
i – an–δx(ϕδxU)

i

]

+
tα–
n

Γ (α)
δx(ϕδxU)

i +
n∑

k=

∫ tk

tk–

Lτ ,α,n(s)
∂

∂t δx(ϕδxu)(xi, s) ds. ()

Using similar analysis and applying Lemma  again, we get

δx(ϕδxU)n
i =




∫ 



[
∂

∂x

(
ϕ(x)

∂u
∂x

)(
xi +

t


h, tn

)
+

∂

∂x

(
ϕ(x)

∂u
∂x

)(
xi –

t


h, tn

)]
dt

+



ϕi+ 


∫ 



[
∂u
∂x

(
xi+ 


+

t


h, tn

)
–

∂u
∂x

(
xi+ 


–

t


h, tn

)]
( – t) dt

–



ϕi– 


∫ 



[
∂u
∂x

(
xi– 


+

t


h, tn

)
–

∂u
∂x

(
xi– 


–

t


h, tn

)]
( – t) dt. ()

Applying () and the last equality, it is not hard to get

∣∣(R)n
i
∣∣ ≤ 

Γ ( + α)

[
α


+

+α

 + α
–

(
 + α–)]

· max
≤x≤L
≤t≤T

[∣∣∣∣ ∂

∂x ∂t

(
ϕ(x)

∂u
∂x

)∣∣∣∣ +



∣∣∣∣ϕ(x)
∂u

∂x ∂t

∣∣∣∣
]
τ +α . ()

The proof is completed. �

We now construct a Crank-Nicolson-type scheme for problem ()-(). Considering
equality () at the point (xi, tn), we have

∂u(xi, tn)
∂t

= D–α
t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
(xi, tn) + f (xi, tn),  < n < N ,  < i < M – . ()

Then




[
∂u(xi, tn)

∂t
+

∂u(xi, tn–)
∂t

]

=



{
D–α

t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
(xi, tn) + D–α

t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
(xi, tn–)

}

+


[
f (xi, tn) + f (xi, tn–)

]
. ()
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From Lemma  we obtain




[
∂u(xi, tn)

∂t
+

∂u(xi, tn–)
∂t

]
= δtU

n– 


i + (R)n
i , ()

where

(R)n
i =

τ 



∫ 



[
∂u
∂t

(
xi, tn– 


+

sτ


)
+

∂u
∂t

(
xi, tn– 


–

sτ


)](
 – s)ds. ()

It follows from Lemma  that




{
D–α

t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
(xi, tn) + D–α

t

[
∂

∂x

(
ϕ(x)

∂u
∂x

)]
(xi, tn–)

}

=
tα–
n + tα–

n–
Γ (α)

δx(ϕδxU)
i

+
τα–

Γ ( + α)

[
δx(ϕδxU)n

i –
n–∑
k=

(an–k– – an–k)δx(ϕδxU)k
i – an–δx(ϕδxU)

i

]

+
τα–

Γ ( + α)

[
δx(ϕδxU)n–

i –
n–∑
k=

(an–k– – an–k–)δx(ϕδxU)k
i – an–δx(ϕδxU)

i

]

+



(R)n
i +




(R)n–
i . ()

Denoting Un– 


i = 
 (Un

i + Un–
i ) and δx(ϕδxU)n– 


i = 

 [δx(ϕδxU)n
i + δx(ϕδxU)n–

i ] and notic-
ing that

–
n–∑
k=

(an–k– – an–k–)δx(ϕδxU)k
i – an–δx(ϕδxU)

i

= –
n–∑
l=

(an–l– – an–l)δx(ϕδxU)l–
i – an–δx(ϕδxU)

i

= –
n–∑
l=

(an–l– – an–l)δx(ϕδxU)l–
i + (an– – an–)δx(ϕδxU)

i – an–δx(ϕδxU)
i

= –
n–∑
k=

(an–k– – an–k)δx(ϕδxU)k–
i – an–δx(ϕδxU)

i , ()

we have




{
D–α

t

{
∂

∂x

[
ϕ(x)

∂u
∂x

]}
(xi, tn) + D–α

t

{
∂

∂x

[
ϕ(x)

∂u
∂x

]}
(xi, tn–)

}

=
tα–
n + tα–

n–
Γ (α)

δx(ϕδxU)
i +




(R)n
i +




(R)n–
i +

τα–

Γ ( + α)

