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Abstract
Using wavelet discretization with a standard wavelet diagonal preconditioning for
singularly perturbed two-point boundary value problems, one can observe that
condition numbers of arising stiffness matrices are growing with decreasing
parameter ε when a nonsymmetric part starts to dominate. We propose here a
simple diagonal preconditioning which significantly improves condition numbers of
the stiffness matrices with a dominating nonsymmetric part and compare it with a
standard wavelet preconditioning. Further, we prove that the condition numbers of
diagonally preconditioned stiffness matrices are bounded independent of the matrix
size. Numerical examples are given.
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1 Introduction
Many problems in science and technology can be modeled by boundary value problems
for singularly perturbed differential equations. Singularly perturbed problems arise for
example in the modeling of fluid flow at high Reynolds numbers, water quality problems
in river networks, convective heat transport problems with large Peclet numbers, drift
diffusion equations of semiconductor device modeling, simulation of oil extraction from
under-ground reservoirs, theory of plates and shells, atmospheric pollution, groundwater
transport, and chemical reactor theory. For a detailed survey of different applications, we
refer to []. Recently also singularly perturbed semilinear boundary value problems with
discontinuous coefficients and nonlinear reaction-diffusion equations attracted some at-
tention; see [, ] and the references therein. A vast majority of these problems cannot be
solved analytically and therefore it is necessary to solve them approximately. In the mod-
eling of the above processes, one can observe boundary and interior layers whose width
can be arbitrarily small.

We consider here the following singularly perturbed two-point boundary value problem:

–εu′′(x) + p(x)u′(x) + q(x)u(x) = f (x) ∀x ∈ (, ) ()

with u() = , u() = , ()
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where  < ε �  is a parameter, p ∈ C[, ], q ∈ C[, ], f ∈ C[, ], and p(x) > α > .
Then the above problem has a unique solution u(x) []. This equation represents a simple
mathematical model of a convection-diffusion problem and it can be used to model many
practical problems. For example the linearized Navier-Stokes equations at high Reynolds
number provide an accurate model of the transition dynamics in the problem of turbu-
lence suppression in channel flow. Problems of these types have solutions which are dis-
continuous as ε is approaching zero and typically possess boundary or interior layers, i.e.
regions of rapid change in the solution near the endpoints or some interior points. There-
fore, it is usually more difficult to solve them for very small parameter ε. Many numerical
methods have been suggested to solve such types of problems and a lot of them require
information as regards locations and widths of different layers. One of the possibilities to
solve them without this information is an application of adaptive methods.

In recent years, there have appeared some promising results in using wavelets to
solve singularly perturbed problems. In [], a non-adaptive numerical method based on
wavelets of Hermite cubic splines was presented and improved results were obtained in
comparison with other techniques. In [], the authors constructed wavelets of order 
with five vanishing wavelet moments with respect to which stiffness matrices for ordi-
nary differential equations with constant coefficients are very sparse (in comparison with
other kinds of wavelets) and their condition numbers are similarly small as in [] for lower
order wavelets. Then they applied tensor product wavelets to the adaptive solution of a
reaction-diffusion equation in two space dimensions.

In this contribution, we focus on methods based on wavelets. Using wavelet discretiza-
tion with a standard wavelet diagonal preconditioning for singularly perturbed two-point
boundary value problems, one can observe that the condition numbers of arising stiffness
matrices are growing with decreasing parameter ε when a nonsymmetric part starts to
dominate. In the wavelet methods, the continuous problem is transformed into a well-
conditioned discrete problem. And once a well-conditioned nonsymmetric problem is
given, squaring will yield a symmetric positive definite formulation []. Therefore an ef-
ficient preconditioning is very important since the rate of convergence for most iterative
linear solvers depends on the condition number of a preconditioned matrix. We propose
here a simple diagonal preconditioning which significantly improves the condition num-
bers of the stiffness matrices with a dominating nonsymmetric part. A diagonal precondi-
tioning is optimal for adaptive wavelet methods in which often stiffness matrices are not
explicitly assembled and not stored in a computer memory. This paper is organized as
follows: First, we briefly introduce wavelet bases and their properties. Then we propose
a new diagonal preconditioning and we prove that the condition numbers of the infinite
diagonally preconditioned stiffness matrices are finite. At the end, we provide some nu-
merical examples.

