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Abstract
We consider a class of second order Hamiltonian systems with a C2 potential function.
The existence of new periodic solutions with a prescribed energy is established by
the use of constrained variational methods.

MSC: 34C15; 34C25; 58F

Keywords: second order Hamiltonian systems; C2 periodic solutions; constrained
variational minimizing methods

1 Introduction
In this paper, we examine the existence of periodic solutions for second order Hamiltonian
systems

q̈ + V ′(q) = , (.)



|q̇| + V (q) = h, (.)

with a fixed energy. The first major result in this direction we would like to highlight can be
derived from the work of Benci [], Gluck-Ziller [], and Hayashi [], which is based on the
earlier work of Seifert [] in  and following the highly influential papers of Rabinowitz
[, ] in  and . Utilizing the Jacobi metric and a very involved interplay between
geodesic methods and algebraic topology, the following general theorem is established.

Theorem . Suppose V ∈ C(Rn,R). If the potential well

{
x ∈R

n : V (x) ≤ h
}

is bounded and non-empty, then the system (.)-(.) has a periodic solution with energy h.
Furthermore, if

V ′(x) �= , ∀x ∈ {
x ∈R

n : V (x) = h
}

,

then the system (.)-(.) has a non-constant periodic solution with energy h.
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For the existence of multiple periodic solutions for (.)-(.) with compact energy sur-
faces, we can refer the reader to Groessen [] and Long [] and the references therein.

For the weakly attractive potential V defined on an open subset � of Rn, Ambrosetti
and Coti Zelati [] (Theorem .) proved the following.

Theorem . Suppose V ∈ C(�,R) satisfies

(V ) 〈V ′(x), x〉 + 〈V ′′(x)x, x〉 �= , ∀x ∈ �;
(V ) 〈V ′(x), x〉 > , ∀x ∈ �;
(V ) ∃α ∈ (, ), such that 〈V ′(x), x〉 ≥ –αV (x), ∀x ∈ �;
(V ) ∃β ∈ (, ) and r >  such that 〈V ′(x), x〉 ≤ –βV (x), ∀ < |x| < r;
(V ) G∞ ≥ ; where G∞ = lim|x|→∞ inf G(x), G(x) = [V (x) + 

 〈V ′(x), x〉].
Then ∀h < , the system (.)-(.) (referred to as (Ph)) has at least one non-constant weak
periodic solution with the given energy h.

Using a simpler constrained variational minimizing method, we obtain the following
result.

Theorem . Suppose V ∈ C(Rn,R) and h ∈R satisfy

(V) V (–q) = V (q);
(V) 〈V ′(q), q〉 > , ∀q �= ;
(V) 〈V ′(q), q〉 + 〈V ′′(q)q, q〉 > , ∀q �= ;
(V) ∃μ > , μ ≥ , such that 〈V ′(q), q〉 ≥ μV (q) – μ;
(V) lim|q|→∞ sup[V (q) + 

 〈V ′(q), q〉] ≤ A;
(V) μ

μ
< h < A.

Then the system (.)-(.) has at least one non-constant periodic solution with the given
energy h.

Remark . Comparing Theorem . of Ambrosetti and Coti Zelati [] with our Theo-
rem ., we notice that our condition (V) corresponds to their (V ), our condition (V)
corresponds to their (V ), our condition (V) corresponds to their (V ) and (V ), our
conditions (V) and (V) correspond to their (V ). Since the potential in Theorem .
of Ambrosetti and Coti Zelati has a singularity, but the potential in Theorem . has no
singularity, the two theorems are essentially different.

Remark . Take for V (x) the following C∞ function:

V (x) = e
–
|x| , ∀x �= ;

V () = .

Then V (x) satisfies (V)-(V) in Theorem . if we take μ = μ >  and A = , but (V)
does not hold.

Proof of Theorem . We verify (V)-(V) by calculation:
() It is obvious for (V).
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() For (V) and (V), we notice that

〈
V ′(x), x

〉
=


|x|e

–
|x| > , ∀x �= ,

〈
V ′′(x)x, x

〉
= e

–
|x|

(
–
|x| +


|x|

)
,


〈
V ′(x), x

〉
+

〈
V ′′(x)x, x

〉
= e

–
|x|

(

|x| +


|x|

)
> , ∀x �= .

() For (V), we set

w(x) =
(


|x| – μ

)
e

–
|x| ; x �= , w() = .