·
[
δx(ϕδxU)n

i –
n–∑
k=

(an–k– – an–k)δx(ϕδxU)k
i – an–δx(ϕδxU)

i

]
+

τα–

Γ ( + α)
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·
[
δx(ϕδxU)n–

i –
n–∑
k=

(an–k– – an–k)δx(ϕδxU)k–
i – an–δx(ϕδxU)

i

]

=
tα–
n + tα–

n–
Γ (α)

δx(ϕδxU)
i + (R)n– 


i +

τα–

Γ ( + α)

·
[
δx(ϕδxU)n– 


i –

n–∑
k=

(an–k– – an–k)δx(ϕδxU)k– 


i – an–δx(ϕδxU)
i

]
. ()

Substituting () and () into (), we have

δtU
n– 


i =

τα–

Γ ( + α)

[
δx(ϕδxU)n– 


i –

n–∑
k=

(an–k– – an–k)δx(ϕδxU)k– 


i

– an–δx(ϕδxU)
i

]
+

tα–
n + tα–

n–
Γ (α)

δx(ϕδxU)
i + f n– 


i + (R)n

i , ()

where (R)n
i = (R)n– 


i – (R)n

i ,  ≤ i ≤ M – ,  ≤ n ≤ N .
When n = , using equality () at the point (xi, t) and employing the Taylor expansion,

we have

δtU



i =
∂u
∂t

(xi, t) – (R)i

= D–α
t

∂

∂x

[
ϕ(x)

∂u
∂x

]
(xi, t) + f (xi, t) – (R)i, ()

where

(R)i = τ

∫ 



∂u
∂t (xi, sτ )s ds. ()

Using Lemma , we arrive at

δtU



i =
τα–

Γ ( + α)
[
δx(ϕδxU)

i – aδx(ϕδxU)
i
]

+
τα–

Γ (α)
δx(ϕδxU)

i

+ f (xi, t) + (R)
i – (R)i

=
τα–

Γ ( + α)
[
δx(ϕδxU)

i + (α – )δx(ϕδxU)
i
]

+ f 
i + Ri, ()

where

Ri = (R)
i – (R)i,  ≤ i ≤ M – .

By the previous analysis there exists a constant C, independent of h and τ , satisfying

∣∣Rn
i
∣∣ ≤ C

(
τ +α + h),  ≤ i ≤ M – ,  ≤ n ≤ N , ()

|Ri| ≤ C
(
τ + h),  ≤ i ≤ M – . ()
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The initial and boundary conditions can be written as

Un
 = Φ(tn), Un

M = Φ(tn),  ≤ n ≤ N , ()

U
i = Ψ (xi),  ≤ i ≤ M. ()

Ignoring the truncation errors Rn
i in () and Ri in () and replacing the grid function Un

i
with its numerical analog un

i , we arrive at the following difference scheme:

δtu
n– 


i =

τα–

Γ ( + α)

[
δx(ϕδxu)n– 


i –

n–∑
k=

(an–k– – an–k)δx(ϕδxu)k– 


i – an–δx(ϕδxu)
i

]

+
tα–
n + tα–

n–
Γ (α)

δx(ϕδxu)
i + f n– 


i ,  ≤ i ≤ M – ,  ≤ n ≤ N , ()

δtu


i =

τα–

Γ ( + α)
[
δx(ϕδxu)

i + (α – )δx(ϕδxu)
i
]

+ f 
i ,  ≤ i ≤ M – , ()

un
 = Φ(tn), un

M = Φ(tn),  ≤ n ≤ N , ()

u
i = Ψ (xi),  ≤ j ≤ M. ()

It is easy to see that, at each time level, the difference scheme ()-() is a tridiagonal
system with strictly diagonal dominant coefficient matrix, and thus the difference scheme
has a unique solution, and the Thomas algorithm suits.

3 Analysis of stability and convergence of the CN-type difference scheme
3.1 Stability
Now we introduce necessary notation and lemmas, which will be used in the analysis of
stability and convergence.

Define the grid function space Sh = {u | u = (u, u, . . . , uM), u = uM = } on Ωh. For any
v, w ∈ Sh, we define the discrete inner products and corresponding norms as follows:

(v, w)h = h
M–∑
i=

viwi, ‖v‖ =
√

(v, v)h,

〈v, w〉 = h
M–∑
i=

(δxvi+ 


)(δxwi+ 


), ‖δxv‖ =
√〈v, v〉,

(δxu, δxv)ϕ = h
M–∑
i=

ϕ(xi+ 


)(δxui+ 


)(δxvi+ 


), ‖δxu‖ϕ =
√

(δxu, δxu)ϕ ,

‖v‖∞ = max
≤i≤M

|vi|.

