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Abstract
In this paper we consider the inverse time problem for the axisymmetric heat
equation which is a severely ill-posed problem. Using the modified quasi-boundary
value (MQBV) method with two regularization parameters, one related to the error in
measurement process and the other related to the regularity of solution, we
regularize this problem and obtain the Hölder-type estimation error for the whole
time interval. Numerical results are presented to illustrate the accuracy and efficiency
of the method.
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1 Introduction
Partial differential equations (PDEs) associated with various types of boundary conditions
are a powerful and useful tool to model natural phenomena. For time-dependent phenom-
ena, they are usually joined by a time condition (initial time condition or final time condi-
tion), which can be considered as the data. The time-inverse problem means that, from the
final data, the main goal is a reconstruction of the whole structure in previous time. These
problems were widely investigated in Tikhonov and Arsenin [] and Glasko []. A classical
example can be recalled here: the backward heat conduction problem (BHCP). The BHCP
is the time-inverse boundary value problem, i.e., given the information at a specific point
of time, say t = T , the goal is to recover the corresponding structure at an earlier time
t < T .

The BHCP is strictly difficult to solve since, in general, the solution does not always ex-
ist. Furthermore, even if the solution does exist, it would not be continuously dependent
on the data. As a result, there are a number of difficulties in doing numerical calculations.
BHCP is a very famous problem and has been considered by many authors by different
methods [–]. For the BHCP with a constant coefficient, there is much nice literature
that can be listed. Trong and Tuan in [] used the method of integral equation to reg-
ularize backward heat conduction problem and get some error estimates. In [], Hao et
al. gave a very nice approximation for this problem by using a non-local boundary value
problem method. Later on, Hao and Duc [] used the Tikhonov regularization method to
give an approximation for this problem in Banach space. Tautenhahn in [] established
an optimal error estimate for a backward heat equation with constant coefficient. Fu et
al. [] applied a wavelet dual least squares method to investigate a BHCP with constant
coefficient.
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The available results in the literature on BHCP are mainly devoted to the heat equation
where the domain is a rectangle or a box in R

n. In this article, we consider a backward heat
equation in an infinite long cylinder. The physical model considered here is an infinitely
long cylinder of radius r with initial temperature, and it is considered to be axisymmetric
and the surface temperature distribution is kept zero []. The corresponding mathemat-
ical model can be described by the following axisymmetric BHCP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t = ∂u

∂r + 
r

∂u
∂r ,  < r < r,  < t < T ,

u(r, t) = ,  ≤ t ≤ T ,
u(r, t) bounded as r → ,  ≤ t ≤ T ,
u(r, T) = g(r),  ≤ r ≤ r,

(.)

where r is the radial coordinate, g(r) denotes the final temperature history of the cylin-
der. Our goal is to recover the temperature distribution u(·, t) for  ≤ t ≤ T . Similar to
the case of a constant coefficient, the axisymmetric BHCP is also an ill-posed problem:
a small perturbation in the final data may cause dramatically large errors in the solution.
Therefore, a regularization method is extremely important. In [], with a prior condition
on the solution, we use the spectral method with a regularizing filter function to approx-
imate problem (.) to give an error of the order of εt/T .

The quasi-boundary value (QBV) method is a well-known method introduced by
Showalter in  (see [, ]). The main idea of the method is to add an appropriate ‘cor-
rector’ in the final data. Using the method, Clark and Oppenheimer, in [], and Denche-
Bessila very recently in [], regularized the backward problem by replacing the final con-
dition by

u(T) + εu() = g (.)

and

u(T) – εu′() = g. (.)

In this present paper, we will apply the QBV method with some modification, the so-called
modified quasi-boundary value (MQBV) method to regularize problem (.) to obtain the
Hölder-type estimation. By MQBV, we aim to introduce two regularization parameters:
The first one (ε) captures the measuring error and the second one (τ ) captures the regular-
ity of the solution. In fact, we will approximate (.) by the following regularized problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂uε,τ

∂t (r, t) – ∂uε,τ

∂r (r, t) – 
r

∂uε,τ

∂r (r, t) = , r ∈ (, r), t ∈ (, T),
uε,τ (r, t) = ,  ≤ t ≤ T ,
uε,τ (r, t) bounded as r → ,  ≤ t ≤ T ,

uε,τ (x, T) =
∑∞

n= gn( e
–( μn

r )(T+τ )

