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Abstract
In the present paper, we prove the existence of at least three radial solutions of the
p-Laplacian problem with nonlinear gradient term

{
�pv + f (|x|, v, |∇v|) = 0 in �,

v = 0 on ∂�,

and the corresponding one-parameter problem. Here � is a unit ball in R
N . Our

approach relies on the Avery-Peterson fixed point theorem. In contrast with the usual
hypotheses, no asymptotic behavior is assumed on the nonlinearity f with respect to
φp(·).
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1 Introduction
In the present paper, we are concerned with the multiplicity of positive radial solutions to
the quasilinear elliptic p-Laplacian problem with nonlinear gradient term

⎧⎨
⎩�pv + f (|x|, v, |∇v|) =  in �,

v =  on ∂�,
(.)

and the corresponding one-parameter problem

⎧⎨
⎩�pv + λf (|x|, v, |∇v|) =  in �,

v =  on ∂�,
(.)

where � ⊂R
N is a unit ball in R

N , �pu = div(|∇u|p–∇u) is the p-Laplacian with p > , and
f : [, +∞) × [, +∞) × [, +∞) → [, +∞) is continuous with f (r, s, t) >  for all (r, s, t) ∈
(, ] × (, +∞) × [, +∞).
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In recent years, the elliptic p-Laplacian problems with nonlinear gradient term have
been extensively studied via different methods [–], for example, critical point theory,
Schauder’s fixed point theorem, Schaefer’s fixed point theorem, sub- and supersolutions,
and so on. However, most of these results are concerned with the existence of one or two
solutions, and a few works refer to the existence of three solutions for problems (.) and
(.). In , Bueno et al. [] considered the p-Laplacian problem with dependence on
the gradient

⎧⎨
⎩–�pv = ω(x)f (v, |∇v|) in �,

v =  on ∂�,
(.)

where � ⊂ R
N (N > ) is a smooth bounded domain, ω : � → R is a continuous nonneg-

ative function with isolated zeros, and the C-nonlinearity f : [,∞) × [,∞) → [,∞)
satisfies some local hypotheses. By applying the Schauder fixed point theorem and sub-
and supersolutions, the authors showed that problem (.) has a positive solution. More-
over, as an application, the authors obtained that there exits λ∗ >  such that the p-growth
one-parameter problem

⎧⎨
⎩–�pu = λuq–( + |∇u|p) in �,

v =  on ∂�,

with  < q < p has a positive solution for each λ ∈ (,λ∗].
When the nonlinearity f does not depend on the gradient, He [] considered the p-

Laplacian problem

⎧⎨
⎩�pv + f (v) =  in �,

v =  on ∂�,

and using the Leggett-Williams fixed point theorem, established the existence of at least
three radial solutions. For other works concerned with p-Laplacian problems, we refer the
reader to [–, , ].

Motivated by the above works, the aim of this paper is to study the multiplicity of positive
radial solutions of problems (.) and (.). Under the hypothesis that f has a local behavior
and need not satisfy superlinear condition at the origin and sublinear condition at +∞
with respect to φp(s) := |s|p–s, s ∈R, by using the Avery-Peterson fixed point theorem we
obtain the existence of triple radial solutions of the above problems. To the best of our
knowledge, problems (.) and (.) have not been studied via this fixed point theorem.

2 Main results
In order to present existence results of positive radial solutions for problems (.) and (.),
setting r = |x| and v(x) = u(r), problems (.) and (.) become respectively

⎧⎨
⎩(rN–φp(u′))′ + rN–f (r, u, |u′|) = , r ∈ (, ),

u′() = , u() = ,
(.)
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and
⎧⎨
⎩(rN–φp(u′))′ + λrN–f (r, u, |u′|) = , r ∈ (, ),

u′() = , u() = .
(.)

Our approach on problem (.) relies upon the Avery-Peterson fixed point theorem,
which we recall here for the convenience of the reader.

Let γ and θ be nonnegative continuous convex functionals on P, α be a nonnegative
continuous concave functional on P, and ψ be a nonnegative continuous functional on P.
Then for positive real numbers a, b, c, and d, we define the convex sets

P(γ , d) =
{

x ∈ P : γ (x) < d
}

,

P(γ ,α, b, d) =
{

x ∈ P : b ≤ α(x),γ (x) ≤ d
}

and

P(γ , θ ,α, b, c, d) =
{

x ∈ P : b ≤ α(x), θ (x) ≤ c,γ (x) ≤ d
}

and the closed set

R(γ ,ψ , a, d) =
{

x ∈ P : a ≤ ψ(x),γ (x) ≤ d
}

.

The following fixed point theorem due to Avery and Peterson is fundamental in the
proofs of our main results.

