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Abstract
In this paper we consider the existence and general energy decay rate of global
solution to the mixed problem for the Kirchhoff-type equation with memory
boundary and acoustic boundary conditions. In order to prove the existence of
solutions, we employ the Galerkin method and compactness arguments. Besides, we
establish an explicit and general decay rate result using the perturbed modified
energy method and some properties of the convex functions. Our result is obtained
without imposing any restrictive assumptions on the behavior of the relaxation
function at infinity. These general decay estimates extend and improve some earlier
results, i.e., exponential or polynomial decay rates.
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1 Introduction
In this paper, we are concerned with the general decay of solutions to the Kirchhoff-type
equation with memory boundary and acoustic boundary conditions:

u′′ – M
(‖∇u‖)�u – �u′ + f (u) =  in � × (,∞), (.)

u +
∫ t


g(t – s)

(
M

(∥∥∇u(s)
∥
∥)∂u

∂ν
(s) +

∂u′

∂ν
(s)

)
ds =  on � × (,∞), (.)

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
= y′ on � × (,∞), (.)

u′ + p(x)y′ + q(x)y =  on � × (,∞), (.)

u() = u, u′() = u in �, (.)

where � is a bounded domain of Rn with sufficiently smooth boundary �, ν represents the
outward unit normal vector to � = � ∪� for � and � be closed and disjoint. The relax-
ation function g is positive and nondecreasing, the function f ∈ C(R) and M ∈ C([,∞[),
and p, q are functions satisfying some conditions to be specified later.
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On the other hand, problem (.) with u =  on ∂� has its origin in the mathematical
description of small amplitude vibrations of an elastic string. The existence of global solu-
tions and exponential decay to this problem has been studied by many authors (see [–]).
In fact, a mathematical model for the deflection of an elastic string of length L >  is given
by the mixed problem for the nonlinear wave equation

ρhu′′ =
(

p +
Eh
L

∫ L


u

x dx
)

uxx for  < x < L, t ≥ , (.)

where u is the lateral deflection, x is the space coordinate, t is the time, ρ denotes the mass
density, h is the cross section area, p is the initial axial tension and E is the Young modu-
lus. Eq. (.) was introduced by Kirchhoff [] as a nonlinear model of the free transversal
vibrations of a clamped string.

The asymptotic behavior of solutions for nonlinear wave and plate equations with mem-
ory boundary condition has been proved by many authors [–]. In the aforementioned
results, denoting by k the resolvent kernel of – g′

g() , they showed that the energy of the solu-
tion decays exponentially (polynomially) to zero provided k decays exponentially (polyno-
mially) to zero. The decay result of Santos [] was generalized by Messaoudi and Soufyane
[] without assuming the exponential (polynomial) decay of k. They obtained general sta-
bility for a wave equation under weaker condition on the resolvent kernel k such as

k′(t) ≤ , k′′(t) ≥ γ (t)
(
–k′(t)

)
, (.)

where γ is a nonincreasing and positive function. Kang [], Mustafa and Messaoudi []
and Santos and Soufyane [] investigated the general decay for the Kirchhoff plates, the
Timoshenko system and the von Karman plate system with viscoelastic boundary condi-
tions under condition (.), respectively. Recently, Kang [] established a more general
decay result of the differential inclusion of Kirchhoff type with strong damping term and
boundary condition of memory type when a relaxation function satisfies the condition
(.). This result improved the earlier decay results of Santos et al. []. More precisely, we
studied that the energy decays at the rate similar to the relaxation functions, which are not
necessarily decaying like polynomial or exponential functions.

Moreover, Beale and Rosencrans [] introduced acoustic boundary conditions of the
general form, and then Beale [, ] proved global existence and regularity of solutions
for wave equations with acoustic boundary conditions. In these cases, the solution u of the
wave equation is the velocity potential of a fluid undergoing acoustic wave motion and y
is the normal displacement to the boundary at time t with the boundary point x. Recently,
wave equations with acoustic boundary conditions have been treated by many authors
[–]. They considered the existence of solutions, but gave no decay rate for solutions.
As regards uniform decay rates for solutions to problems with acoustic boundary condi-
tions, there is not much literature [–]. Most of these are concerned with exponential
decay rates of solutions.