ε( μn
r

)+e–( μn
r )(T+τ )

)J( μn
r

r),

where μn is the root of the Bessel function J(x) and τ is a positive number. The rest of
the paper is organized as follows. In Section , we state the backward problem for the ax-
isymmetric BHCP. In Section , we formulate the regularize problem and provide an error
estimation between solutions of these two problems. Finally, Section  provides some nu-
merical examples to illustrate the efficiency of our method.
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2 Statement of the problem
Throughout this paper, we denote by L(, r; r) the Hilbert space of Lebesgue measurable
functions f with weight r on [, r]. 〈·, ·〉 and ‖ · ‖ denote inner product and norm on
L(, r; r), respectively. Specifically, the norm and inner product in L(, r; r) are defined
as follows:

‖f ‖ := ‖f ‖L(,r;r) =
(∫ r


r
∣
∣f (r)

∣
∣ dr

)/

, 〈f , g〉 =
∫ r


rf (r)g(r) dr

for f , g ∈ L(, r; r).
Let us first make it clear what a solution of the problem (.) is. By a solution of (.), we

imply a function u(r, t) satisfying (.) in the classical sense and for every fixed t ∈ [, T]
and this function u(r, t) ∈ L(, r; r). In this class of functions, if the solution of problem
(.) exists, then it must be unique (see []).

Theorem  (Cheng and Fu []) The original problem (.) is equivalent to the following
integral equation:

u(r, t) =
∞∑

n=

gne( μn
r

)(T–t)J

(
μn

r
r
)

, (.)

where J(x) =
∑∞

m=
(–)m

(m!) ( x
 )m and

gn =


r
J

 (μn)

∫ r


rg(r)J

(
μn

r
r
)

dr, n = , , , . . . .

Proof We will find a solution of the form

u(r, t) = P(t)Q(r). (.)

By substituting (.) into (.), for  < r ≤ r, Q(r) must satisfy

Q′′(r) +

r

Q′(r) + λQ(r) = , (.)

Q(r) = , (.)
∣
∣Q()

∣
∣ < ∞, (.)

where λ is an unknown constant.
Similarly, for  < t ≤ T , P(t) must satisfy

P′(t) + λP(t) = . (.)

It is well known that the eigenvalue λ of problem (.)-(.) is nonnegative (see []).
However, the eigenvalue cannot be zero since if λ = , then Q(r) = . For λ > , regarding
[], we obtain the general solution of equation (.) taking the form

Q(r) = cJ(r
√

λ) + cY(r
√

λ), (.)
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where J(z) and Y(z) denote Bessel functions of order zero of the first kind and the second
kind, respectively. Note that limx→ Y(x) = –∞. Therefore, from boundary condition (.)
and (.), c = . In addition, the boundary condition Q(r) =  tells us that

cJ(r
√

λ) = .

The sequence of roots of J(x) are {μn}∞n=, which satisfy

 < μ ≤ μ ≤ · · · ≤ μn ≤ · · ·

and limn→∞ μn = +∞. Thus, the eigenvalues of problem (.)-(.) are sequence of

μn

r
, n = , , , . . . (.)

and the corresponding eigenfunctions are

Qn(r) = J

(
μn

r
r
)

, n = , , , . . . . (.)

In the other hand, solution of (.) takes the form

Pn(t) = ane–( μn
r

)t . (.)

Combining (.) and (.), the representation of solution of problem (.) is

u(r, t) =
∞∑

n=

Pn(t)Qn(r) =
∞∑

n=

ane–( μn
r

)tJ

(
μn

r
r
)

.

At t = T , we have

u(r, T) =
∞∑

n=

ane–( μn
r

)T J

(
μn

r
r
)

.

At the same time,

u(r, T) = g(r) =
∞∑

n=

gnJ

(
μn

r
r
)

,

where

gn =
〈g(r), J( μn

r
r)〉

‖J( μn
r

r)‖ =

∫ r
 rg(r)J( μn

r
r) dr

∫ r
 rJ

 ( μnr
r

) dr

=


r
J

 (μn)

∫ r


rg(r)J

(
μn

r
r
)

dr, n = , , , . . . .