We will prove w(x) > –μ; in fact,

w′(x) =
[


|x| – ( + μ)

]
x

|x| e
–
|x| ; x �= , w′() = .

From w′(x) = , we have x = – 
+μ

or  or 
+μ

.
It is easy to see that w(x) is strictly increasing on (–∞, – 

+μ
] and [, 

+μ
], but strictly

decreasing on [ –
+μ

, ] and [ 
+μ

, +∞). We notice that

lim|x|→+∞ w(x) = –μ

and

w() = .

So

w(x) > –μ.

When we take μ = μ > , (V) holds.
() For (V), we have

V (x) +


〈
V ′(x), x

〉
= e

–
|x|

(
 +





|x|

)
< , ∀x �= ;

V () +


〈
V ′(), 

〉
= . �

Corollary . Given a > , n ∈ N, define V (x) = a|x|n + e
–
|x| , x �= ; V () = . Then, for

h > , the system (.)-(.) has at least one non-constant periodic solution with the given
energy h.

Remark . The potential V (x) = e
–
|x| , ∀x �= ; V () =  in Remark . is noteworthy

since the potential function is non-convex and bounded which satisfies neither of the
conditions of Theorems ., Offin’s geometrical conditions [], nor Berg-Pasquotto-
Vandervorst’s complex topological assumptions []. For this potential, the potential well
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{x ∈ R
n : V (x) ≤ h} is a bounded set if h < , but for h ≥  it is Rn - an unbounded set. We

also notice that the symmetrical condition on the potential simplified our Theorem .
and its proof. It would be interesting to obtain non-constant periodic solutions when the
symmetrical condition is deleted.

2 A few lemmas
Let

H = W ,(
Rper,Rn) =

{
u : R→R

n, u(t + ) = u(t), u ∈ L[, ], u̇ ∈ L[, ]
}

denotes the periodic functional space of period . Then the standard H norm is

‖u‖ = ‖u‖H =
(∫ 


|u̇| dt

)/

+
(∫ 


|u| dt

)/

.

Lemma . ([]) For u ∈ H, define

g(u) =
∫ 



[
V (u) +



〈
V ′(u), u

〉]
dt,

M =
{

u ∈ H : g(u) = h
}

.

For u, v ∈ H and s ∈R, let

φ(s) = g(u + sv).

Then

φ′() =
〈
g ′(u), v

〉
=




∫ 



{

〈
V ′(u), v

〉
+

〈
V ′′(u)v, u

〉}
dt

and

〈
g ′(u), u

〉
=




∫ 



{

〈
V ′(u), u

〉
+

〈
V ′′(u)u, u

〉}
dt;

therefore, if (V) holds, then on M, g ′(u) �= , which implies M is a C manifold with codi-
mension  in H.

Let

f (u) =



∫ 


|u̇| dt

∫ 



〈
V ′(u), u

〉
dt (.)

and ũ ∈ M such that f ′ (̃u) =  and f (̃u) > . Set


T =

∫ 
 〈V ′ (̃u), ũ〉dt
∫ 

 | ˙̃u| dt
.

If (V) holds, then q̃(t) = ũ(t/T) is a non-constant T-periodic solution for (.)-(.).
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When the potential is even, then by Palais’ symmetrical principle [] and Lemma .
we have the following.

Lemma . ([]) Let

F =
{

u ∈ M : u
(

t +



)
= –u(t)

}
(.)

and suppose (V)-(V) hold. If ũ ∈ F is such that f ′ (̃u) =  and f (̃u) > , then q̃(t) = ũ( t
T ) is

a non-constant T-periodic solution for (.)-(.); in addition, we have

∀u ∈ F ,
∫ 


u(t) dt = .

Wirtinger’s inequality [] implies

∫ 


|u̇| dt ≥ (π )

∫ 


|u|,

from which it follows that (
∫ 

 |u̇| dt)/ is an equivalent norm for the space H.

Lemma . Let X be a Banach space and F ⊂ X a weakly closed subset. Suppose � defined
on F is Gateaux-differentiable, weakly lower semi-continuous and bounded from below
on F . Suppose further that � satisfies the following (WPS)inf�,F condition:

• If {xn} ⊂ F such that �(xn) → c and ‖�′(xn)‖ → , then {xn} has a weakly convergent
subsequence.

Then � attains its infimum on F .

Proof By Ekeland’s variational principle [, ], we know that there is a sequence {xn} ⊂ F
satisfying

�(xn) → inf� and
∥∥�′(xn)

∥∥ → .