2 Wavelet bases
We consider here families � = {ψλ,λ ∈ J } ⊂ L(, ) of functions (wavelets) that are nor-
malized in L(, ) such that ‖ψλ‖L(,) = . LetJ be an infinite index set andJ = J� ∪J� ,
where J� is a finite set representing scaling functions living on the coarsest scale. Any in-
dex λ ∈ J is of the form λ = (j, k), where |λ| = j denotes a scale and k denotes spatial
location. Further, we will denote Ds a diagonal matrix, whose diagonal entries are s|λ|.
Then D–s� = {–s|λ|ψλ} will denote a scaled wavelet basis. The above notation enables us
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to write wavelet expansions as

dT� :=
∑

λ∈J
dλψλ.

At last, for s ≥  the space Hs will denote a closed subspace of the Sobolev space Hs(, ),
defined e.g. by imposing homogeneous boundary conditions at one or both endpoints, and
for s <  the space Hs will denote the dual space Hs := (H–s)′. ‖ · ‖Hs will denote the cor-
responding norm. Further l(J ) will denote the space consisting of the power summable
sequences and ‖ · ‖l(J ) will denote the corresponding norm.

A family � = {ψλ,λ ∈ J } ⊂ L(, ) is called a wavelet basis of Hs for some γ , γ̃ >  and
s ∈ (–γ̃ ,γ ), if:

• � is a Riesz basis of Hs, which means � forms a basis of Hs and there exist constants
cs, Cs >  such that for all b = {bλ}λ∈J ∈ l(J ) we have

cs‖b‖l(J ) ≤ ∥∥bT D–s�
∥∥

Hs ≤ Cs‖b‖l(J ), ()

where sup cs, inf Cs are called Riesz bounds and cond� := inf Cs
sup cs

is called the condition
number of � .

• Functions are local in the sense that diam(suppψλ) ≤ C–|λ| for all λ ∈ J , where C is a
constant independent of λ.

• Functions ψλ,λ ∈ J� , have cancellation properties of order m, i.e.

∣∣∣∣
∫ 


v(x)ψλ(x) dx

∣∣∣∣ ≤ –m|λ||v|Hm(,), ∀v ∈ Hm(, ).

It means that integration against wavelets eliminates smooth parts of functions and it
is equivalent with vanishing wavelet moments of order m.

Norm equivalences () have the following important consequence which will be used
later.

Theorem  Let H be a Hilbert space, 〈·, ·〉 : H × H ′ → R, and suppose that there exist
constants c, C >  such that

c‖b‖l(J ) ≤ ∥∥bT�
∥∥

H ≤ C‖b‖l(J ) ∀b ∈ l(J ) ()

i.e., � is a Riesz basis of H . Then

C–∥∥〈� , b〉∥∥l(J ) ≤ ‖b‖H′ ≤ c–∥∥〈� , b〉∥∥l(J ) ∀b ∈ H ′. ()

For the proof, we refer to [].
The application of wavelets for the numerical solution of differential equations has sev-

eral advantages, namely:
• Vanishing wavelet moments (the cancellation property) lead to sparse representations

of functions and operators.
• In the case that an original continuous problem is well conditioned, the Riesz property

() leads also to well-conditioned stiffness matrices []. Moreover, it implies that every
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function in Hs has a unique expansion in the scaled wavelet basis and that there is a
tight relation between the function norms and wavelet coefficients. It means that
small changes in wavelet coefficients can cause only small changes in the function and
the other way around. Wavelet bases with small Riesz bounds were constructed for
example in [–].