Motivated by these results, we study the stability for the Kirchhoff-type equation (.),
which contains both memory boundary conditions and acoustic boundary conditions for
resolvent kernel k satisfying

k′′(t) ≥ H
(
–k′(t)

)
, ∀t ≥ , (.)
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where H is a positive function, with H() = H ′() = , and H is linear or strictly increasing
and strictly convex on (, r] for some  < r < . Recently, Mustafa and Abusharkh []
and Kang [] showed the general decay result for plate equations and von Karman plate
system with viscoelastic boundary damping when a relaxation function satisfies (.) and
u ≡  on �, respectively. We obtain an explicit and general decay of the solution for the
Kirchhoff-type equation without assuming that u ≡  on � when relaxation function
satisfies (.). Since problem (.) does not have a homogeneous Dirichlet condition on
portion of the boundary, we introduce a close subspace Ṽ of H(�), as in [], where
Poincaré’s inequality is satisfied. Moreover, to prove the existence of a weak solution to
the problem, we use the Galerkin method and compactness arguments. After this, we
obtain the general decay rates by employing the multiplier method and some properties
of convex functions including the use of general Young’s inequality and Jensen’s inequality.

The paper is organized as follows. In Section  we give some notations and material
needed for our work and state the main results. In Section  we consider the existence of
global weak solution for problem (.)-(.). In Section  we show the general decay of the
solutions to the Kirchhoff-type equation with memory boundary and acoustic boundary
conditions.

2 Statement of main results
In this section, we provide some material needed in the proof of our main result and state
main results. Let us consider the Hilbert spaces L(�) and L(�) endowed with the inner
products

(u, v) =
∫

�

u(x)v(x) dx, (u, v)� =
∫

�

u(x)v(x) d�,

and the corresponding norms ‖u‖
L(�) = (u, u) and ‖u‖

L(�) = (u, u)� , respectively. For sim-
plicity, we denote ‖ · ‖

L(�) and ‖ · ‖
L(�) by ‖ · ‖ and ‖ · ‖� , respectively.

Following the idea in [], we consider

V =
⋃

x∈�

Vx,

where, for each point x fixed in �,

Vx =
{

u ∈ C(�̄) : u(x) = 
}

.

Then Poincaré’s inequality holds in V . From density, we see that Poincaré’s inequality still
holds in H(�) closure of V which we denote by W = V̄ H(�). Let λ and λ be the smallest
positive constants such that

λ‖u‖ ≤ ‖∇u‖, λ‖u‖
� ≤ ‖∇u‖, ∀u ∈ W . (.)

Moreover, we let x be a fixed point in R
n, m(x) = x – x and R = max{|x – x| : x ∈ �̄}, and

assume that

m(x) · ν(x) > , x ∈ �. (.)
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We formulate the following hypotheses.
(H) With respect to M ∈ C([,∞[), we assume that

 < m ≤ M(ζ ), M̂(ζ ) ≤ M(ζ )ζ , ∀ζ ≥ , (.)

where M̂(ζ ) =
∫ ζ

 M(s) ds.
(H) Let f ∈ C(R) satisfy f (s)s ≥ , ∀s ∈R. We suppose that f is superlinear, that is,

f (s)s ≥ ( + δ)F(s), F(z) =
∫ z


f (s) ds, ∀s ∈R (.)

for some δ >  with the following growth condition:

∣
∣f (x) – f (y)

∣
∣ ≤ c

(
 + |x|ρ– + |y|ρ–)|x – y|, ∀x, y ∈ R (.)

for some c >  and ρ ≥  such that (n – )ρ ≤ n.
(H) For the functions p and q, we assume that p, q ∈ C(�) and p(x) >  and q(x) > 

for all x ∈ �. It implies that there exist positive constants pi, qi (i = , ) such that

p ≤ p(x) ≤ p, q ≤ q(x) ≤ q, ∀x ∈ �. (.)

(H) In addition, we assume that k : R+ → R+ is the resolvent kernel of – g′
g() , which is a

twice differentiable function such that

k() > , lim
t→∞ k(t) = , k′(t) ≤ , (.)

and there exists a positive function H ∈ C(R+) and H is a linear or strictly
increasing and strictly convex C function on (, r], r < , with H() = H ′() = ,
such that

k′′(t) ≥ H
(
–k′(t)

)
, t > . (.)

