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Abstract
In this paper, we consider a class of p-Kirchhoff type problems with a singularity in a
bounded domain in RN . By using the variational method, the existence and
multiplicity of positive solutions are obtained.
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1 Introduction and main results
The purpose of this paper is to investigate the existence of multiple positive solutions to
the following problem:

⎧
⎨

⎩

–M(
∫

�
|∇u|p dx)�pu = λf (x)u–r + g(x)uq– in �,

u =  on ∂�,
(.)

where �pu = div(|∇u|p–∇u), � is a smooth bounded domain in RN ,  < r <  < p < q < p∗

(p∗ = Np
N–p if N > p and p∗ = ∞ if N ≤ p), M(s) = asp– + b and a, b,λ > . f , g ∈ C(�) are

nontrivial nonnegative functions.
Problem (.) is related to the stationary problem introduced by Kirchhoff in []. More

precisely, it is the model

ρ
∂u
∂t –

(
ρ

h
+

E
L

∫ L



∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣



dx
)

∂u
∂x = ,

where ρ,ρ, E, L are constants, which was proposed as an extension of the classical
D’Alembert’s wave equation for free vibrations of elastic strings to describe transversal
oscillations of a stretched string. For more details and backgrounds, we refer to [, ].

The existence and multiplicity of solutions for the following problem:
⎧
⎨

⎩

–M(
∫

�
|∇u|p dx)�pu = h(x, u) in �,

u =  on ∂�,
(.)

on a smooth bounded domain � ⊂ RN has been studied in many papers. Liu and Zhao
[] proved (.) has at least two nontrivial weak solutions by Morse theory under some
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restriction on M(s) and h(x, u). In [], the authors considered the following problem:

⎧
⎨

⎩

–M(
∫

�
|∇u|p dx)�pu = λf (x)|u|q–u + g(x)|u|r–u in �,

u =  on ∂�,
(.)

where M(s) = as + b,  < q < p < r ≤ p∗, they proved the existence of multiplicity nontrivial
solutions by using the Nehari manifold when the weight functions f (x) and g(x) change
their signs. For more results, we refer to [–] and the references therein.

When p =  and N = , problem (.) reduces to the following singular Kirchhoff type
problem:

⎧
⎨

⎩

–(a + b
∫

�
|∇u| dx)�u = λf (x)u–r + μg(x)uq in �,

u =  on ∂�,
(.)

where  < q ≤ , the existence of solutions for problem (.) has been widely studied (see
[–]). When  < q <  and λ = , Liu and Sun [] proved that problem (.) has at
least two positive solutions for μ >  small enough. Liao et al. showed the multiplicity of
positive solutions by the Nehari mainfold in the case of q =  in []. When q is a critical
exponents, at least two positive solutions are obtained by variational and perturbation
methods in [].

However, the singular p-Kirchhoff type problems have few been considered, especially
p �= , N �= . Here we focus on extending the results in [] and []. In fact, the extension
is nontrivial and requires a more careful analysis. Our method is based on the Nehari
manifold; see [, , , ].

Before starting our main theorems, we make use of the following notations:
• Let W ,p

 (�) be the Sobolev space with norm ‖u‖ = (
∫

�
|∇u|p dx)


p , the norm in Lp(�)

is denoted by ‖ � ‖p;
• Let Sz be the best Sobolev constant for the embedding of W ,p

 (�) in Lz(�) with  <
z < p∗. Then, for all u ∈ W ,p

 (�)\{},

‖u‖z ≤ S
– 

p
z ‖u‖.

In general, we say that a function u ∈ W ,p
 (�) is a weak solution of problem (.) if

M
(‖u‖p)

∫

�

|∇u|p–∇u∇ϕ dx – λ

∫

�

f |u|–rϕ dx –
∫

�

g|u|q–ϕ dx = 

for all ϕ ∈ W ,p
 (�). Thus, the functional corresponding to problem (.) is defined by

J(u) =

p

M̂
(‖u‖p) –

λ

 – r

∫

�

f |u|–r dx –

q

∫

�

g|u|q dx, ∀u ∈ W ,p
 (�),

where M̂(s) =
∫ s

 M(t) dt.
To obtain the existence results, we introduce the Nehari manifold:

Nλ =
{

u ∈ W ,p
 (�) \ {} : M

(‖u‖p)‖u‖p – λ

∫

�

f |u|–r dx –
∫

�

g|u|q dx = 
}

,
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and we define

K(u) = (p – )M
(‖u‖p)‖u‖p + pM′(‖u‖p)‖u‖p + λr

∫

�

f |u|–r dx – (q – )
∫

�

g|u|q dx.

Now we split Nλ into three disjoint parts as follows:

N+
λ =

{
u ∈ Nλ : K(u) > 

}
;

N
λ =

{
u ∈ Nλ : K(u) = 

}
;

N–
λ =

{
u ∈ Nλ : K(u) < 

}
.