Considering the smoothness of ϕ(x), it is not hard to get

√
c‖δxu‖ ≤ ‖δxu‖ϕ ≤ √

c‖δxu‖. ()

Lemma  ([]) For any grid function u ∈ Sh,

‖u‖ ≤ L√


‖δxu‖.
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We have the following properties of an.

Lemma 

 = a > a > a · · · > an → , ()

α(n + )α– < an < αnα–, ()

an– <


[
αnα– + α(n – )α–], n ≥ , ()

ân– < an–, ân– < an– – an–, n ≥ , ()

where ân– = 
 [αnα– + α(n – )α–] – an–.

Proof Noticing that an = α
∫ n+

n xα– dx and xα– is a strictly convex and decreasing func-
tion, the first three relations hold.

From inequalities ()-() we have

an– –
[
αnα– + α(n – )α–] > αnα– – α(n – )α– ()

= αnα–
[

 –
(

n
n – 

)–α]
>  ()

and

an– > α(n – )α– >


[
αnα– + α(n – )α–], ()

so that () holds. �

We now give the proof of the stability of the difference scheme ()-() with respect to
the initial value u

i and the inhomogeneous term f . We denote

f  =
(
, f 

 , f 
 , . . . , f 

M–, 
)

and

f n– 
 =

(
, f n– 


 , f n– 


 , . . . , f n– 


M– , 

)
,  ≤ n ≤ N .

Theorem  Let um
i ,  ≤ i ≤ M,  ≤ m ≤ N , be a solution of the finite difference scheme

()-() with Ψ = Ψ = . Then we have

∥∥um∥∥ ≤ ∥∥u∥∥ +
τα

Γ ( + α)
[
( – α) + 

]∥∥δxu∥∥
ϕ

+
L

c
Γ ( + α)τ –α · ∥∥f ∥∥

+
L

c
· Γ (α)τ · T –α

m∑
n=

∥∥f n– 

∥∥. ()
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Proof Taking the inner product of () with un– 
 , we have

(
δtun– 

 , un– 

)

=
τα–

Γ ( + α)

[(
δx(ϕδxu)n– 

 , un– 

)

–
n–∑
k=

(an–k– – an–k)

· (δx(ϕδxu)k– 
 , un– 


)

+ ân–
(
δx(ϕδxu), un– 


)]

+
(
f n– 

 , un– 

)
. ()

Noticing that

(
δtun– 

 , un– 

)

=


τ

(∥∥un∥∥ –
∥∥un–∥∥)

and using the discrete Green formula and zero boundary conditions for every term in the
right-hand side, we obtain

‖un‖ – ‖un–‖

τ
=

τα–

Γ ( + α)

[
–
(
δxun– 

 , δxun– 

)
ϕ

+
n–∑
k=

(an–k– – an–k)

· (δxuk– 
 , δxun– 


)
ϕ

– ân–
(
δxu, δxun– 


)
ϕ

]

+
(
f n– 

 , un– 

)
. ()

Applying the Cauchy-Schwarz inequality, we have

‖un‖ – ‖un–‖

τ
≤ τα–

Γ ( + α)

[
–
∥∥δxun– 


∥∥

ϕ
+




n–∑
k=

(an–k– – an–k)

· (∥∥δxuk– 

∥∥

ϕ
+

∥∥δxun– 

∥∥

ϕ

)
+

ân–


(∥∥δxun– 


∥∥

ϕ
+

∥∥δxu∥∥
ϕ

)]

+
∣∣(f n– 

 , un– 

)∣∣. ()

Letting τ r–

Γ (+r) = I , we have

‖un‖ – ‖un–‖

Iτ
≤ –

∥∥δxun– 

∥∥

ϕ
+ (a – an–)

∥∥δxun– 

∥∥

ϕ
+


I
|(f n– 

 , un– 

)|

+
n–∑
k=

(an–k– – an–k)
∥∥δxuk– 


∥∥

ϕ
+ ân–

(∥∥δxun– 

∥∥

ϕ
+

∥∥δxu∥∥
ϕ

)

= (ân– – an– – )
∥∥δxun– 


∥∥

ϕ

+ ân–
∥∥δxu∥∥

ϕ
+

n–∑
k=

(an–k– – an–k)
∥∥δxuk– 


∥∥

ϕ

+

I
∣∣(f n– 

 , un– 

)∣∣. ()
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From () we know that

‖un‖ – ‖un–‖

Iτ
≤ –

∥∥δxun– 

∥∥

ϕ
+ (an– – an–)

∥∥δxu∥∥
ϕ

+
n–∑
k=

(an–k– – an–k)
∥∥δxuk– 


∥∥

ϕ
+


I
∣∣(f n– 

 , un– 

)∣∣.