To simplify calculation in our analysis, we introduce the following notation:

(g ∗ v)(t) =
∫ t


g(t – s)v(s) ds,

(g�v)(t) =
∫ t


g(t – s)

∣∣v(t) – v(s)
∣∣ ds.

First, we shall use Eq. (.) to estimate the term M(‖∇u‖) ∂u
∂ν

+ ∂u′
∂ν

. Differentiating Eq. (.),
we get the following Volterra equation:

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
+


g()

g ′ ∗
(

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν

)
= –


g()

u′.

Using the Volterra inverse operator, we have

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
= –


g()

{
u′ + k ∗ u′},
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where the resolvent kernel k is given by the solution of

k +


g()
g ′ ∗ k = –


g()

g ′.

Denoting τ = 
g() , we obtain

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
= –τ

{
u′ + k()u – k(t)u + k′ ∗ u

}
,

which is equivalent to condition (.). Then we get the following equivalent problem:

u′′ – M
(‖∇u‖)�u – �u′ + f (u) =  in � × (,∞), (.)

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
= –τ

{
u′ + k()u – k(t)u + k′ ∗ u

}
on � × (,∞), (.)

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
= y′ on � × (,∞), (.)

u′ + p(x)y′ + q(x)y =  on � × (,∞), (.)

u() = u, u′() = u in �. (.)

By differentiating the term g�v, we have the following lemma.

Lemma . If g, v ∈ C([,∞) : R), then

(g ∗ v)v′ = –



g(t)
∣∣v(t)

∣∣ +



g ′�v –



d
dt

[
g�v –

(∫ t


g(s) ds

)
|v|

]
.

The energy of system (.)-(.) is given by

E(t) =


∥∥u′∥∥ +




M̂
(‖∇u‖) +

∫

�

F(u) dx +
τ


k(t)‖u‖

�

–
τ



∫

�

k′�u d� +



∫

�

q(x)|y| d�.

Now, we are ready to state our main results.

Theorem . Suppose that (H)-(H) hold. If (u, u) ∈ (W ∩ H(�)) × W and satisfy the
compatibility condition

M
(‖∇u‖)∂u

∂ν
+

∂u

∂ν
+ τu =  on �, (.)

then, for all T > , there exists a unique pair of functions (u, y), which is a solution of system
(.)-(.) satisfying

u ∈ L∞(
, T ; W ∩ H(�)

)
, u′ ∈ L∞(

, T ; L(�)
) ∩ L(, T ; W ),

u′′ ∈ L∞(
, T ; L(�)

)
,

y ∈ L∞(
, T ; L(�)

)
, y′ ∈ L(, T ; L(�)

)
.
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Theorem . Suppose that (H)-(H) hold. Assume that D is a positive C function, with
D() = , for which H is a strictly increasing and strictly convex C function on (, r] and

∫ +∞



–k′(s)
H–

 (k′′(s))
ds < +∞. (.)

Therefore, there exist positive constants c, c, c and ε such that the solution of (.)-(.)
satisfies

E(t) ≤ cH–
 (ct + c), ∀t ≥ , (.)

where

H(t) =
∫ 

t


sH ′

(εs)
ds and H(t) = H

(
D(t)

)
.

Furthermore, if
∫ 

 H(t) dt < +∞, for some choice of D, then we obtain

E(t) ≤ cG–(ct + c), (.)

where

G(t) =
∫ 

t


sH ′(εs)

ds. (.)

In particular, (.) is valid for the special case H(t) = ctp for  ≤ p < 
 .

Remark . For large t > , there exists a constant d >  such that

k′′(t) ≥ –dk′(t), ∀t ∈ [, t]. (.)

Indeed, from (H), we find that limt→+∞(–k′(t)) = . This implies that limt→+∞ k′′(t) can-
not be equal to a positive number, and so it is natural to assume that limt→+∞ k′′(t) = .
Then there is t >  large enough such that k′(t) <  and

max
{

k(t), –k′(t), k′′(t)
}

< min
{

r, H(r), H(r)
}

, ∀t ≥ t. (.)

Because k′ is nondecreasing, k′() <  and k′(t) < , we get

 < –k′(t) ≤ –k′(t) ≤ –k′(), ∀t ∈ [, t]. (.)

From H is a positive continuous function, we have for some positive constants d and d,

d ≤ H
(
–k′(t)

) ≤ d, ∀t ∈ [, t]. (.)