Let λ∗ = max{ (–r)λ(a)

p
p+

p
, (–r)λ

p }, where λ(a) and λ are given by

λ(a) =
pS

–r
p

–r
p
√

abp–(q – p)( q–p
p– )p–

(q + r – )‖f ‖∞

(
pS

q
p
q

p
√

abp–(p + r – )
(q + r – )‖g‖∞

) p+r–
q–p+

and

λ =
bS

–r
p

–r (q – p)
(q + r – )‖f ‖∞

(
bS

q
p
q (p + r – )

(q + r – )‖g‖∞

) p+r–
q–p

,

then we state the main theorems.

Theorem . Assume that p < q < p∗ and N < p. Then, for each a >  and  < λ < λ∗, the
problem (.) has at least two positive solutions u+

λ ∈ N+
λ and u–

λ ∈ N–
λ .

Define

� = inf

{

‖u‖p
: u ∈ W ,p

 (�),
∫

�

g|u|p
dx = 

}

, (.)

then � >  is obtained by some φ� ∈ W ,p
 (�) with

∫

�
g|φ�|p dx = . In particular,

�

∫

�

g|u|p
dx ≤ ‖u‖p

(.)

and
⎧
⎨

⎩

–‖u‖p�pu = μg|u|p– in �,

u =  on ∂�,
(.)

where μ is an eigenvalue of (.), u ∈ W ,p
 (�) is nonzero and an eigenvector corresponding

to μ such that

‖u‖p
∫

�

|∇u|p–∇u∇(uϕ) dx = μ

∫

�

g|u|p–uϕ dx, for all ϕ ∈ W ,p
 (�);
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we write

I(u) = ‖u‖p
, for u ∈ E =

{

u ∈ W ,p
 (�) :

∫

�

g|u|p
dx = 

}

,

and all distinct eigenvalues of (.) denoted by  < μ < μ < · · · , we have

μ = inf
u∈E

I(u) > ,

where μ is simple, isolated and can be obtained at some ψ ∈ E and ψ >  in � (see []).

Theorem . Assume that p = q < p∗ and N < p. Then
(i) for each a ≥ 

�
and λ > , the problem (.) has at least one positive solution;

(ii) for each a < 
�

and  < λ < –r
p λ̂, where

λ̂ =
bS

–r
p

–r (p – p)
‖f ‖∞(p + r – )

(
b�(p + r – )

( – a�)(p + r – )

) p+r–
p–p

,

the problem (.) has at least two positive solutions u+
λ ∈ N+

λ , u–
λ ∈ N–

λ and

lim
a→ 

�

–
inf

u∈N–
λ

J(u) = ∞.

This paper is organized as follows: In Section , we present some lemmas which will be
used to prove our main results. In Section  and Section , we will prove Theorems .
and ., respectively.

2 Preliminaries
Lemma . (i) If q ≥ p, then the energy functional J(u) is coercive and bounded below in
Nλ;

(ii) if q < p, then the energy functional J(u) is coercive and bounded below in W ,p
 (�).

Proof (i) For u ∈ Nλ, we have

M
(‖u‖p)‖u‖p – λ

∫

�

f |u|–r dx –
∫

�

g|u|q dx = .

By the Sobolev inequality,

J(u) =

p

M̂
(‖u‖p) –

λ

 – r

∫

�

f |u|–r dx –

q

∫

�

g|u|q dx

=

p

M̂
(‖u‖p) –


q

M
(‖u‖p)‖u‖p – λ

q + r – 
q( – r)

∫

�

f |u|–r dx

≥ ‖u‖p

pq

(
a(q – p)

p
‖u‖p–p + b(q – p)

)

– λ
q + r – 
q( – r)

‖f ‖∞S
r–
p

–r ‖u‖–r

≥ b(q – p)
pq

‖u‖p – λ
q + r – 
q( – r)

‖f ‖∞S
r–
p

–r ‖u‖–r .

Thus, J(u) is coercive and bounded below in Nλ.
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(ii) For u ∈ W ,p
 (�), we have

J(u) =

p

M̂
(‖u‖p) –

λ

 – r

∫

�

f |u|–r dx –

q

∫

�

g|u|q dx

≥ a
p ‖u‖p

+
b
p
‖u‖p –

λ‖f ‖∞S
r–
p

–r
 – r

‖u‖–r –
‖g‖∞S

– q
p

q

q
‖u‖q

=
(

a
p ‖u‖p–q –

‖g‖∞S
– q

p
q

q

)

‖u‖q +
(

b
p
‖u‖p+r– –

λ‖f ‖∞S
r–
p

–r
 – r

)

‖u‖–r .

Thus, J(u) is coercive and bounded below in W ,p
 (�). �

Lemma . If q > p and  < λ < max{λ(a),λ}, then, for all a > ,
(i) the submanifold N

λ = ∅;
(ii) the submanifold N±

λ �= ∅.