• There are wavelet-based asymptotically optimal algorithms for solving elliptic PDEs.
See for example [–]. It means that the number of floating point operations
depends linearly on the number of nonzero wavelet coefficients.

3 Wavelet discretization
We restrict ourselves to the equation –εu′′ + bu′ + cu = f with the Dirichlet boundary con-
ditions u() = u() = , with small positive parameter ε and with constants b, c > . Now,
this continuous problem can for suitable wavelet bases be transformed into an equivalent
well-conditioned problem in l. We start with the standard variational formulation: Find
u ∈ H

(, ) such that

a(u, v) = f (v), ∀v ∈ H
(, ), ()

where a bilinear form a : H
(, ) × H

(, ) → R and f ∈ H–(, ) are given by

a(u, v) :=
∫ 


εu′v′ dx +

∫ 


bu′v dx +

∫ 


cuv dx, f (v) :=

∫ 


fv dx. ()

Now, we define an operator A : H
(, ) → H–(, ) by

〈u, Av〉 = a(u, v), u ∈ H
(, ), ()

and then () is equivalent with the task: for given f ∈ H–(, ) find u ∈ H
(, ) such that

Au = f . ()

The scaled representation of () and the scaled wavelet representation of the right-hand
side are then given by

A := D–
A 〈� , A�〉D–

A , F := D–
A f (�),

where DA is an appropriate diagonal matrix which will be specified later. Suppose that
u = uT D–� is the scaled wavelet representation of the solution, then

Au = f ⇐⇒ Au = F. ()

For more details, we refer to [].
First, we prove that the problem () is well posed in energy norm. The space H–(, ) is

endowed with the norm

|||Av|||′ = sup
u∈H



〈u, Av〉
|||u||| .

To shorten our notation the norm ‖ · ‖ will denote ‖ · ‖L(,).
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Theorem  The variational problem () is well posed on H
(, ) equipped with energy

norm |||v||| :=
∫ 

 ε(v′) dx +
∫ 

 cv dx in the sense that

|||v||| ≤ |||Av|||′ ≤
(

 +
b√
εc

)
|||v||| ∀v ∈ H

(, ).

Proof For u, v ∈ H
(, ), we have

〈u, Av〉 = a(u, v)

=
∫ 


εu′v′ dx +

∫ 


bu′v dx +

∫ 


cuv dx

≤ ε
∥∥u′∥∥∥∥v′∥∥ + b

∥∥u′∥∥‖v‖ + c‖u‖‖v‖

≤ √
ε
∥∥u′∥∥√

ε
∥∥v′∥∥ +

√
ε
∥∥u′∥∥√

c‖v‖ b√
εc

+
√

c‖u‖√c‖v‖

≤
(

 +
b√
εc

+ 
)

|||v||||||u|||

and

|||v||| =
∫ 


ε
(
v′) dx +

∫ 



b

(
v)′ dx +

∫ 


cv dx

=
∫ 


ε
(
v′) dx +

∫ 


bv′v dx +

∫ 


cv dx

= 〈v, Av〉
= |||v||| 〈v, Av〉

|||v|||
≤ |||v||| sup

u∈H


〈u, Av〉
|||u||| = |||v||||||Av|||′.

Then

|||v||| ≤ |||Av|||′ = sup
u∈H



〈u, Av〉
|||u||| ≤

( + b√
εc )|||v||||||u|||
|||u||| =

(
 +

b√
εc

)
|||v|||. �

Then the operator A is bounded and coercive and an application of the Lax-Milgram
lemma implies the existence of the unique solution for any f ∈ H–(, ). Further, we prove
that a diagonally scaled wavelet basis is a Riesz basis when it is scaled with the proposed
diagonal scaling.