Lemma . ([]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P, α be a nonnegative continuous concave functional on P,
and ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for  ≤ λ ≤ 
such that, for some positive numbers M and d,

α(x) ≤ ψ(x) and ‖x‖ ≤ Mγ (x)

for all x ∈ P(γ , d). Suppose that A : P(γ , d) → P(γ , d) is completely continuous and there
exist positive numbers a, b, and c with a < b such that

(i) {x ∈ P(γ , θ ,α, b, c, d) : α(x) > b} �= ∅ and α(Ax) > b for x ∈ P(γ , θ ,α, b, c, d);
(ii) α(Ax) > b for x ∈ P(γ ,α, b, d) with θ (Ax) > c;

(iii)  /∈ R(γ ,ψ , a, d) and ψ(Ax) < a for x ∈ R(γ ,ψ , a, d) with ψ(x) = a.
Then, A has at least three fixed points x, x, x ∈ P(γ , d) such that

γ (xi) ≤ d for i = , , , b < α(x);

a < ψ(x) with α(x) < b, ψ(x) < a.

Remark . In Lemma ., if γ (u) ≤ d and u ∈ P imply that θ (u) ≤ c and u ∈ P, then
assumption (i) implies assumption (ii).

We further take E = (C[, ],‖ · ‖) with the maximum norm

‖x‖ = max
{

max
≤r≤

∣∣u(r)
∣∣, max

≤r≤

∣∣u′(r)
∣∣}
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and define the cone P ⊂ E by

P =
{

u ∈ E : u(r) is nonnegative and nonincreasing on [, ], u′() = u() = 
}

.

Now we define the nonlinear operator A on P as follows:

(Au)(r) =
∫ 

r
φq

(


tN–

∫ t


τN–f

(
τ , u(τ ),

∣∣u′(τ )
∣∣)dτ

)
dt, u ∈ P.

Then (Au)(r) ≥  for all r ∈ [, ], and (Au)′() = (Au)() = , which implies A(P) ⊂ P.
Moreover, by a standard argument it is easy to show that A : P → P is completely contin-
uous. In addition, it can be easily proved that u is a solution of problem (.) if u ∈ P is a
fixed point of the nonlinear operator A.

Define the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals θ , γ , and the nonnegative continuous functional ψ on the cone P
by

γ (u) = max
≤r≤

∣∣u′(r)
∣∣, ψ(u) = θ (u) = max

≤r≤

∣∣u(r)
∣∣, α(u) = min

≤r≤–η

∣∣u(r)
∣∣,

where η ∈ (, ). Then it is easy to see that α(u) ≤ ψ(u) and ‖u‖ ≤ γ (u) for
u ∈ P.

Theorem . Assume that there exist constants a, b, d, and η with  < a < b ≤ ηd such
that

(H) f (r, s, t) ≤ Nφp(d) for all (r, s, t) ∈ [, ] × [, d] × [, d];
(H) f (r, s, t) ≥ N

(–η)N φp( b
η

) for all (r, s, t) ∈ [,  – η] × [b, d] × [, d];
(H) f (r, s, t) ≤ Nφp(a) for all (r, s, t) ∈ [, ] × [, a] × [, d].

Then, problem (.) has at least three radial solutions u, u, u satisfying

max
≤r≤

∣∣u′
i(r)

∣∣ ≤ d for i = , , , b < min
≤r≤–η

∣∣u(r)
∣∣;

a < max
≤r≤

∣∣u(r)
∣∣ with min

≤r≤–η

∣∣u(r)
∣∣ < b, max

≤r≤

∣∣u(r)
∣∣ < a.

(.)

Proof Choosing c = d, we divide the proof into three steps.
Step . We show that A : P(γ , d) → P(γ , d). To do this, let u ∈ P(γ , d). Then –d ≤

u′(r) ≤  for r ∈ [, ], and thus  ≤ u(r) =
∫ r

 u′(s) ds ≤ ∫ 
 |u′(s)|ds ≤ d for r ∈ [, ]. Hence,

from assumption (H) it follows that

γ (Au) = max
≤r≤

φq

(


rN–

∫ r


τN–f

(
τ , u(τ ),

∣∣u′(τ )
∣∣)dτ

)

≤ max
≤r≤

φq

(


rN–

∫ r


τN–Nφp(d) dτ

)

= max
≤r≤

φq
(
φp(d)r

) ≤ d, ∀u ∈ P(γ , d).

Therefore, A : P(γ , d) → P(γ , d).
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Step . We check assumption (i) of Lemma .. To do this, let u(r) ≡ b/η on [, ]. Then
γ (u) =  < d, θ (u) = b/η ≤ d = c, α(u) = b/η > b. Hence, {x ∈ P(γ , θ ,α, b, c, d) : α(x) > b} �= ∅.

