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Abstract
We consider the quasilinear wave equation

utt –�ut – div(|∇u|α–2∇u) – div(|∇ut|β–2∇ut) + a|ut|m–2ut = b|u|p–2u

a,b > 0, associated with initial and Dirichlet boundary conditions at one part and
acoustic boundary conditions at another part, respectively. We prove, under suitable
conditions on α, β ,m, p and for negative initial energy, a global nonexistence of
solutions.
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1 Introduction
In this paper, we consider the following quasilinear wave equation with acoustic boundary
conditions:

utt – �ut – div
(|∇u|α–∇u

)
– div

(|∇ut|β–∇ut
)

+ a|ut|m–ut = b|u|p–u in � × (,∞), (.)

u =  on � × (,∞), (.)

∂ut

∂ν
+ |∇u|α– ∂u

∂ν
+ |∇ut|β– ∂ut

∂ν
= h(x)yt on � × (,∞), (.)

ut + f (x)yt + q(x)y =  on � × (,∞), (.)

u(x, ) = u(x), ut(x, ) = u(x) in �, (.)

y(x, ) = y(x) on � × (,∞), (.)

where a, b > ,α,β , m, p > , � is a regular and bounded domain of Rn(n ≥ ) and ∂�(=
�) := � ∪ �. Here �,� are closed and disjoint, and ∂

∂ν
denotes the unit outer nor-

mal derivative. The functions f , q, h : � −→ R+ are essentially bounded and  < q ≤ q(x)
on �.
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The system (.)-(.) is a model of a quasilinear wave equation with acoustic bound-
ary conditions. The acoustic boundary conditions were introduced by Morse and Ingard
[] in  and developed by Beale and Rosencrans in [], where the authors proved the
global existence and regularity of the linear problem. Furthermore, Boukhatem and Ben-
abderrahmane [, ] studied the existence, blow-up and decay of solutions for viscoelastic
wave equations with acoustic boundary conditions. Graber and Said-Houari [] studied
the blow-up solutions for the wave equation with semilinear porous acoustic boundary
conditions. Moreover, Wu [] also considered blow-up solutions for a nonlinear wave
equation with porous acoustic boundary conditions. The global nonexistence of solutions
for a class of wave equations with nonlinear damping and source terms was proved by
Messaoudi and Said-Houari [–] (see [–] for more details). Recently, Piskin [] in-
vestigated the energy decay and blow-up of solutions for quasilinear hyperbolic equations
with nonlinear damping and source terms (see [–] for more details).

Motivated by the previous works, in this paper, we study the global nonexistence of
solutions for quasilinear wave equations with acoustic boundary conditions. To the best of
our knowledge, there are no results of a quasilinear wave equation with acoustic boundary
conditions. This work is meaningful. The outline of the paper is the following. In Section ,
we prove the main result.

2 Blow-up results
In order to state and prove our result, we introduce

Z = L∞(
[, T); W ,α(�)

) ∩ W ,∞(
[, T); L(�)

)

∩ W ,β(
[, T); W ,β(�)

) ∩ W ,m(
[, T); Lm(�)

)

for T >  and the energy functional

E(t) =



∫

�

u
t dx +


α

∫

�

|∇u|α dx –
b
p

∫

�

|u|p dx +



∫

�

h(x)q(x)y(t) d�. (.)

Theorem . Assume that α,β , m, p ≥  such that β < α, and max{m,α} < p < rα , where
rα is the Sobolev critical exponent of W ,α(�). Assume further that

E() < . (.)

Then the solution (u, y) ∈ Z × L(R+; L(�)) of (.)-(.) can not exist for all time.

Remark . If the solution u of (.)-(.) is smooth enough, then it blows up in finite
time.

Proof We suppose that the solution exists for all time, and we reach a contradiction. For
this purpose, we multiply Eq. (.) by ut and, using (.)-(.), we obtain

E′(t) = –
∫

�

∣∣∇ut(t)
∣∣ dx –

∫

�

∣∣∇ut(t)
∣∣β dx

– a
∫

�

∣
∣ut(t)

∣
∣m dx –

∫

�

h(x)f (x)y
t (t) d� ≤  (.)

for any regular solution. Hence we get E(t) ≤ E() ∀t ≥ .
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By setting H(t) = –E(t), we deduce

 < H() ≤ H(t) ≤ b
p

∫

�

∣
∣u(t)

∣
∣p dx, ∀ ≥ . (.)