Theorem  Let DA := (
√

(ε|λ| + b|λ| + c)δλ,μ) be the diagonal matrix, ε, b, c be positive
constants and let the norm equivalences () hold for γ > . Then for every u ∈ l(J ) there
exist positive constants c, c, C, C such that

min{c, c}√
max{( + b

ε
), ( + b

c )}
‖u‖l(J ) ≤ |||uT D–

A �||| ≤ max{C, C}‖u‖l(J ).
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Proof Let us denote u = vT� = (DAv)T D–
A � , u = DAv, and v = {vλ}l(J ). Then the norm

equivalences () and Frie drichs’ inequality imply that there exist positive constants c, c,
C, C such that

c
∑

λ∈J
|λ|v

λ ≤ ∥∥u′∥∥ ≤ C
∑

λ∈J
|λ|v

λ and c
∑

λ∈J
v
λ ≤ ‖u‖ ≤ C

∑

λ∈J
v
λ.

Using these inequalities, we obtain

|||u||| ≤ C
 ε

∥∥Dv
∥∥

l(J ) + C
c‖v‖l(J )

≤ max
{

C
, C


} ∑

λ∈J

(
ε|λ| + c

)
v
λ

≤ max
{

C
, C


} ∑

λ∈J

(
ε|λ| + b|λ| + c

)
v
λ = max

{
C

, C

}‖u‖l(J )

and

‖u‖
l(J ) = ‖DAv‖

l(J )

=
∥∥∥∥
∑

λ∈J

√(
ε|λ| + b|λ| + c

)
vλ

∥∥∥∥


l(J )

=
∑

λ∈J

(
ε|λ| + b|λ| + c

)
v
λ

≤
∑

λ∈J

(
ε|λ| +

b

(
 + |λ|) + c

)
v
λ

=
∑

λ∈J

((
ε +

b


)
|λ| +

(
c +

b


))
v
λ

=
∑

λ∈J

(
ε

(
 +

b
ε

)
|λ| + c

(
 +

b
c

))
v
λ

≤ max

{(
 +

b
ε

)
,
(

 +
b
c

)} ∑

λ∈J

(
ε|λ| + c

)
v
λ

≤ max
{

c–
 , c–


}

max

{(
 +

b
ε

)
,
(

 +
b
c

)}
|||u|||. �

And finally we prove that the condition numbers of the infinite diagonally precondi-
tioned stiffness matrices are finite.

Theorem  Let DA := (
√

(ε|λ| + b|λ| + c)δλ,μ) be the diagonal matrix, ε, b, c be positive
constants and let the norm equivalences () hold for γ > . Then

cond(A) := cond
(
D–

A 〈� , A�〉D–
A

)

≤
max{C

, C
 }( + b√

εc )

min{c
, c

 }(max{( + b
ε

), ( + b
c )})–

,

where c, c, C, C are positive constants from Theorem .
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Proof Using Theorems , , and  implies

min
{

c
, c


}(

max

{(
 +

b
ε

)
,
(

 +
b
c

)})–

‖u‖l(J )

≤ min{c, c}
(

max

{(
 +

b
ε

)
,
(

 +
b
c

)})–/

|||u|||

≤ min{c, c}
(

max

{(
 +

b
ε

)
,
(

 +
b
c

)})–/

|||Au|||′

≤ ∥∥D–
A 〈� , Au〉∥∥l(J )

=
∥∥D–

A 〈� , A�〉D–
A u

∥∥
l(J )

= ‖Au‖l(J )

≤ max{C, C}|||Au|||′

≤ max{C, C}
(

 +
b√
εc

)
|||u|||

≤ max
{

C
, C


}(

 +
b√
εc

)
‖u‖l(J ). �

Remark  From the previous theorem it immediately follows that, for b = , we obtain
symmetric stiffness matrices with small condition numbers which are independent of ε

and are dependent only on Riesz constants of the used wavelet basis.