Summing up for  ≤ n ≤ m and changing the summation order in the third term of the
right-hand side, we get

‖um‖ – ‖u‖

Iτ
≤ –

m∑
n=

∥∥δxun– 

∥∥

ϕ
+ (a – am–)

∥∥δxu∥∥
ϕ

+
m–∑
k=

m∑
n=k+

(an–k– – an–k)
∥∥δxuk– 


∥∥

ϕ
+


I

m∑
n=

∣∣(f n– 
 , un– 


)∣∣

= –
m∑

k=

∥∥δxuk– 

∥∥

ϕ
+

m–∑
k=

(a – am–k)
∥∥δxuk– 


∥∥

ϕ

+ (a – am–)
∥∥δxu∥∥

ϕ
+


I

m∑
n=

∣∣(f n– 
 , un– 


)∣∣

=
m–∑
k=

(–am–k)
∥∥δxuk– 


∥∥

ϕ
–

∥∥δxum– 

∥∥

ϕ
+


I

m∑
n=

∣∣(f n– 
 , un– 


)∣∣

+ (a – am–)
(∥∥δxu



∥∥

ϕ
+

∥∥δxu∥∥
ϕ

)

=
m∑

k=

(–am–k)
∥∥δxuk– 


∥∥

ϕ
+ (a – am–)

(∥∥δxu


∥∥

ϕ
+

∥∥δxu∥∥
ϕ

)

+

I

m∑
n=

∣∣(f n– 
 , un– 


)∣∣. ()

Using the Cauchy inequality, (), and Lemma , we have


I
∣∣(f n– 

 , un– 

)∣∣ ≤ L

cIam–n

∥∥f n– 

∥∥ + am–n

∥∥δxun– 

∥∥

ϕ
. ()

Substituting () into (), we have

∥∥um∥∥ ≤ ∥∥u∥∥ + Iτ (a – am–)
(∥∥δxu



∥∥

ϕ
+

∥∥δxu∥∥
ϕ

)
+

m∑
n=

τL

cIam–n

∥∥f n– 

∥∥. ()

Taking the inner product of () with un– 
 , we have

‖u‖ – ‖u‖

τ
= I

[
–
(
δxu, δxu



)
ϕ

+ ( – α)
(
δxu, δxu



)
ϕ

]
+

(
f , u



)

= I
[
–

∥∥δxu


∥∥

ϕ
+ ( – α)

(
δxu, δxu



)
ϕ

]
+

(
f , u



)
,
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so that

∥∥u∥∥ =
∥∥u∥∥ + Iτ

[
–

∥∥δxu


∥∥

ϕ
+ ( – α)

(
δxu, δxu



)
ϕ

]
+ τ

(
f , u



)
. ()

Substituting () into () and using the Cauchy-Schwarz inequality again, we arrive at

∥∥um∥∥ ≤ ∥∥u∥∥ + Iτ
[
–

∥∥δxu


∥∥

ϕ
+ ( – α)

(
δxu, δxu



)
ϕ

]

+ Iτa
∥∥δxu∥∥

ϕ
+

m∑
n=

τL

cIam–n

∥∥f n– 

∥∥ + τ

(
f , u



)

≤ ∥∥u∥∥ – Iτ
∥∥δxu



∥∥

ϕ
+ Iτ

[
( – α) + 

]∥∥δxu∥∥
ϕ

+
m∑

n=

τL

cIam–n

∥∥f n– 

∥∥ + Iτ

∥∥δxu


∥∥

ϕ
+

Lτ

Ic

∥∥f ∥∥. ()

Noticing that am–n > am– > αmα– > αNα–, we have

m∑
n=

τL

cIam–n

∥∥f n– 

∥∥ ≤ τL

cIαNα–

m∑
n=

∥∥f n– 

∥∥

=
L

c
· τ –αΓ ( + α)

αNα–

m∑
n=

∥∥f n– 

∥∥

=
L

c
· Γ (α)τ · T –α

m∑
n=

∥∥f n– 

∥∥. ()

Then, substituting () into (), we get () for  ≤ m ≤ N , and () for m =  is obvious.
So the proof is completed. �

3.2 Convergence
We now consider the convergence of the difference scheme ()-(). Let

en
i = Un

i – un
i ,  ≤ i ≤ M,  ≤ n ≤ N .