Let u ∈ P(γ , θ ,α, b, c, d). Then γ (u) ≤ d, θ (u) ≤ c = d, α(u) ≥ b, and thus

–d ≤ u′(r) ≤ , ∀r ∈ [, ], b ≤ u(r) ≤ d, ∀r ∈ [,  – η].

So from (H) we have

α(Au) =
∫ 

–η

φq

(


tN–

∫ t


τN–f

(
τ , u(τ ),

∣∣u′(τ )
∣∣)dτ

)
dt

≥
∫ 

–η

φq

(


tN–

∫ –η


τN–f

(
τ , u(τ ),

∣∣u′(τ )
∣∣)dτ

)
dt

> ηφq

(∫ –η


τN– N

( – η)N φp

(
b
η

)
dτ

)

= ηφq

(
φp

(
b
η

))
= b, ∀u ∈ P(γ , θ ,α, b, c, d).

Step . We check assumption (iii) of Lemma .. Notice that ψ() =  < a, and thus  /∈
R(γ ,ψ , a, d). Let u ∈ R(γ ,ψ , a, d) with ψ(u) = a. Then γ (u) ≤ d and ψ(u) = a, and hence
–d ≤ u′(r) ≤  and  ≤ u(r) ≤ a for all r ∈ [, ]. It follows from (H) that

ψ(Au) =
∫ 


φq

(


sN–

∫ s


τN–f

(
τ , u(τ ),

∣∣u′(τ )
∣∣)dτ

)
ds

≤
∫ 


φq

(


sN–

∫ s


τN–Nφp(a) dτ

)
ds

=
∫ 


φq

(
φp(a)s

)
ds

< a for u ∈ R(γ ,ψ , a, d) with ψ(u) = a.

In summary, by Remark . A has at least three fixed points u, u, u ∈ P(γ , d), which
are radial solutions of problem (.) satisfying (.). This completes the proof of the theo-
rem. �

Remark . In Theorem ., assumptions (H) and (H) can be replaced by

(H′
) f ∞ := lims+t→+∞ maxr∈[,]

f (r,s,t)
φp(s+t) < N/φp()

and

(H′
) f  := lims→+ max(r,t)∈[,]×[,d]

f (r,s,t)
φp(s) < N ,

respectively.

From Theorem . we can easily get the existence of three radial solutions of one-
parameter problem (.).
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Theorem . Assume that there exist constants a, b, d, and η with  < a < b < ηd < d such
that

φp(b/η)
( – η)N min[,–η]×[b,d]×[,d] f (r, s, t)

≤ min

{
φp(a)

max[,]×[,a]×[,d] f (r, s, t)
,

φp(d)
max[,]×[,d]×[,d] f (r, s, t)

}
.

Then, one-parameter problem (.) has at least three radial solutions u, u, u satisfying
(.), provided that

Nφp(b/η)
( – η)N min[,–η]×[b,d]×[,d] f (r, s, t)

≤ λ ≤ min

{
Nφp(a)

max[,]×[,a]×[,d] f (r, s, t)
,

Nφp(d)
max[,]×[,d]×[,d] f (r, s, t)

}
.

To illustrate our main results, we present the following example.

Example . Consider the Dirichlet problem
⎧⎨
⎩�pv + f (|x|, v, |∇v|) =  in �,

v =  on ∂�,
(.)

where � is a unit ball in R
, p = 

 , and

f (r, s, t) =



( – r) + min
{

s, 
}

+



(
t



)

.

Choose a = , b = , d = , and η = /. Since p = / and N = , it follows that

Nφp(d) = ,
N

( – η)N φp

(
b
η

)
= , Nφp(a) = .

So, f (r, s, t) satisfies
(i) f (r, s, t) ≤  < Nφp(d), ∀(r, s, t) ∈ [, ] × [, ] × [, ];

(ii) f (r, s, t) ≥ . > N
(–η)N φp( b

η
), ∀(r, s, t) ∈ [, 

 ] × [, ] × [, ];
(iii) f (r, s, t) ≤  = Nφp(a), ∀(r, s, t) ∈ [, ] × [, ] × [, ].

Hence, by Theorem . the Dirichlet problem (.) has at least three radial solutions u,
u, u satisfying

max
≤r≤

∣∣u′
i(r)

∣∣ ≤  for i = , , ,  < min
≤r≤/

∣∣u(r)
∣∣;

 < max
≤r≤

∣∣u(r)
∣∣ with min

≤r≤/

∣∣u(r)
∣∣ < , max

≤r≤

∣∣u(r)
∣∣ < .

Noticing that f (r, , ) �≡  on [, ], we have that the three radial solutions u, u, u are
positive.
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