4 Numerical tests
In adaptive settings the discrete infinite-dimensional problem () is solved approximately
up to the given target accuracy. Adaptive wavelet methods are meshless methods. An
adaptive algorithm usually starts with the zero function and gradually adds new (biggest)
elements to approximate () and then only a part of the whole stiffness matrix is used.
While in non-adaptive settings, we compute with all wavelets up to the given level. In
numerical experiments, we use the second approach because it is more appropriate for
comparison of the properties of the wavelet stiffness matrices.

As basis functions, wavelets proposed in [] are used because they have vanishing mo-
ments, short support, are well conditioned, and, finally, for constant coefficient differen-
tial equations, the arising stiffness matrices are sparse in wavelet coordinates. In the usual
case they are only quasi-sparse. These wavelets are based on Hermite cubic splines. Primal
scaling functions are defined by

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x + )( – x), – ≤ x ≤ ,

( – x)(x + ),  ≤ x ≤ ,

 otherwise,

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x + )x, – ≤ x ≤ ,

( – x)x,  ≤ x ≤ ,

 otherwise.
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For n ≥ , let Vn be the space of piecewise cubic splines v ∈ C(, ) ∩ C[, ] for which
v() = v() = . The dimension of Vn is n+ and the set

�n :=
{
φ

(
nx – j

)
: j = , . . . , n – 

} ∪ {
φ

(
nx – j

)|[,] : j = , . . . , n}

is the basis for Vn. Let Wn be the complement of Vn in Vn+ then we have the following
decomposition of space H

(, ):

H
(, ) = V ⊕ W ⊕ W ⊕ W · · · .

Four types of wavelets, ψ, ψ, ψ, and ψ, are constructed and the wavelet basis is then
formed by translations and dilations of these four types of wavelets. Wavelets from the
space Wn+ are orthogonal to the scaling functions from the space Vn for n ≥ . The first
two wavelets have supports in [–, ] and are uniquely determined by the above orthog-
onality condition and by imposing that the first one is odd and the second one is even.
The second two wavelets have supports in [–, ]. And we impose again the orthogonality
condition and one of them should be odd and the second one even. This property ensures
that both the mass and the stiffness matrix corresponding to the one-dimensional Lapla-
cian have at most three wavelet blocks of nonzero elements in any column and then the
number of nonzero elements in any column is bounded independent of matrix size.

Then a basis of the space Wn is defined as follows:

�n :=
{
ψ

(
nx – j – 

)
,ψ

(
nx – j – 

)
: j = , . . . , n– – 

}

∪ {
ψ

(
nx – j

)
: j = , . . . , n– – 

}

∪ {
ψ

(
nx – j

)|[,] : j = , . . . , n–}.

In the following part, we assume that all basis functions are normalized with respect to
the L norm, such that their norm is equal to one. Now, we look at the spectral properties
of different stiffness matrices An. We will use the standard wavelet preconditioning with
the diagonal preconditioner DS

n =
√

diag(An) [] and then we will compare it with the
proposed diagonal preconditioning Dnew

n := (
√

(ε|λ| + b|λ| + c)δλ,μ), where the constants
ε, b, c are constants from ().

Example  We start with the equation –εu′′ + u′ + u/ = f with the Dirichlet boundary
conditions u() = u() =  and with small positive parameter ε. The corresponding dis-
crete problem is the following:

Find un =
∑n+

i= civi, where vi ∈ � ∪ ⋃n
j= �j, such that

∫ 


εu′

nv′ + u′
nv + unv/ dx =

∫ 


fv dx ∀v ∈ � ∪

n⋃

j=

�j

or in matrix form Ancn = fn, where An is the stiffness matrix corresponding to the above
equation and fn is the corresponding vector of the right-hand side. The obtained results
are summarized in Table .
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Table 1 The condition numbers of the stiffness matrices for n = 9

ε cond(DS
nAnDS

n) cond(Dnew
n AnDnew

n ) cond(An)