Subtracting ()-() from ()-() and ()-(), we get the equations for the error:

δte
n– 


i =

τα–

Γ ( + α)

[
δx(ϕδxe)n– 


i –

n–∑
k=

(an–k– – an–k)δx(ϕδxe)k– 


i

]
+ Rn

i ,

 ≤ i ≤ M – ,  ≤ n ≤ N , ()

δte


i =

τα–

Γ ( + α)
δx(ϕδxe)

i + Ri,  ≤ i ≤ M – , ()

en
 = , en

M = ,  ≤ n ≤ N , ()

e
i = ,  ≤ i ≤ M. ()
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Then from Theorem  we have

∥∥en∥∥ ≤ L

c
Γ ( + α)τ –α · ‖R‖ +

L

c
τΓ (α)T –α ·

n∑
k=

∥∥Rk∥∥. ()

From () and () we have

∥∥en∥∥ ≤ L

c
Γ ( + α)τ –α

[
c
(
τ + h)] +

L

c
NτΓ (α)T –α

[
c
(
τ +α + h)] ()

≤ L

c
Γ ( + α)

[
c
(
τ – α

 + h)] +
L

c
Γ (α)T–α

[
c
(
τ +α + h)]. ()

Letting

β = min

{
 –

α


,  + α

}
, ĉ = Lc

√
Γ (α)
c

(
Lα + T–α

)
,

we have the convergence in the L norm.

Theorem  Suppose that problem ()-() has a smooth solution u(x, t) in the domain
[, L]× [, T] and un

i ,  ≤ i ≤ M,  ≤ n ≤ N , is a solution of the difference scheme ()-().
Then

max
≤n≤N

∥∥u
(
xi, tn) – un

i
∥∥ ≤ ĉ

(
τβ + h). ()

Remark The Crank-Nicolson-type scheme involves two time levels for a Riemann-
Liouville fractional subdiffusion equation with spatially variable coefficient. Therefore,
we actually used recursion method to handle the analysis of stability. Then we get the
convergence, and the convergence order in spatial direction is just two. It is difficult to
improve the space accuracy by introducing a compact technique.

4 Numerical examples
In this section, we give two examples to testify the efficiency and convergence orders of
our difference scheme.

Example  Consider the following problem with zero initial value:

∂u(x, t)
∂t

= D–α
t

{
∂

∂x

[(
x + 

)∂u
∂x

]}
+ ex( + α)t+α

– ex(x + ) · Γ ( + α)
Γ ( + α)

,  < x < ,  < t ≤ , ()

u(, t) = t+α , u(, t) = et+α ,  < t ≤ , ()

u(x, ) = ,  ≤ x ≤ . ()

The exact solution is u(x, t) = ext+α .
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Table 1 The maximum L2 errors and convergence orders for Example 1 where h = 1/1,000

α τ EL2 Order(τ )

1/3 1/20 3.6326e–003 ∗
1/40 1.4826e–003 1.2929e+000
1/80 5.9838e–004 1.3090e+000
1/160 2.3989e–004 1.3187e+000

0.5 1/20 1.8364e–003 ∗
1/40 6.8187e–004 1.4293e+000
1/80 2.4895e–004 1.4536e+000
1/160 8.9904e–005 1.4694e+000

2/3 1/20 8.0971e–004 ∗
1/40 2.7806e–004 1.5420e+000
1/80 9.3144e–005 1.5779e+000
1/160 3.0673e–005 1.6025e+000

Table 2 The maximum L2 errors and convergence orders for Example 1 where τ = 1/10,000

α h EL2 Order(h)

1/3 1/4 3.6326e–003 ∗
1/8 8.4541e–004 2.1033e+000
1/16 2.1080e–004 2.0038e+000
1/32 5.1974e–005 2.0200e+000

0.5 1/4 3.3024e–003 ∗
1/8 8.3002e–004 1.9923e+000
1/16 2.0758e–004 1.9995e+000
1/32 5.1766e–005 2.0036e+000

2/3 1/4 3.2191e–003 ∗
1/8 8.1000e–004 1.9907e+000
1/16 2.0274e–004 1.9983e+000
1/32 5.0674e–005 2.0003e+000

Let

EL (h, τ ) = max
≤n≤N

∥∥un – Un∥∥,

Order(τ ) = log

(
EL (h, τ )
EL (h, τ )

)
, Order(h) = log

(
EL (h, τ )
EL (h, τ )

)
.