Therefore, by (.), (.) and (.), we see that (.) holds.

The well-known Jensen’s inequality will be of essential use in establishing our main re-
sult.
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Remark . If F is a convex function on [a, b], f : � → [a, b] and h are integrable func-
tions on �, h(x) ≥ , and

∫
�

h(x) dx = h > , then Jensen’s inequality states that

F

(


h

∫

�

f (x)h(x) dx
)

≤ 
h

∫

�

F
(
f (x)

)
h(x) dx. (.)

3 Proof of Theorem 2.1
In this section, we study the existence of a global weak solution for problem (.)-(.)
using Faedo-Galerkin’s approximation. Since the problem is not normal, we cannot apply
directly Caratheodory’s theorem. So we use a degenerated second order equation on �.
To this end, let {wj}j∈N and {zj}j∈N be orthonormal bases of W and L(�), respectively. For
each m ∈N, let Wm = span{w, w, . . . , wm} and Zm = span{z, z, . . . , zm}. For each ε ∈ (, )
and any T < , standard results on ordinary differential equations guarantee that there
exists only one local solution for  < Tm ≤ T

umε(x, t) =
m∑

j=

ajm(t)wj(x), x ∈ �,

ymε(x, t) =
m∑

j=

bjm(t)zj(x), x ∈ �,

satisfying the approximate perturbed problem

(
u′′

mε , wj
)

+
(
M

(‖∇umε‖)∇umε ,∇wj
)

+
(∇u′

mε ,∇wj
)

+
(
f (umε), wj

)
–

(
y′

mε , wj
)
�

+ τ
(
u′

mε + k()umε – k(t)umε() + k′ ∗ umε , wj
)
�

= ,

ε
(
y′′

mε , zj
)
�

+
(
u′

mε + py′
mε + qymε , zj

)
�

= , (.)

umε() = um =
m∑

j=

(u, wj)wj, u′
mε() = um =

m∑

j=

(u, wj)wj,

ymε() = ym = –
(

um + py′
mε()

q

)
, y′

mε() = ym = M
(‖∇um‖)∂um

∂ν
+

∂um

∂ν
,

for j = , , . . . , m. Now we need estimates which allow us to extend the solutions to the
whole interval [, T] and pass to limit as m → ∞ and ε → . Hence, uniform estimates
with respect to m and ε are needed. Indeed, from (.), we obtain the approximate equa-
tions

(
u′′

mε , w
)

+
(
M

(‖∇umε‖)∇umε ,∇w
)

+
(∇u′

mε ,∇w
)

+
(
f (umε), w

)
–

(
y′

mε , w
)
�

+ τ
(
u′

mε + k()umε – k(t)umε() + k′ ∗ umε , w
)
�

= , ∀w ∈ Wm, (.)

ε
(
y′′

mε , z
)
�

+
(
u′

mε + py′
mε + qymε , z

)
�

= , ∀z ∈ Zm.

Estimate I Taking w = u′
mε and z = y′

mε in (.) and integrating over (, t), we get from
Lemma .

d
dt

E(t, umε) +
ε


d
dt

∥
∥y′

mε

∥
∥

�
+

∥
∥∇u′

mε

∥
∥ +

∫

�

p(x)
∣
∣y′

mε

∣
∣d� + τ

∥
∥u′

mε

∥
∥

�

=
τ


k′(t)‖umε‖

� + τ

∫

�

k(t)umu′
mε d� –

τ



∫

�

k′′�umε d�. (.)
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Using Young’s inequality and (.), we have

τ

∫

�

k(t)umu′
mε d� ≤ τ


∥
∥u′

mε

∥
∥

�
+

τ


k()‖um‖

� . (.)

From (.)-(.), (.) and (.), we obtain

d
dt

E(t, umε) +
d
dt

ε


∥∥y′

mε

∥∥
�

+
∥∥∇u′

mε

∥∥ + p
∥∥y′

mε

∥∥
�

+
τ


∥∥u′

mε

∥∥
�

≤ τ


k()‖um‖

� .