10–0 2.69× 101 1.45× 102 2.67× 106

10–1 7.40× 101 1.32× 102 3.31× 105

10–2 2.20× 102 7.07× 101 1.10× 105

10–3 6.68× 102 1.66× 102 1.11× 105

10–4 1.23× 103 3.31× 102 1.18× 105

10–5 1.37× 103 3.72× 102 1.22× 105

10–6 1.39× 103 3.77× 102 1.22× 105

10–7 . . .10–12 1.39× 103 3.78× 102 1.23× 105

Table 2 The condition numbers of the stiffness matrices for n = 9

ε cond(DS
nAnDS

n) cond(Dnew
n AnDnew

n ) cond(An)

10–0 1.47× 102 3.67× 101 6.27× 106

10–1 1.12× 103 7.27× 101 8.17× 105

10–2 3.95× 103 6.46× 101 2.75× 105

10–3 2.94× 104 1.24× 102 2.78× 105

10–4 6.30× 104 2.07× 102 1.87× 105

10–5 6.41× 104 2.03× 102 1.57× 105

10–6 6.41× 104 2.03× 102 1.55× 105

10–7 . . .10–12 6.41× 104 2.03× 102 1.54× 105

Example  The second equation will be –εu′′ + u′ = f with the Dirichlet boundary con-
ditions u() = u() =  and with small positive parameter ε. The corresponding discrete
problem is the following:

Find un =
∑n+

i= civi, where vi ∈ � ∪ ⋃n
j= �j, such that

∫ 


εu′

nv′ + u′
nv dx =

∫ 


fv dx ∀v ∈ � ∪

n⋃

j=

�j

or in matrix form Ancn = fn, where An is the stiffness matrix corresponding to the above
equation and fn is the corresponding vector of the right-hand side. The obtained results
are summarized in Table .

Example  The third equation will be –εu′′ +u′ +xu = f with the Dirichlet boundary con-
ditions u() = u() =  and with small positive parameter ε. The corresponding discrete
problem is the following:

Find un =
∑n+

i= civi, where vi ∈ � ∪ ⋃n
j= �j, such that

∫ 


εu′

nv′ + u′
nv + xunv dx =

∫ 


fv dx ∀v ∈ � ∪

n⋃

j=

�j

or in matrix form Ancn = fn, where An is the stiffness matrix corresponding to the above
equation and fn is the corresponding vector of the right-hand side. In this case of the
differential equation with variable coefficients, we take c =  because x ≤  ∀x ∈ [, ].
The obtained results are summarized in Table .

5 Conclusion
We have proposed a new diagonal preconditioning for singularly perturbed problems dis-
cretized by wavelets. Numerical experiments show that the proposed preconditioning
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Table 3 The condition numbers of the stiffness matrices for n = 9

ε cond(DS
nAnDS

n) cond(Dnew
n AnDnew

n ) cond(An)

10–0 7.93× 101 8.25× 102 3.80× 106

10–1 4.26× 102 6.69× 102 4.97× 105

10–2 2.31× 103 4.37× 102 1.67× 105

10–3 1.28× 104 7.74× 102 1.62× 105

10–4 7.25× 104 1.29× 103 1.69× 105

10–5 4.12× 105 1.39× 103 1.71× 105

10–6 2.23× 106 1.40× 103 1.72× 105

10–7 7.81× 106 1.40× 103 1.72× 105

10–8 1.20× 107 1.40× 103 1.72× 105

10–9 1.28× 107 1.40× 103 1.72× 105

10–10 . . .10–12 1.29× 107 1.40× 103 1.72× 105

leads to significantly smaller condition numbers of stiffness matrices with a dominating
nonsymmetric part in comparison with a standard wavelet diagonal preconditioning. Fur-
thermore, we proved that the condition numbers of diagonally preconditioned stiffness
matrices are bounded independent of the matrix size.
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