Now, we define

L(t) = H–σ (t) + ε

∫

�

u(t)ut(t) dx –
ε



∫

�

h(x)f (x)y(t) d� – ε

∫

�

h(x)u(t)y(t) d� (.)

for ε small to be chosen later and

 < σ ≤ min

{
α – 

p
,

α – β

p(β – )
,

p – m
p(m – )

,
α – 

α

}
. (.)

Our goal is to show that L(t) satisfies a differential inequality of the form

L′(t) ≥ ξLq(t), q > . (.)

This, of course, will lead to a blow-up in finite time.
By taking a derivative of (.), we get

L′(t) = ( – σ )H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx + ε

∫

�

u(t)utt(t) dx

– ε

∫

�

h(x)f (x)y(t)yt(t) d� – ε

∫

�

h(x)ut(t)y(t) d�

– ε

∫

�

h(x)u(t)yt(t) d�. (.)

By using Eqs. (.)-(.), estimate (.) becomes

L′(t) = ( – σ )H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx

+ ε

∫

�

u(t)
[
�ut(t) + div

(∣∣∇u(t)
∣
∣α–∇u(t)

)
+ div

(∣∣∇ut(t)
∣
∣β–∇ut(t)

)

– a
∣∣ut(t)

∣∣m–ut(t) + b
∣∣u(t)

∣∣p–u(t)
]

dx – ε

∫

�

h(x)f (x)y(t)yt(t) d�

– ε

∫

�

h(x)ut(t)y(t) d� – ε

∫

�

h(x)u(t)yt(t) d�

= ( – σ )H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx – ε

∫

�

∇ut(t)∇u(t) dx

– ε

∫

�

∣
∣∇u(t)

∣
∣α dx – ε

∫

�

(∣∣∇ut(t)
∣
∣β–∇ut(t)

)∇u(t) dx

– aε

∫

�

∣
∣ut(t)

∣
∣m–ut(t)u(t) dx + bε

∫

�

∣
∣u(t)

∣
∣p dx

+ ε

∫

�

(
∂ut(t)

∂ν
+

∣
∣∇u(t)

∣
∣α– ∂u(t)

∂ν
+

∣
∣∇ut(t)

∣
∣β– ∂ut(t)

∂ν

)
u(t) d�

– ε

∫

�

h(x)f (x)y(t)yt(t) d� – ε

∫

�

h(x)ut(t)y(t) d� – ε

∫

�

h(x)u(t)yt(t) d�
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= ( – σ )H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx – ε

∫

�

∇ut(t)∇u(t) dx

– ε

∫

�

∣
∣∇u(t)

∣
∣α dx – ε

∫

�

(∣∣∇ut(t)
∣
∣β–∇ut(t)

)∇u(t) dx

– aε

∫

�

∣∣ut(t)
∣∣m–ut(t)u(t) dx + bε

∫

�

∣∣u(t)
∣∣p dx + ε

∫

�

h(x)q(x)y(t) d�. (.)

Exploiting Hölder’s and Young’s inequalities, for any η,μ, δ > , we obtain
∫

�

∣∣ut(t)
∣∣m–ut(t)u(t) dx ≤ ηm

m

∫

�

∣∣u(t)
∣∣m dx +

m – 
m

η– m
m–

∫

�

∣∣ut(t)
∣∣m dx, (.)

∫

�

∇ut(t)∇u(t) dx ≤ 
μ

∫

�

∣∣∇u(t)
∣∣ dx + μ

∫

�

∣∣∇ut(t)
∣∣ dx, (.)

∫

�

∣
∣∇ut(t)

∣
∣β–∇ut(t)∇u(t) dx ≤ δβ

β

∫

�

∣
∣∇u(t)

∣
∣β dx +

β – 
β

δ
– β

β–

∫

�

∣
∣∇ut(t)

∣
∣β dx.

(.)