Proof (i) Suppose N
λ �= ∅. Then, for u ∈ N

λ , we have

(q + r – )‖g‖∞S
– q

p
q ‖u‖q ≥ (q + r – )

∫

�

g|u|q dx

= a
(
p + r – 

)‖u‖p
+ b(p + r – )‖u‖p

≥
⎧
⎨

⎩

p p
√

abp–(p + r – )‖u‖p–,

b(p + r – )‖u‖p,
(.)

and

λ(q + r – )‖f ‖∞S
– –r

p
–r ‖u‖–r ≥ λ(q + r – )

∫

�

f |u|–r dx

= a
(
q – p)‖u‖p

+ b(q – p)‖u‖p

≥
⎧
⎨

⎩

p p
√

abp–(q – p)( q–p
p– )p–‖u‖p–,

b(q – p)‖u‖p.
(.)

By (.) and (.), for all u ∈ N
λ , we have

(
pS

q
p
q

p
√

abp–(p + r – )
(q + r – )‖g‖∞

) 
q–p+ ≤ ‖u‖ ≤

(
λ(q + r – )‖f ‖∞

pS
–r
p

–r
p
√

abp–(q – p)( q–p
p– )p–

) 
p+r–

and

(
bS

q
p
q (p + r – )

(q + r – )‖g‖∞

) 
q–p

≤ ‖u‖ ≤
(

λ(q + r – )‖f ‖∞

bS
–r
p

–r (q – p)

) 
p+r–

.

Hence, if N
λ is nonempty, then the inequality λ ≥ max{λ(a),λ} must hold.
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(ii) Fix u ∈ W ,p
 (�). Let

ha(t) = atp–(–r)‖u‖p
+ btp–(–r)‖u‖p – tq–(–r)

∫

�

g|u|q dx for a, t ≥ .

We see that ha() =  and ha(t) → –∞ as t → ∞. Since q > p and

h′
a(t) = tp+r–

(

a
(
p + r – 

)
tp–p‖u‖p

+ b(p + r – )‖u‖p

– (q + r – )tq–p
∫

�

g|u|q dx
)

,

there is a unique ta,max >  such that ha(t) reaches its maximum at ta,max, increasing for
t ∈ [, ta,max) and decreasing for t ∈ (ta,max,∞) with limt→∞ ha(t) = –∞. Clearly, if tu ∈ Nλ,
then tu ∈ N+

λ (or N–
λ ) if and only if h′

a(t) >  (or < ). Moreover,

t,max =
(

b(p + r – )‖u‖p

(q + r – )
∫

�
g|u|q dx

) 
q–p

and

h(t,max)

= b
q+r–
q–p

[(
p + r – 
q + r – 

) p+r–
q–p

–
(

p + r – 
q + r – 

) q+r–
q–p

] ‖u‖ p(q+r–)
q–p

(
∫

�
g|u|q dx)

p+r–
q–p

≥ b(q – p)
q + r – 

(
bS

q
p
q (p + r – )

(q + r – )‖g‖∞

) p+r–
q–p

‖u‖–r .

On the other hand, since

ha() =  < λ

∫

�

f |u|–r dx ≤ λ‖f ‖∞S
– –r

p
–r ‖u‖–r

<
b(q – p)
q + r – 

(
bS

q
p
q (p + r – )

(q + r – )‖g‖∞

) p+r–
q–p

‖u‖–r

≤ h(t,max) < ha(ta,max), (.)

there exist unique t+ and t– such that  < t+ < ta,max < t–,

ha
(
t+)

= λ

∫

�

f |u|–r dx = ha
(
t–)

and

h′
a
(
t+)

>  > h′
a
(
t–)

.

That is, t+u ∈ N+
λ and t–u ∈ N–

λ . �
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Lemma . (i) If q = p and a ≥ 
�

, then, for all λ > , N+
λ = Nλ �= ∅;

(ii) if q = p, a < 
�

and  < λ < λ̂, then Nλ = N+
λ ∪ N–

λ and N±
λ �= ∅.

Proof First, we show that N+
λ = Nλ.

Indeed, for all u ∈ Nλ, we have

a
(
p + r – 

)‖u‖p
+ b(p + r – )‖u‖p –

(
p + r – 

)
∫

�

g|u|p
dx

≥ (a� – )(p + r – )
�

‖u‖p
+ b(p + r – )‖u‖p > .

Therefore, u ∈ N+
λ .

Next, we declare N+
λ �= ∅.

Fix u ∈ W ,p
 (�). Let

h̄(t) = tp+r–
(

a‖u‖p
–

∫

�

g|u|p
dx

)

+ btp+r–‖u‖p for a, t ≥ .

Obviously, h̄() =  and limt→∞ h̄(t) = ∞. Since

h̄′(t) =
(
p + r – 

)
tp+r–

(

a‖u‖p
–

∫

�

g|u|p
dx

)

+ b(p + r – )tp+r–‖u‖p,

we can deduce that h̄(t) is increasing for t ∈ [,∞). Thus, there is a unique t+ >  such that
h̄(t+) = λ

∫

�
f |u|–r dx and h̄′(t+) > . That is, t+u ∈ N+

λ .
(ii) The proof is similar to Lemma ., we omit it here. �

We write Nλ = N+
λ ∪ N–

λ and define

α+ = inf
u∈N+

λ

J(u); α– = inf
u∈N–

λ

J(u),

then we have the following lemma.