Then, employing Gronwall’s inequality, we conclude that there exists a constant C = C(T),
independent of m, ε and t ∈ [, T], such that

∥
∥u′

mε

∥
∥ + M̂

(‖∇umε‖) +
∫

�

F(umε) dx + τk(t)‖umε‖
�

– τ

∫

�

k′�umε d� + q‖ymε‖
�

+ ε
∥
∥y′

mε

∥
∥

�
+

∫ t



∥
∥∇u′

mε

∥
∥ ds + p

∫ t



∥
∥y′

mε

∥
∥

�
ds ≤ C. (.)

Estimate II First, we will estimate ‖u′′
mε()‖ and ‖y′′

mε()‖
�

. Taking t =  in (.), replac-
ing w and z by u′′

mε() and y′′
mε(), respectively, and using (.), we get

∥
∥u′′

mε()
∥
∥ =

∫

�

M
(‖∇um‖)�umu′′

mε() dx +
∫

�

�umu′′
mε() dx

–
∫

�

f (um)u′′
mε() dx +

∫

�

ymu′′
mε() d� (.)

and

ε
∥∥y′′

mε()
∥∥

�
+

(
um + pym + qym, y′′

mε()
)
�

= . (.)

From the assumptions on the initial data, f and M, we have that there exists a constant
C > , independent of ε and m, such that

∥
∥u′′

mε()
∥
∥ ≤ C,

∥
∥y′′

mε()
∥
∥

�
≤ C. (.)

Differentiating (.) with respect to t and substituting w and z by u′′
mε and y′′

mε , respectively,
we see that




d
dt

[∥∥u′′
mε

∥∥ + ε
∥∥y′′

mε

∥∥
�

+
∫

�

q(x)
∣∣y′

mε

∣∣d�

]
+

∥∥∇u′′
mε

∥∥ +
∫

�

p(x)
∣∣y′′

mε

∣∣d�

= –M
(‖∇umε‖)

∫

�

∇u′
mε∇u′′

mε dx

– M′(‖∇umε‖)
(∫

�

∇umε∇u′
mε dx

)(∫

�

∇umε∇u′′
mε dx

)
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–
∫

�

f ′(umε)u′
mεu′′

mε dx – τ
∥∥u′′

mε

∥∥
�

– τ

∫

�

k()u′
mεu′′

mε d�

+ τ

∫

�

k′(t)umε()u′′
mε d� – τ

∫

�

(
k′ ∗ umε

)′u′′
mε d�. (.)

From the first estimate, assumption on M and Young’s inequality, we obtain

M
(‖∇umε‖)

∫

�

∇u′
mε∇u′′

mε dx ≤ c
∥∥∇u′

mε

∥∥ +



∥∥∇u′′
mε

∥∥ (.)

and

M′(‖∇umε‖)
(∫

�

∇umε∇u′
mε dx

)(∫

�

∇umε∇u′′
mε dx

)

≤ c
∥
∥∇u′

mε

∥
∥ +




∥
∥∇u′′

mε

∥
∥. (.)

Using generalized Hölder’s inequality, assumption (.), (.), the Sobolev imbedding and
Young’s inequality, we find that

∫

�

f ′(umε)u′
mεu′′

mε dx

≤ c
∫

�

(
 + |umε |ρ–)∣∣u′

mε

∣∣∣∣u′′
mε

∣∣dx

≤ c
(∫

�

(
 + |umε |ρ–)n dx

) 
n
(∫

�

∣∣u′
mε

∣∣
n

n– dx
) n–

n
(∫

�

∣∣u′′
mε

∣∣ dx
) 



≤ c
(∫

�

(
 + |∇umε |

)
dx

) ρ–


(∫

�

∣∣∇u′
mε

∣∣ dx
) 


(∫

�

∣∣u′′
mε

∣∣ dx
) 



≤ c
∥∥∇u′

mε

∥∥ + c
∥∥u′′

mε

∥∥. (.)

Noting that

(
k′ ∗ umε

)′ = k′(t)umε() + k′ ∗ u′
mε ,

and using Lemma ., we get

τ

∫

�

(
k′ ∗ umε

)′u′′
mε d�

= τ

∫

�

k′(t)umε()u′′
mε d� –

τ


k′(t)

∥
∥u′

mε

∥
∥

�
+

τ



∫

�

k′′�u′
mε d�

– τ

∫

�

k()u′
mεu′′

mε d� –
τ


d
dt

[∫

�

k′�u′
mε d� – k(t)

∥
∥u′

mε

∥
∥

�

]
. (.)