Since � satisfies the (WPS)inf�,F condition, {xn} has a weakly convergent subsequence
which as a weak limit x. Because F ⊂ X is a weakly closed subset, we have x ∈ F . Finally,
by the weakly lower semi-continuous assumption on �, we conclude that � attains its
infimum on F . �

3 The proof of Theorem 1.3
We prove Theorem . by the following sequence of lemmas. In the following, f and F are
defined as in (.) and (.), respectively.

Lemma . If (V)-(V) hold, then, for any given c > , f satisfies the (PS)c,F condition; that
is, if {un} ⊂ F satisfies

f (un) → c >  and f |′F (un) → , (.)

then {un} has a strongly convergent subsequence.
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Proof We first prove that under our assumptions the constrained set F �= ∅. For any given
u ∈ H satisfying u(t) �= , ∀t ∈ [, ] and for a > , let

gu(a) = g(au) =
∫ 



[
V (au) +



〈
V ′(au), au

〉]
dt. (.)

By the assumption (V), we have

d
da

gu(a) >  (.)

and so gu is strictly increasing. Since V ∈ C, we know that, for any given a > ,

[
V

(
au(t)

)
+



〈
V ′(au(t)

)
, au(t)

〉]

is uniformly continuous on [, ].
Hence by (V), we have

lim
a→+∞ gu(a) ≤

∫ 


lim

a→+∞ sup

[
V (au) +



〈
V ′(au), au

〉]
dt ≤ A. (.)

By (V), we notice that

gu() = V () ≤ μ

μ
. (.)

Since μ
μ

< h < A, we see that the equation gu(a) = h has a unique solution a(u) with
a(u)u ∈ M.

By f (un) → c, we have




∫ 



∣∣u̇n(t)
∣∣ dt ·

∫ 



〈
V ′(un), un

〉
dt → c, (.)

and by (V) we see that

h =
∫ 



[
V (un) +



〈
V ′(un), un

〉]
dt ≤

(

μ

+



)∫ 



〈
V ′(un), un

〉
dt +

μ

μ
. (.)

By (.) and (.), we have

∫ 



〈
V ′(un), un

〉
dt ≥ h – μ

μ

 + 

μ

. (.)

Condition (V) provides h > μ
μ

. Then (.) and (.) imply
∫ 

 |u̇n(t)| dt is bounded and
‖un‖ = ‖u̇n‖L is bounded.

We know that H is a reflexive Banach space, so {un} has a weakly convergent subse-
quence; furthermore, by the embedding theorem the weakly convergent subsequence also
uniformly converges to some u ∈ H. The standard argument can show that {un} has a
subsequence which converges under the H norm. We omit the details of this standard
demonstration. �
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Lemma . f (u) is weakly lower semi-continuous on F .

Proof For any un ⊂ F with un ⇀ u, by Sobolev’s embedding theorem we have the uniform
convergence

∣∣un(t) – u(t)
∣∣∞ → .

Since V ∈ C(Rn,R), we have

∣∣V
(
un(t)

)
– V

(
u(t)

)∣∣∞ → .

By the weakly lower semi-continuity of the norm, we see that

lim inf

[∫ 


|u̇n| dt

] 
 ≥

(∫ 


|u̇| dt

) 


,

and so

lim inf

(∫ 


|u̇n| dt

)
≥

∫ 


|u̇| dt.

Then

lim inf f (un) = lim inf



∫ 


|u̇n| dt

∫ 



〈
V ′(un), un

〉
dt

≥ 


∫ 


|u̇| dt

∫ 



〈
V ′(u), u

〉
dt = f (u). �

Lemma . F is a weakly closed subset in H.

Proof This follows easily from Sobolev’s embedding theorem and V ∈ C(Rn,R). �

Lemma . The functional f (u) has a positive lower bound on F .

Proof By the definitions of f (u), F , and the assumption (V), we have

f (u) =



∫ 


|u̇| dt

∫ 



〈
V ′(u), u

〉
dt ≥ , ∀u ∈ F .

We claim further that

inf f (u) > ;

otherwise, (V) implies u(t) = const, and by the symmetrical property u(t + /) = –u(t) we
have u(t) = , ∀t ∈R. But assumptions (V) and (V) imply

V () ≤ μ

μ
< h,

which contradicts the definition of F since V () = h if we have  ∈ F . Now by Lemmas .-
. and Lemma ., we see that f (u) attains the infimum on F and we know that the min-
imizer is non-constant. �
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