We solve problem ()-() with the Crank-Nicolson-type scheme ()-(). Fixing the
spatial step h = /, and taking different temporal steps, Table  presents the maxi-
mum L norm errors and convergence orders of our schemes; fixing the temporal step
τ = /, and taking different spatial steps, Table  presents the L norm errors and
convergence orders in spatial direction. In both cases, we take α to be /, /, /. The
results show that the Crank-Nicolson-type scheme has accuracy of order  + α in the tem-
poral direction and order  in the spatial direction.

Example  Now we give a problem with nonzero initial value:

∂u(x, t)
∂t

= D–α
t

{
∂

∂x

[(
x + 

)∂u
∂x

]}
+ cos(πx) · ( + α)t+α

+
[
πx sin(πx) + π(x + 

)
cos(πx)

]
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Table 3 The maximum L2 errors and convergence orders for Example 2 with h = 1/1,000

α τ EL2 Order(τ )

1/3 1/20 4.5529e–003 ∗
1/40 1.8482e–003 1.3007e+000
1/80 7.4443e–004 1.3119e+000
1/160 2.9840e–004 1.3189e+000

0.5 1/20 2.4404e–003 ∗
1/40 8.9749e–004 1.4431e+000
1/80 3.2613e–004 1.4604e+000
1/160 1.1768e–004 1.4706e+000

2/3 1/20 1.1972e–003 ∗
1/40 4.0070e–004 1.5791e+000
1/80 1.3221e–004 1.5997e+000
1/160 4.3321e–005 1.6097e+000

Table 4 The maximum L2 errors and convergence orders for Example 2 with τ = 1/10,000

α h EL2 Order(h)

1/3 1/4 2.9470e–002 ∗
1/8 7.1231e–003 2.0487e+000
1/16 1.7659e–003 2.0121e+000
1/32 4.4129e–004 2.0006e+000

0.5 1/4 2.9634e–002 ∗
1/8 7.1649e–003 2.0482e+000
1/16 1.7757e–003 2.0126e+000
1/32 4.4311e–004 2.0027e+000

2/3 1/4 2.9400e–002 ∗
1/8 7.1113e–003 2.0476e+000
1/16 1.7625e–003 2.0125e+000
1/32 4.3969e–004 2.0031e+000

·
[

Γ ( + α)
Γ ( + α)

t+α +


Γ (α)
tα–

]
,  < x < ,  < t ≤ , ()

u(, t) = t+α + , u(, t) = –t+α – ,  < t ≤ , ()

u(x, ) = cos(πx),  ≤ x ≤ . ()

The exact solution is u(x, t) = cos(πx)(t+α + ). We solve problem ()-() with the
Crank-Nicolson-type scheme ()-() and present the numerical results in Tables 
and . The results show that our scheme is still efficient for nonzero initial value prob-
lems. In Figures  and , we plot surface figures of the error (|u(xi, tn) – un

i |) with different
mesh sizes when α = ., .. These figures show that the maximum error becomes rel-
atively smaller as the mesh size becomes smaller, which provides the validation of our
results once more.

5 Conclusion
In this paper, we have presented a Crank-Nicolson-type difference scheme for the
Riemann-Liouville fractional spatial variable coefficient subdiffusion equation. Based on
the Crank-Nicolson technique and L formula on the temporal direction, we proved that
our difference scheme is unconditionally stable with respect to the initial value and the
inhomogeneous term, and the numerical solution is convergent in the discrete L norm.
The convergence order is min{ – α

 ,  + α} in the temporal direction and two in the spa-
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Figure 1 The error surface figures with h = τ = 1
10 (left) and h = τ = 1

40 (right) when α = 0.1.

Figure 2 The error surface figures with h = τ = 1
10 (left) and h = τ = 1

40 (right) when α = 0.9.

tial direction. This scheme results in a linear system in which the coefficient matrix is a
tridiagonal and strictly diagonally dominant, so it can be solved by the Thomas algorithm.
Two numerical examples are given to show the efficiency of the method. It is meaningful
to construct a second-order difference scheme of this type, which will be our work in the
future.
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