It follows that

an = gne( μn
r

)T .
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Then a solution of problem (.) is

u(r, t) =
∞∑

n=

gne( μn
r

)(T–t)J

(
μn

r
r
)

. (.)

It is clear that the solution u(r, t) belongs to L(, r; r). Therefore, it is the unique solution
of problem (.). �

Regarding (.), the exponential growth causes an instability in the solution, i.e., the
problem is ill-posed and a regularization method is extremely important.

3 Regularization and error estimates
In this paper we consider the following regularized problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂uε,τ

∂t (r, t) – ∂uε,τ

∂r (r, t) – 
r

∂uε,τ

∂r (r, t) = ,
uε,τ (r, t) = ,  ≤ t ≤ T ,
uε,τ (r, t) bounded as r → ,

uε,τ (r, T) =
∑∞

n= gn( e–( μn
r )(T+τ )

ε( μn
r

)+e
–( μn

r )(T+τ )
)J( μn

r
r),  ≤ r ≤ r.

(.)

We first start to state the main results by the following lemma.

Lemma  Let  ≤ t ≤ T , ε ∈ (, T + τ ), τ ≥  and x > . Then the following inequality
holds:

e–(t+τ )x

εx + e–(T+τ )x ≤ ε
t–T
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

. (.)

Proof We start the proof by the idea from []. For any ε ∈ (, T), x > , and T > , the
function

w(x) =


εx + e–Tx

maximizes at x = ln(T/ε)
T . Therefore,

w(x) =


εx + e–Tx ≤ w
(

ln(T/ε)
T

)

=
T

ε( + ln(T/ε))
. (.)

Then, for any positive number τ , inequality (.) leads to the following estimation:

e–(t+τ )x

εx + e–(T+τ )x =
e–(t+τ )x

(εx + e–(T+τ )x)
T–t
T+τ (εx + e–(T+τ )x)

t+τ
T+τ

≤ e–(t+τ )x

e–(t+τ )x


(εx + e–(T+τ )x)
T–t
T+τ

≤ ε
t–T
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

.

The proof is completed. �
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The following theorem shows the well-posedness of the regularized problem (.).

Theorem  Let g(r) ∈ L(, r; r) and given ε ∈ (, T + τ ). Then the regularized problem
(.) has a unique solution uε,τ ∈ C,((, r) × (, T); L(, r; r)) which is represented by

uε,τ (r, t) =
∞∑

n=

gn

(
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

)

J

(
μn

r
r
)

. (.)

The solution depends continuously on g in C([, r]; L(, r; r)).

Proof The proof is divided into two steps. In Step , we prove the existence and the unique-
ness of solution of the regularized problem (.). In Step , the stability of the solution is
given.

Step . If u satisfies (.), then u is a solution of the regularized problem (.). We have

uε,τ (r, t) =
∞∑

n=

gn

(
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

)

J

(
μn

r
r
)

.

It follows that

∂uε,τ

∂t
(r, t) = –

(
μn

r

) ∞∑

n=

gn
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )
J

(
μn

r
r
)

=
∞∑

n=

gn
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

×
(

μn

rr
J

(
μn

r
r
)

–
(

μn

r

)

J

(
μn

r
r
)

–
μn

rr
J

(
μn

r
r
))

=
∂uε,τ

∂r (r, t) +

r
∂uε,τ

∂r
(r, t). (.)

On the other hand, for all  < r ≤ r, one has

uε,τ (r, T) =
∞∑

n=

gn

(
e–( μn

r
)(T+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

)

J

(
μn

r
r
)

. (.)

It is also clear that uε,τ belongs to L(, r; r). Hence, uε,τ is a unique solution of the regu-
larized problem (.).

Step . Let vε,τ and wε,τ be two solutions of the regularized problem (.) which are
corresponding to the data g and h, respectively. Then the following representation holds:

vε,τ (r, t) =
∞∑

n=

gn
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )
J

(
μn

r
r
)

,

wε,τ (r, t) =
∞∑

n=

hn
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )
J

(
μn

r
r
)

.