A substitution of (.)-(.) in (.) yields

L′(t) ≥ ( – σ )H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx –

ε

μ

∫

�

∣
∣∇u(t)

∣
∣ dx

– εμ

∫

�

∣
∣∇ut(t)

∣
∣ dx – ε

∫

�

∣
∣∇u(t)

∣
∣α dx –

εδβ

β

∫

�

∣
∣∇u(t)

∣
∣β dx

–
ε(β – )

β
δ

– β
β–

∫

�

∣
∣∇ut(t)

∣
∣β dx –

aεηm

m

∫

�

∣
∣u(t)

∣
∣m dx

–
aε(m – )

m
η– m

m–

∫

�

∣∣ut(t)
∣∣m dx + bε

∫

�

∣∣u(t)
∣∣p dx

+ ε

∫

�

h(x)q(x)y(t) d�. (.)

Therefore, by choosing η,μ, δ so that

η– m
m– = MH–σ (t),

μ = MH–σ (t),

δ
– β

β– = MH–σ (t)

for M, M, M to be specified later, and using (.), we arrive at

L′(t) ≥ ( – σ )H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx –

ε

M
Hσ (t)

∫

�

∣∣∇u(t)
∣∣ dx

– ε

∫

�

∣∣∇u(t)
∣∣α dx –

εM–(β–)

β

Hσ (β–)(t)
∫

�

∣∣∇u(t)
∣∣β dx

–
aε

m
M–(m–)

 Hσ (m–)(t)
∫

�

∣
∣u(t)

∣
∣m dx + bε

∫

�

∣
∣u(t)

∣
∣p dx

– ε

[
M

∫

�

∣
∣∇ut(t)

∣
∣ dx +

β – 
β

M

∫

�

∣
∣∇ut(t)

∣
∣β dx

+
a(m – )

m
M

∫

�

∣∣ut(t)
∣∣m dx

]
H–σ (t) + ε

∫

�

h(x)q(x)y(t) d�. (.)
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If M = M + (β–)M
β

+ (m–)M
m , then (.) takes the form

L′(t) ≥ ( – σ – εM)H–σ (t)H ′(t) + ε

∫

�

u
t (t) dx –

ε

M
Hσ (t)

∫

�

∣
∣∇u(t)

∣
∣ dx

– ε

∫

�

∣
∣∇u(t)

∣
∣α dx –

εM–(β–)

β

Hσ (β–)(t)
∫

�

∣
∣∇u(t)

∣
∣β dx

–
aε

m
M–(m–)

 Hσ (m–)(t)
∫

�

∣∣u(t)
∣∣m dx + bε

∫

�

∣∣u(t)
∣∣p dx

+ εMH–σ (t)
∫

�

h(x)f (x)y
t (t) d� + ε

∫

�

h(x)q(x)y(t) d�. (.)

Then we use the embedding Lp(�) ↪→ Lm(�) and (.) to get

Hσ (m–)(t)
∫

�

∣∣u(t)
∣∣m dx ≤

(
b
p

)σ (m–)(∫

�

∣∣u(t)
∣∣p dx

) m+σp(m–)
p

. (.)

We also exploit the inequality

∫

�

∣∣∇u(t)
∣∣ dx ≤ c

(∫

�

∣∣∇u(t)
∣∣α dx

) 
α

,

the embedding W ,α(�) ↪→ H(�) and (.) to obtain

Hσ (t)
∫

�

∣∣∇u(t)
∣∣ dx ≤ c

(
b
p

)σ (∫

�

∣∣∇u(t)
∣∣α dx

) pσ+
α

. (.)

Since α > β , we obtain

∫

�

∣∣∇u(t)
∣∣β dx ≤ c

(∫

�

∣∣∇u(t)
∣∣α dx

) β
α

,

we derive

Hσ (β–)(t)
∫

�

∣
∣∇u(t)

∣
∣β dx ≤ c

(
b
p

)σ (β–)(∫

�

∣
∣∇u(t)

∣
∣α dx

) pσ (β–)+β
α

, (.)

where c is a constant depending on � only. By using (.) and the inequality

zν ≤ z +  ≤
(

 +

a

)
(z + a), ∀z ≥ ,  < ν < , a ≥ , (.)

we get the following inequalities:

(∫

�

∣∣u(t)
∣∣p dx

) m+σp(m–)
p

≤ c
(∫

�

∣∣∇u(t)
∣∣α dx

) m+σp(m–)
α

≤ d
(∫

�

∣∣∇u(t)
∣∣α dx + H()

)

≤ d
(∫

�

∣
∣∇u(t)