Lemma . Suppose that q > p and  < λ < λ∗, then we have
(i) α+ < ;

(ii) α– > C, for some C > .
In particular α+ = infu∈Nλ

J(u).

Proof (i) Let u ∈ N+
λ , it follows that

M
(‖u‖p)‖u‖p – λ

∫

�

f |u|–r dx –
∫

�

g|u|q dx = 

and

λ(q + r – )
∫

�

f |u|–r dx > a
(
q – p)‖u‖p + b(q – p)‖u‖p.
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Substituting this into J(u), we have

J(u) =

p

M̂
(‖u‖p) –

λ

 – r

∫

�

f |u|–r dx –

q

∫

�

g|u|q dx

=

p

M̂
(‖u‖p) –


q

M
(‖u‖p)‖u‖p – λ

q + r – 
q( – r)

∫

�

f |u|–r dx

<
a(q – p)( – r – p)

pq( – r)
‖u‖p

+
b(q – p)( – r – p)

pq( – r)
‖u‖p < ,

and then α+ < .
(ii) Let u ∈ N–

λ . We divide the proof into two cases.
Case (A): λ∗ = (–r)λ

p . Since u ∈ N–
λ , and by the Sobolev inequality,

b(p + r – )‖u‖p ≤ a
(
p + r – 

)‖u‖p
+ b(p + r – )‖u‖p

< (q + r – )S– q
p ‖g‖∞‖u‖q,

which implies

‖u‖ >
(

bS
q
p
q (p + r – )

(q + r – )‖g‖∞

) 
q–p

for all u ∈ N–
λ .

Hence,

J(u) ≥ a(q – p)‖u‖p

pq
+

b(q – p)‖u‖p

pq
– λ

q + r – 
q( – r)

‖f ‖∞S
– –r

p
–r ‖u‖–r

≥ ‖u‖–r
(

b(q – p)
pq

‖u‖p+r– – λ
q + r – 
q( – r)

‖f ‖∞S
– –r

p
–r

)

>
(

bS
q
p
q (p + r – )

(q + r – )‖g‖∞

) –r
q–p

[
b(q – p)

pq

(
bS

q
p
q (p + r – )

(q + r – )‖g‖∞

) p+r–
q–p

– λ
q + r – 
q( – r)

‖f ‖∞S
– –r

p
–r

]

= C.

Thus, if  < λ < (–r)λ
p , then α– > C > .

Case (B): λ∗ = (–r)λ(a)

p
p+

p
. By (.), one has

p p
√

abp–
(
p + r – 

)‖u‖p– ≤ (q + r – )‖g‖∞S
– q

p
q ‖u‖q,

which implies

‖u‖ >
(

pS
q
p
q

p
√

abp–(p + r – )
(q + r – )‖g‖∞

) 
q–p+

for all u ∈ N–
λ .

Repeating the argument of case (A), we conclude if λ < (–r)λ(a)

p
p+

p
, then α– > C for some

C > . �
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Lemma . Suppose that q = p, a < 
�

and  < λ < –r
p λ̂, then we have

(i) α̂+ < ;
(ii) α̂– > C, for some C > .

In particular α̂+ = infu∈Nλ
J(u).

Proof (i) Repeating the same argument of Lemma .(i), we conclude that α̂+ < .
(ii) Let u ∈ N–

λ . By (.), one has

b(p + r – )‖u‖p <
(
p + r – 

)
(∫

�

g|u|p
dx – a‖u‖p

)

≤ ( – a�)(p + r – )
�

‖u‖p
,

which implies that

‖u‖ >
(

b�(p + r – )
( – a�)(p + r – )

) 
p–p

for all u ∈ N–
λ . (.)

Then we have

J(u) =

p

M̂
(‖u‖p) –

λ

 – r

∫

�

f |u|–r dx –

q

∫

�

g|u|q dx

≥ ‖u‖–r
(

(p – )b
p ‖u‖p+r– – λ

p + r – 
p( – r)

‖f ‖∞S
– –r

p
–r

)

>
(

b�(p + r – )
( – a�)(p + r – )

) –r
p–p

[
(p – )b

p

(
b�(p + r – )

( – a�)(p + r – )

) p+r–
p–p

– λ
p + r – 
p( – r)

‖f ‖∞S
– –r

p
–r

]

. (.)

Thus, if λ < –r
p λ̂, then α̂– > C for some C > . �

Lemma . For each u ∈ N+
λ (resp. u ∈ N–

λ ), there exist ε >  and a continuous function
f : B(; ε) ⊂ W ,p

 (�) → R+ such that

f () = , f (ω) > , f (ω)(u + ω) ∈ N+
λ

(
resp. u ∈ N–

λ

)
, for all ω ∈ B(; ε),

where B(; ε) = {ω ∈ W ,p
 (�) : ‖ω‖ < ε}.