Hoa and Khanh Boundary Value Problems  (2017) 2017:25 Page 7 of 12

We obtain

∥
∥vε,τ (·, t) – wε,τ (·, t)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=

|gn – hn|
(

e–( μn
r

)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

)

J

(
μn

r
r
)∥

∥
∥
∥
∥

≤
(

e–( μn
r

)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

)∥
∥
∥
∥
∥

∞∑

n=

|gn – hn|J

(
μn

r
r
)∥

∥
∥
∥
∥

.

By applying Lemma  directly, we get

∥
∥vε,τ (·, t) – wε,τ (·, t)

∥
∥ ≤ ε

t–T
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ ‖g – h‖.

The proof is completed. �

Until now, we already stated that our regularized problem is a well-posed problem in
the sense of Hadamard. In the following, we will establish an error estimate between the
exact solution and the regularized solution.

Let μn be the sequence of roots of the Bessel function J(x), we denote

∥
∥u(·, )

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=

(
μn

r

)

e( μn
r

)
τ un()J

(
μn

r
r
)∥

∥
∥
∥
∥

, (.)

where

un() =


r
J

 (μn)

∫ r


ru(r, )J

(
μn

r
r
)

dr, n = , , , . . . . (.)

Theorem  (The error estimate in the case of exact data) Let g(r) ∈ L(, r; r), τ ≥ ,
and given ε ∈ (, T + τ ). Suppose that the problem (.) has uniquely a solution u such that
‖u(·, )‖ ≤ C, where C is a positive constant. Then the following estimation holds for all
t ∈ [, T):

∥
∥u(·, t) – uε,τ (·, t)

∥
∥ ≤ Cε

t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

, (.)

where uε,τ is the unique solution of (.).

Proof Suppose the problem (.) has uniquely a solution u, then u is represented by

u(r, t) =
∞∑

n=

gne( μn
r

)(T–t)J

(
μn

r
r
)

.

Since un() = gne( μn
r

)T and with (.), we get

∥
∥u(r, t) – uε,τ (r, t)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=

gn

(

e( μn
r

)(T–t) –
e–( μn

r
)(t+τ )

ε( μn
r

) + e–( μn
r

)(T+τ )

)

J

(
μn

r
r
)∥

∥
∥
∥
∥

≤ ε
t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ
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×
∥
∥
∥
∥
∥

∞∑

n=

gn

(
μn

r

)

e( μn
r

)(T+τ )J

(
μn

r
r
)∥

∥
∥
∥
∥

≤ Cε
t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

. �

Theorem  (Error estimates in the case of non-exact data) Let τ ≥  and given ε ∈ (, T +
τ ). Let u be the unique solution of the problem (.) corresponding to the data g . Suppose
that gε is a measured data such that

∥
∥g – gε

∥
∥ ≤ ε.

Then there exists an approximate solution Uε,τ , which corresponds to the noisy data gε ,
satisfying

∥
∥Uε,τ (·, t) – u(·, t)

∥
∥ ≤ Dε

t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

(.)

for every t ∈ [, T], the value of C is as in Theorem  and D = ( + C).

Proof Let Uε,τ be the solution of regularized problem (.) corresponding to data gε and
let uε,τ be the solution of the problem (.) corresponding to data g . Let u(r, t) be the exact
solution, in view of the triangle inequality, one has

∥
∥Uε,τ (r, t) – u(r, t)

∥
∥ ≤ ∥

∥Uε,τ (r, t) – uε,τ (r, t)
∥
∥ +

∥
∥u(r, t) – uε,τ (r, t)

∥
∥.

Combining the results from Theorem  and Theorem , for every t ∈ [, T], we get

∥
∥Uε,τ (r, t) – u(r, t)

∥
∥ ≤ ε

t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

+ Cε
t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

≤ Dε
t+τ
T+τ

(
T + τ

( + ln((T + τ )/ε))

) T–t
T+τ

.

The proof is completed. �

Remark  At the initial time t = , the error estimation is

ε
τ

T+τ

(
T + τ

( + ln((T + τ )/ε))

) T
T+τ

,

which is improved in comparison to the result in Theorem . of []. However, this im-
proving estimation costs a stronger prior assumption. This is the weak point of this paper.
In future work, the authors will try to reduce the prior assumptions while keeping the
same order of error estimation at the same time.
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4 A numerical illustration
In this section, we establish a numerical tests to illustrate the theoretical result in the above
section. Consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t = ∂u

∂r + 
r

∂u
∂r ,  < r < r,  < t < T ,

u(r, t) = ,  ≤ t ≤ T ,
u(r, t) bounded as r → ,
u(r, T) = gex(r),  ≤ r ≤ r,

(.)

where the exact data is given by

gex(r) = eT J

(
μ

r
r
)

.