∣
∣α dx + H(t)

)
, ∀t ≥ , (.)
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(∫

�

∣
∣∇u(t)

∣
∣α dx

) pσ+
α

≤ d
(∫

�

∣
∣∇u(t)

∣
∣α dx + H(t)

)
, ∀t ≥ , (.)

and

(∫

�

∣
∣∇u(t)

∣
∣α dx

) pσ (β–)+β
α

≤ d
(∫

�

∣
∣∇u(t)

∣
∣α dx + H(t)

)
, ∀t ≥ , (.)

where d =  + /H(), a = H(). Inserting (.)-(.) and (.)-(.) into (.), we de-
duce

L′(t) ≥ ( – σ – εM)H–σ (t)H ′(t)

+ kH(t) +
(

ε +
k


)∫

�

u
t (t) dx

–
εc

M

(∫

�

∣
∣∇u(t)

∣
∣α dx + H(t)

)
– ε

∫

�

∣
∣∇u(t)

∣
∣α dx

–
εc

Mβ–


(∫

�

∣
∣∇u(t)

∣
∣α dx + H(t)

)
+

k
α

∫

�

∣
∣∇u(t)

∣
∣α dx

–
εc

Mm–


(∫

�

∣
∣∇u(t)

∣
∣α dx + H(t)

)
+ b

(
ε –

k
p

)∫

�

∣
∣u(t)

∣
∣p dx

+ εMH–σ (t)
∫

�

h(x)f (x)y
t (t) d� +

(
ε +

k


)∫

�

h(x)q(x)y(t) d�

for some constant k and c = acd
m ( b

p )σ (m–), c = cd
 ( b

p )σ , c = cd
β

( b
p )σ (β–).

Using k = εp, we arrive at

L′(t) ≥ ( – σ – εM)H–σ (t)H ′(t) + ε

(
p + 



)∫

�

u
t (t) dx

+ ε

(
p –

c

M
–

c

Mβ–


–
c

Mm–


)
H(t)

+ ε

(
p
α

–
c

M
–

c

Mβ–


–
c

Mm–


– 
)∫

�

∣
∣∇u(t)

∣
∣α dx

+ εMH–σ (t)
∫

�

h(x)f (x)y
t (t) d� + ε

(
p + 



)∫

�

h(x)q(x)y(t) d�.

At this point, by choosing M, M, M large enough and using

εMH–σ (t)
∫

�

h(x)f (x)y
t (t) d� > ,

we have

L′(t) ≥ ( – σ – εM)H–σ (t)H ′(t)

+ rε
(

H(t) +
∫

�

u
t (t) dx +

∫

�

∣
∣∇u(t)

∣
∣α dx +

∫

�

h(x)q(x)y(t) d�

)
, (.)

where r is a positive constant (this is possible since p > α).
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We choose  < ε < –σ
M so that

L() = H–σ () + ε

∫

�

uu dx –
ε



∫

�

h(x)f (x)y
 d� – ε

∫

�

h(x)uy d� > .

Then from (.) we get

L(t) ≥ L() > , ∀t ≥ ,

and

L′(t) ≥ rε
(

H(t) +
∫

�

u
t (t) dx +

∫

�

∣∣∇u(t)
∣∣α dx +

∫

�

h(x)q(x)y(t) d�

)
. (.)

On the other hand, from (.) and f , h > , we have

L(t) ≤ H–σ (t) + ε

∫

�

u(t)ut(t) dx – ε

∫

�

h(x)u(t)y(t) d�.

Consequently, the above estimate leads to

L


–σ (t) ≤ C(ε,σ )
[

H(t) +
(∫

�

u(t)ut(t) dx
) 

–σ

+
(∫

�

h(x)u(t)y(t) d�

) 
–σ

]
. (.)

From Hölder’s inequality, we obtain

∫

�

u(t)ut(t) dx ≤
(∫

�

u
t (t) dx

) 

(∫

�

u(t) dx
) 



≤ c
(∫

�

u
t (t) dx

) 

(∫

�

∣∣u(t)
∣∣α dx

) 
α

,

where c is the positive constant which comes from the embedding Lα(�) ↪→ L(�). This
inequality implies that there exists a positive constant c >  such that

(∫

�

u(t)ut(t) dx
) 

–σ ≤ c

(∫

�

∣
∣u(t)

∣
∣α dx

) 
(–σ )α

(∫

�

u
t (t) dx

) 
(–σ )

.