Proof For u ∈ N+
λ , define F : W ,p

 (�) × R → R as follows:

F(ω, t) = atp+r–
(∫

�

∣
∣∇(u + ω)

∣
∣p dx

)p

+ btp+r–
∫

�

∣
∣∇(u + ω)

∣
∣p dx

– tq+r–
∫

�

g|u|q dx – λ

∫

�

f |u|–r dx.

Since u ∈ N+
λ , it is easily seen that F(, ) =  and Ft(, ) > . Then by the implicit function

theorem at the point (, ), we can see that there exist ε >  and a continuous function
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f : B(; ε) ⊂ W ,p
 (�) → R+ such that

f () = , f (ω) > , f (ω)(u + ω) ∈ N+
λ , for all ω ∈ B(; ε).

In the same way, we can prove the case u ∈ N–
λ . �

Remark . The proof of Lemma . is inspired by [].

3 Proof of Theorem 1.1
By Lemma . and the Ekeland variational principle [], there exists a minimizing se-
quence {un} ⊂ N+

λ such that

(i) J(un) < α+ +

n

;

(ii) J(u) > J(un) –

n

‖u – un‖, ∀u ∈ N+
λ .

Note that J(|un|) = J(un). We may assume that un ≥  in �. Using Lemma . again, we can
see that there is a constant C >  such that, for all n ∈ N+, ‖un‖ ≤ C. Thus, there exist a
subsequence (still denoted by {un}) and u+

λ in W ,p
 (�) such that

un ⇀ u+
λ weakly in W ,p

 (�),

un → u+
λ strongly in L–r(�),

un → u+
λ strongly in Lq(�),

un → u+
λ a.e. in �.

Now we conclude that u+
λ ∈ N+

λ is a positive solution of (.). The proof is inspired by Liu
and Sun []. In order to prove the claim, we divide the arguments into six steps.

Step : u+
λ is not identically zero.

Indeed, it is an immediate conclusion of the following inequalities:

J
(
u+

λ

) ≤ lim
n→∞

J(un) = α+ < .

Step : There exists C such that up to a subsequence we have

a
(
p + r – 

)‖un‖p
+ b(p + r – )‖un‖p – (q + r – )

∫

�

g
∣
∣u+

λ

∣
∣q dx > C. (.)

In order to prove (.), it suffices to verify

a
(
p + r – 

)
lim

n→∞‖un‖p + b(p + r – ) lim
n→∞‖un‖p > (q + r – )

∫

�

g
∣
∣u+

λ

∣
∣q dx. (.)

Since un ∈ N+
λ ,

a
(
p + r – 

)‖un‖p
+ b(p + r – )‖un‖p ≥ (q + r – )

∫

�

g
∣
∣u+

λ

∣
∣q dx. (.)
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It follows that

a
(
p + r – 

)
lim

n→∞‖un‖p
+ b(p + r – ) lim

n→∞‖un‖p ≥ (q + r – )
∫

�

g
∣
∣u+

λ

∣
∣q dx.

Suppose by contradiction that

a
(
p + r – 

)
lim

n→∞‖un‖p + b(p + r – ) lim
n→∞‖un‖p = (q + r – )

∫

�

g
∣
∣u+

λ

∣
∣q dx. (.)

Then, from (.) and (.), one has

a
(
p + r – 

)
lim

n→∞‖un‖p
+ b(p + r – ) lim

n→∞‖un‖p = (q + r – )
∫

�

g
∣
∣u+

λ

∣
∣q dx.

Thus ‖un‖p converges to a positive number A that satisfies

a
(
p + r – 

)
Ap + b(p + r – )A = (q + r – )

∫

�

g
∣
∣u+

λ

∣
∣q dx

and

a
(
q – p)Ap + b(q – p)A = λ(q + r – )

∫

�

f
∣
∣u+

λ

∣
∣–r dx.

On the other hand, by (.), we have

 ≤ (
λ∗ – λ

)
∫

�

f |un|–r dx

< b
q+r–
q–p

(
p + r – 
q + r – 

) p+r–
q–p

(
q – p

q + r – 

) ‖un‖
p(q+r–)

q–p

(
∫

�
g|un|q dx)

p+r–
q–p

– λ

∫

�

f |un|–r dx

→ b
q+r–
q–p

(
p + r – 
q + r – 

) p+r–
q–p

(
q – p

q + r – 

)
A

q+r–
q–p

( a(p+r–)Ap+b(p+r–)A
q+r– )

p+r–
q–p

–
a(q – p)Ap + b(q – p)A

q + r – 

< b
q+r–
q–p

(
p + r – 
q + r – 

) p+r–
q–p

(
q – p

q + r – 

)
A

q+r–
q–p

( b(p+r–)A
q+r– )

p+r–
q–p

–
a(q – p)Ap + b(q – p)A

q + r – 

= –
a(q – p)
q + r – 

Ap < ,

which is impossible. Hence, (.) and (.) must hold.
Step : For nonnegative ϕ ∈ W ,p