Under this assumption, the exact solution can be obtained by

uex(r, t) = ete( μ
r

)(T–t)J

(
μ

r
r
)

. (.)

Due to the error in measurement process, the measured data is noised and given by

gε(r) = eT J

(
μ

r
r
)

+
P∑

p=

εapJ

(
μp

r
r
)

, (.)

where P is a random natural number and ap is a finite sequence of random normal num-
bers with mean  and variance A. It follows that the error in the measurement process
is bounded by ε, ‖gε – g‖ ≤ ε. The regularized solution, which is obtained by (.) and
corresponding to the data gε , is

uε,τ (r, t) =
e–( μ

r
)(t+τ )

ε( μ
r

) + e–( μ
r

)(T+τ )
J

(
μ

r
r
)

+
P∑

p=

ap

(
εe–( μp

r
)


(t+τ )

ε( μp
r

) + e–( μp
r

)


(T+τ )

)

J

(
μp

r
r
)

. (.)

For each point of time, let us evaluate the ‘relative error’ between the exact solution and
the regularized solution, which is defined by

RE(ε, t) =
‖ure(·, t) – uex(·, t)‖

‖uex(·, t)‖ . (.)

The relative error has a better representation of the difference between exact and approxi-
mate solution. Let us say when the value of the exact solution is big, the difference between
exact and approximate solution does not give us much information as regards the good-
ness of fit of the approximation. In this case, the relative error is a better measurement of
how well fit is the approximate method.

Fix T = , r = , P = ,, A = . There are two situations to consider.
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Situation : Situation  focuses mainly on the regularization parameter ε. Fix τ = .
and let ε = –, ε = –, ε = –. We have the graphics of the exact solution and the
regularized solution with various values of ε (see Figures  and ).

At the initial time t = , we have the graphic in Figure .

Figure 1 The exact solution (a) and regularized solution with ε1 = 10–1, τ = 0.3 (b).

Figure 2 The approximate solution with τ = 0.3 and ε2 = 10–2 (a) and ε3 = 10–3 (b).

Figure 3 At time t = 0: exact solution (black) and regularized solution with τ = 0.3 and ε1 = 10–3

(blue), ε2 = 10–5 (green), ε3 = 10–7 (red).
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Table 1 The error and relative error of method in this paper with τ = 0.3 and various values
of ε

ε ‖uε,0.3(·, 0) – uex (·, 0)‖ RE(ε, 0)

ε = 10–3 8.48702923827765 0.115626406608408
ε = 10–4 5.84620043944197 0.079648028791562
ε = 10–5 3.59734075211554 0.049009797519858
ε = 10–6 0.723559578438893 0.009857700695156
ε = 10–7 0.0550576642083171 0.000173396997915

Figure 4 The regularized solution with ε = 10–3 and τ1 = 0 (a) and τ2 = 1 (b).

Figure 5 At time t = 0: exact solution (black) and regularized solution with ε = 10–3 and τ = 0 (blue),
τ = 0.3 (green) and τ = 1 (red).

In addition to the graphics, a table of the summary of the error estimation and relative
error of the estimation is also provided (see Table ).

Remark  Through Figure , Figure , Figure , and Table , it is clear that as the measur-
ing error ε becomes small, the regularized solution gets ever more close to the exact one.
It is also noted that the value of ap ranges from –. to . in this situation.

Situation : In this situation, the regularized parameter τ is heavily focused. Fix ε = –

and let τ = , τ =  (see Figure ). At the initial time t = , we have the graphic in Figure .
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Remark  Figure  and Figure  agree with the theoretical result in Section : the regular-
ized solution with higher value of τ is more close to the exact one. The parameter τ is very
useful in the case that we want to get a more accurate approximation while the measuring
process cannot be better or the cost of better measuring is very expensive. In this case,
with the appearance of τ , the error can be improved without any more cost on measuring
(as we can see in Figure ). It is also noted that the value of ap ranges from –. to
. in this situation.
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