Applying Young’s inequality to the right-hand side of the preceding inequality, we have a
positive constant, also denoted by c > , such that

(∫

�

u(t)ut(t) dx
) 

–σ ≤ c
[(∫

�

∣∣u(t)
∣∣α dx

) μ
(–σ )α

+
(∫

�

u
t (t) dx

) θ
(–σ )

]

for 
μ

+ 
θ

= . We take θ = ( – σ ), hence μ = ( – σ )/( – σ ), to get

(∫

�

u(t)ut(t) dx
) 

–σ ≤ c
[(∫

�

∣
∣u(t)

∣
∣α dx

) 
(–σ )α

+
∫

�

u
t (t) dx

]
.
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By Poincare’s inequality, we obtain

(∫

�

u(t)ut(t) dx
) 

–σ ≤ c
[(∫

�

∣
∣∇u(t)

∣
∣α dx

) 
(–σ )α

+
∫

�

u
t (t) dx

]
.

We use (.) and the algebraic inequality (.) with z = ‖∇u(t)‖α
α , d = +/H(), a = H(),

ν = /α( – σ ), condition (.) on σ ensures that  < ν < , and it follows that

zν ≤ d
(
z + H()

) ≤ d
(
z + H(t)

)
.

Therefore, from (.), there exists a positive constant, denoted by c, such that for all
t ≥ ,

(∫

�

u(t)ut(t) dx
) 

–σ ≤ c
[
H(t) +

∥∥∇u(t)
∥∥α

α
+

∥∥ut(t)
∥∥



]
. (.)

Furthermore, by the same method, we have

∫

�

h(x)u(t)y(t) d� =
∣
∣∣
∣

∫

�

h(x)q(x)
q(x)

u(t)y(t) d�

∣
∣∣
∣

≤ ‖h‖ 
∞‖q‖ 

∞
q

(∫

�

h(x)q(x)y(t) d�

) 

(∫

�

u(t) d�

) 


.

Using the embedding W ,α
 (�) ↪→ L(�) and Hölder’s inequality, we get

∫

�

h(x)u(t)y(t) d� ≤ c
‖h‖ 

∞‖q‖ 
∞

q

(∫

�

h(x)q(x)y(t) d�

) 

(∫

�

∣
∣∇u(t)

∣
∣α dx

) 
α

.

Consequently, there exists a positive constant c = c(‖h‖∞,‖q‖∞, q,σ ,α) such that

(∫

�

h(x)u(t)y(t) d�

) 
–σ ≤ c

(∫

�

h(x)q(x)y(t) d�

) 
(–σ )

(∫

�

∣∣∇u(t)
∣∣α dx

) 
α(–σ )

.

Using Young’s inequality exactly as in (.), we write

(∫

�

h(x)u(t)y(t) d�

) 
–σ ≤ c

[∫

�

h(x)q(x)y(t) d� +
(∫

�

∣∣∇u(t)
∣∣α dx

) 
α(–σ )

]
,

where c is a positive constant depending on c and α. Consequently, applying once again
the algebraic inequality (.) with z = ‖∇u(t)‖α

α , ν = /α( – σ ) and making use of (.),
we obtain by the same method as above

(∫

�

h(x)u(t)y(t) d�

) 
–σ ≤ c

[
H(t) +

∥
∥∇u(t)

∥
∥α

α
+

∫

�

h(x)q(x)y(t) d�

]
, (.)

where c is a positive constant. From (.), (.) and (.), we arrive at

L


–σ (t) ≤ c
[

H(t) +
∥∥∇u(t)

∥∥α

α
+

∥∥ut(t)
∥∥

 +
∫

�

h(x)q(x)y(t) d�

]
, (.)
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where c is a positive constant. Consequently, a combination of (.) and (.), for some
ξ > , yields

L′(t) ≥ ξL


–σ (t), ∀t ≥ . (.)

Integration of (.) over (, t) gives

L
σ

–σ (t) ≥ 
L –σ

–σ () – ξσ

–σ
t

, ∀t ≥ .

Hence L(t) blows up in finite time

T∗ ≤  – σ

ξσL σ
–σ ()

.

Thus the proof of Theorem . is complete. �
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