 (�) and t >  small, we can find fn(t) := fn(tϕ) such
that fn() =  and fn(t)(un + tϕ) ∈ N+

λ for each un ∈ N+
λ by Lemma .. f ′

n+() ∈ [–∞,∞] is
denoted by the right derivative of fn(t) at zero. We claim that there exists C >  such that
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f ′
n+() > –C for all n ∈ N+. Since un, fn(t)(un + tϕ) ∈ Nλ, we deduce that

 = a‖un‖p
+ b‖un‖p – λ

∫

�

f |un|–r dx –
∫

�

g|un|q dx

and

 = af p
n (t)‖un + tϕ‖p

+ bf p
n (t)‖un + tϕ‖p – λf –r

n (t)
∫

�

f |un + tϕ|–r dx

– f q
n (t)

∫

�

g|un + tϕ|q dx.

Thus

 = a
(
f p
n (t) – 

)‖un + tϕ‖p
+ a

(‖un + tϕ‖p
– ‖un‖p)

+ b
(
f p
n (t) – 

)‖un + tϕ‖p + b
(‖un + tϕ‖p – ‖un‖p)

– λ
(
f –r
n (t) – 

)
∫

�

f |un + tϕ|–r dx – λ

∫

�

f
(|un + tϕ|–r – |un|–r)dx

–
(
f q
n (t) – 

)
∫

�

g|un + tϕ|q dx –
∫

�

g
(|un + tϕ|q – |un|q

)
dx

≤ a
(
f p
n (t) – 

)‖un + tϕ‖p
+ a

(‖un + tϕ‖p
– ‖un‖p)

+ b
(
f p
n (t) – 

)‖un + tϕ‖p + b
(‖un + tϕ‖p – ‖un‖p)

– λ
(
f –r
n (t) – 

)
∫

�

f |un + tϕ|–r dx –
(
f q
n (t) – 

)
∫

�

g|un + tϕ|q dx.

Then, dividing by t >  and letting t → , we have

 ≤ ap‖un‖p
f ′
n+() + ap‖un‖p–p

∫

�

|∇un|p–∇un∇ϕ dx

+ bp‖un‖pf ′
n+() + bp

∫

�

|∇un|p–∇un∇ϕ dx

– λ( – r)f ′
n+()

∫

�

f |un|–r dx – qf ′
n+()

∫

�

g|un|q dx

= f ′
n+()

(

ap‖un‖p
+ bp‖un‖p – λ( – r)

∫

�

f |un|–r dx – q
∫

�

g|un|q dx
)

+ ap‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx + bp
∫

�

|∇un|p–∇un∇ϕ dx

= f ′
n+()

(

a
(
p + r – 

)‖un‖p
+ b(p + r – )‖un‖p – (q + r – )

∫

�

g|un|q dx
)

+ ap‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx + bp
∫

�

|∇un|p–∇un∇ϕ dx.

One deduces from (.)

f ′
n+() ≥ –

ap‖un‖p–p ∫

�
|∇un|p–∇un∇ϕ dx + bp

∫

�
|∇un|p–∇un∇ϕ dx

a(p + r – )‖un‖p + b(p + r – )‖un‖p – (q + r – )
∫

�
g|un|q dx

.
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Therefore, by the boundedness of {un}, we conclude that {f ′
n+()} is bounded from below.

Step : Choose n∗ large enough such that (–r)C
n < C

 for all n > n∗. Then we claim that
there exists C such that f ′

n+() < C for each n > n∗. Without loss of generality, we may
suppose f ′

n+() ≥ . Then from condition (ii), we have

∣
∣fn(t) – 

∣
∣‖un‖

n
+

∣
∣tfn(t)

∣
∣‖ϕ‖

n

≥ 
n

∥
∥fn(t)(un + tϕ) – un

∥
∥

≥ J(un) – J
(
fn(t)(un + tϕ)

)

=
a(p + r – )

p( – r)
(
f p
n (t) – 

)‖un + tϕ‖p +
a(p + r – )

p( – r)
(‖un + tϕ‖p – ‖un‖p)

+
b(p + r – )

p( – r)
(
f p
n (t) – 

)‖un + tϕ‖p +
b(p + r – )

p( – r)
(‖un + tϕ‖p – ‖un‖p)

–
q + r – 
q( – r)

(
f q
n (t) – 

)
∫

�

g|un|q dx –
q + r – 
q( – r)

f q
n (t)

∫

�

g
(|un + tϕ|q – |un|q

)
dx.

Then, dividing by t >  and letting t → , we deduce

f ′
n+()

‖un‖
n

+
‖ϕ‖

n

≥ a(p + r – )
 – r

f ′
n+()‖un‖p +

a(p + r – )
 – r

‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx

+
b(p + r – )

 – r
f ′
n+()‖un‖p +

b(p + r – )
 – r

∫

�

|∇un|p–∇un∇ϕ dx

–
q + r – 

 – r
f ′
n+()

∫

�

g|un|q dx –
q + r – 

 – r

∫

�

g|un|q–ϕ dx. (.)

From (.) and the choice of n∗, we have

‖ϕ‖
n

≥ C

( – r)
f ′
n+() +

a(p + r – )
 – r

‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx

+
b(p + r – )

 – r

∫

�

|∇un|p–∇un∇ϕ dx –
q + r – 

 – r

∫

�

g|un|q–ϕ dx.

Namely,

C

( – r)
f ′
n+() ≤ ‖ϕ‖

n
–

a(p + r – )
 – r

‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx

–
b(p + r – )

 – r

∫

�

|∇un|p–∇un∇ϕ dx +
q + r – 

 – r

∫

�

g|un|q–ϕ dx.

Therefore, by the boundedness of {un}, we conclude {f ′
n+()}n>n∗ is bounded from above.

Step : u+
λ >  a.e. in � and for nonnegative ϕ ∈ W ,p

 (�), we have

(
a
∥
∥u+

λ

∥
∥p–p + b

)
∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇ϕ dx – λ

∫

�

f
∣
∣u+

λ

∣
∣–r

ϕ dx –
∫

�

g
∣
∣u+

λ

∣
∣q–

ϕ dx

≥ . (.)
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Similar to the argument in Step , one can obtain

f ′
n+()

‖un‖
n

+
‖ϕ‖

n

≥ –f ′
n+()

(

a‖un‖p
+ b‖un‖p –

∫

�

g|un|q dx – λ

∫

�

f |un|–rϕ dx
)

– a‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx – b
∫

�

|∇un|p–∇un∇ϕ dx

+
∫

�

g|un|q–ϕ dx + lim
t→+

λ

 – r

∫

�

f (|un + tϕ|–r – |un|–r)
t

dx

= –a‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx – b
∫

�

|∇un|p–∇un∇ϕ dx

+
∫

�

g|un|q–ϕ dx + lim
t→+

λ

 – r

∫

�

f (|un + tϕ|–r – |un|–r)
t

dx. (.)

Since f (|un + tϕ|–r – |un|–r) ≥ ,∀t > , by Fatou’s lemma, we obtain

∫

�

f |un|–rϕ dx ≤ lim
t→+


 – r

∫

�

f (|un + tϕ|–r – |un|–r)
t

dx. (.)

It follows from (.) and (.) that

λ

∫

�

f |un|–rϕ dx

≤ 
n

(
f ′
n+()‖un‖ + ‖ϕ‖) + a‖un‖p–p

∫

�

|∇un|p–∇un∇ϕ dx

+ b
∫

�

|∇un|p–∇un∇ϕ dx –
∫

�

g|un|q–ϕ dx

≤ C · max{C, C} + ‖ϕ‖
n

+ a‖un‖p–p
∫

�

|∇un|p–∇un∇ϕ dx

+ b
∫

�

|∇un|p–∇un∇ϕ dx –
∫

�

g|un|q–ϕ dx,

for all n > n∗.
Passing to the limit as n → ∞, one has

lim
n→∞

λ

∫

�

f |un|–rϕ dx ≤ a lim
n→∞

‖un‖p–p
∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇ϕ dx

+ b
∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇ϕ dx –
∫

�

g
∣
∣u+

λ

∣
∣q–

ϕ dx.

Then using Fatou’s lemma again, we infer that

λ

∫

�

f
∣
∣u+

λ

∣
∣–r

ϕ dx

≤ a lim
n→∞

‖un‖p–p
∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇ϕ dx

+ b
∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇ϕ dx –
∫

�

g
∣
∣u+

λ

∣
∣q–

ϕ dx. (.)
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Since un → u+
λ a.e. in �, we get u+

λ ≥  a.e. in �. Thus, one infers from (.) that

λ

∫

�

f
∣
∣u+

λ

∣
∣–r dx ≤ a lim

n→∞
‖un‖p–p∥∥u+

λ

∥
∥p + b

∥
∥u+

λ

∥
∥p –

∫

�

g
∣
∣u+

λ

∣
∣q dx. (.)

On the other hand

a lim
n→∞

‖un‖p–p∥∥u+
λ

∥
∥p + b

∥
∥u+

λ

∥
∥p ≤ a lim

n→∞‖un‖p
+ b lim

n→∞‖un‖p

= λ

∫

�

f
∣
∣u+

λ

∣
∣–r dx +

∫

�

g
∣
∣u+

λ

∣
∣q dx. (.)

Combining (.) and (.), we have

lim
n→∞

‖un‖p = lim
n→∞‖un‖p =

∥
∥u+

λ

∥
∥p. (.)

Thus, (.) can be obtained by inserting (.) into (.). Moreover, from (.), one has

∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇ϕ dx ≥ , ∀ϕ ∈ W ,p
 (�),ϕ ≥ .

Therefore, using the strong maximum principle for weak solutions (see []), we obtain
u+

λ >  a.e. in �.
Step : u+

λ is a weak solution of (.), and u+
λ ∈ N+

λ . By (.), we have un → u+
λ strongly

in W ,p
 (�), and so u+

λ ∈ N+
λ . Assume φ ∈ W ,p

 (�) and ε > , define � ∈ W ,p
 (�) by � :=

(u+
λ + εφ)+. Then from Step  it follows

 ≤
∫

�

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇� – λf
∣
∣u+

λ

∣
∣–r

� – g
∣
∣u+

λ

∣
∣q–

�
]

dx

=
∫

[u+
λ+εφ>]

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇
(
u+

λ + εφ
)

– λf
∣
∣u+

λ

∣
∣–r(u+

λ + εφ
)

– g
∣
∣u+

λ

∣
∣q–(u+

λ + εφ
)]

dx

=
(∫

�

–
∫

[u+
λ+εφ≤]

)
[(

a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇
(
u+

λ + εφ
)

– λf
∣
∣u+

λ

∣
∣–r(u+

λ + εφ
)

– g
∣
∣u+

λ

∣
∣q–(u+

λ + εφ
)]

dx

= a
∥
∥u+

λ

∥
∥p

+ b
∥
∥u+

λ

∥
∥p – λ

∫

�

f
∣
∣u+

λ

∣
∣–r dx –

∫

�

g
∣
∣u+

λ

∣
∣q dx

+ ε

∫

�

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇φ – λf
∣
∣u+

λ

∣
∣–r

φ – g
∣
∣u+

λ

∣
∣q–

φ
]

dx

–
∫

[u+
λ+εφ≤]

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇
(
u+

λ + εφ
)

– λf
∣
∣u+

λ

∣
∣–r(u+

λ + εφ
)

– g
∣
∣u+

λ

∣
∣q–(u+

λ + εφ
)]

dx

= ε

∫

�

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇φ – λf
∣
∣u+

λ

∣
∣–r

φ – g
∣
∣u+

λ

∣
∣q–

φ
]

dx

–
∫

[u+
λ+εφ≤]

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇
(
u+

λ + εφ
)
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– λf
∣
∣u+

λ

∣
∣–r(u+

λ + εφ
)

– g
∣
∣u+

λ

∣
∣q–(u+

λ + εφ
)]

dx

≤ ε

∫

�

[(
a
∥
∥u+

λ

∥
∥p–p + b

)∣
∣∇u+

λ

∣
∣p–∇u+

λ∇φ – λf
∣
∣u+

λ

∣
∣–r

φ – g
∣
∣u+

λ

∣
∣q–

φ
]

dx

– ε
(
a
∥
∥u+

λ

∥
∥p–p + b

)
∫

[u+
λ+εφ≤]

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇φ dx.

Since the measure of the domain of integration [u+
λ + εφ ≤ ] tends to zero as ε → , it

follows
∫

[u+
λ+εφ≤] |∇u+

λ|p–∇u+
λ∇φ dx → . Dividing by ε and letting ε → , we have

(
a
∥
∥u+

λ

∥
∥p–p + b

)
∫

�

∣
∣∇u+

λ

∣
∣p–∇u+

λ∇φ dx – λ

∫

�

f
∣
∣u+

λ

∣
∣–r

φ dx –
∫

�

g
∣
∣u+

λ

∣
∣q–

φ dx ≥ .

Notice that φ is arbitrary, the inequality also holds for –φ, so it follows that u+
λ is a weak

solution of (.). Moreover, from (.) and (.), we deduce that u+
λ ∈ N+

λ .
A similar argument shows that there exists another solution u–

λ ∈ N–
λ .

4 Proof of Theorem 1.2
(i) By Lemma .(i), we write Nλ = N+

λ and define

θ+ = inf
u∈N+

λ

J(u).

Similar to Lemma .(i), we have θ+ < . Applying Lemma .(i) and the Ekeland varia-
tional principle, we see that there exists a minimizing sequence {un} for J(u) in N+

λ such
that

(i) J(un) < θ+ +

n

;

(ii) J(u) > J(un) –

n

‖u – un‖, ∀u ∈ N+
λ .

Repeating the same argument as Theorem ., we can see that uλ ∈ N+
λ is a positive solution

of the problem (.).
(ii) Similar to the proof of Theorem ., we know that the problem (.) has at least two

positive solutions u+
λ ∈ N+

λ and u–
λ ∈ N–

λ . Moreover, combining (.) with (.), we have

lim
a→ 

�

–

∥
∥u–

λ

∥
∥ = ∞

and

lim
a→ 

�

–
inf

u∈N–
λ

J(u) = ∞.

This completes the proof of Theorem ..

Remark . The results of Theorems . and . extend the results of [, ]. The results
from the cited work correspond to our results for the case p =  and N = . From these
two references, we obtained the motivation for this paper.
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