Combining (.)-(.) with (.), we deduce that




d
dt

[∥∥u′′
mε

∥∥ + ε
∥∥y′′

mε

∥∥
�

+
∫

�

q(x)
∣∣y′

mε

∣∣d� + τk(t)
∥∥u′

mε

∥∥
�

– τ

∫

�

k′�u′
mε d�

]

+


∥∥∇u′′

mε

∥∥ +
∫

�

p(x)
∣∣y′′

mε

∣∣d�
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≤ c
∥∥∇u′

mε

∥∥ + c
∥∥u′′

mε

∥∥ – τ
∥∥u′′

mε

∥∥
�

+
τ


k′(t)

∥∥u′
mε

∥∥
�

–
τ



∫

�

k′′�u′
mε d�. (.)

Integrating (.) over [, t] and applying Gronwall’s inequality and (H), we conclude that
there exists a constant C, independent of ε and m, such that

∥∥u′′
mε

∥∥ + ε
∥∥y′′

mε

∥∥
�

+ q
∥∥y′

mε

∥∥
�

+
∫ t



∥∥∇u′′
mε

∥∥ ds + p

∫ t



∥∥y′′
mε

∥∥
�

ds ≤ C. (.)

From (.) and (.) and Lions-Aubin’s compactness theorem [], we can pass to the
limit in (.). This completes the proof of Theorem ..

4 Proof of Theorem 2.2
In this section, we shall prove the general decay rates in Theorem .. Let us consider the
following binary operator:

(k ◦ v)(t) :=
∫ t


k(t – s)

(
v(t) – v(s)

)
ds.

Then, using Hölder’s inequality for  ≤ α ≤ , we have

∣
∣(k ◦ v)(t)

∣
∣ ≤

[∫ t



∣
∣k(s)

∣
∣(–α) ds

](|k|α�v
)
(t). (.)

Lemma . The energy E satisfies, along the solution of (.)-(.),

E′(t) ≤ –
∥
∥∇u′∥∥ –

τ


∥
∥u′∥∥

�
+

τ


k(t)‖u‖

� +
τ


k′(t)‖u‖

�

–
τ



∫

�

k′′�u d� –
∫

�

p(x)
∣∣y′∣∣ d�. (.)

Proof Multiplying Eq. (.) by u′ and integrating by parts over �, we obtain




d
dt

[∥
∥u′∥∥ + M̂

(‖∇u‖) + 
∫

�

F(u) dx +
∫

�

q(x)|y| d�

]
+

∥
∥∇u′∥∥ +

∫

�

p(x)
∣
∣y′∣∣ d�

= –τ

∫

�

(
u′ + k()u – k(t)u + k′ ∗ u

)
u′ d�.

From Lemma . and Young’s inequality, we get estimate (.). �

To this system, we introduce the functional

�(t) :=
∫

�

{
m · ∇u +

(
n


– θ

)
u
}

u′ dx +
∫

�

uy d� +



∫

�

p(x)|y| d�,

where θ is a small positive constant. The following lemma plays an important role in the
construction of the Lyapunov functional.
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Lemma . There exists C >  such that

�′(t) ≤ –θ
∥∥u′∥∥ – ( – θ – εc – ε)M

(‖∇u‖)‖∇u‖ +
(

cε +
R

λ

)∥∥∇u′∥∥

–
(

n

δ – δθ – θ

)∫

�

F(u) dx + C
∫

�

(∣∣u′∣∣ +
∣∣k(t)u

∣∣ – k′�u +
∣∣k(t)u

∣∣)d�

+
(

cε +
cε

mλ

)∥∥y′∥∥
�

–
∫

�

q(x)|y| d�. (.)

Proof Direct computations and (.) yield

�′(t) =
∫

�

u′(m · ∇u′)dx +
(

n


– θ

)∫

�

∣
∣u′∣∣ dx +

∫

�

uy′ d� –
∫

�

q(x)|y| d�

+
∫

�

[
(m · ∇u) +

(
n


– θ

)
u
]{

M
(‖∇u‖)�u + �u′ – f (u)

}
dx.

Integrating by parts and using Young’s inequality, we have

�′(t) ≤ 


∫

�

(m · ν)
∣
∣u′∣∣ d� – θ

∥
∥u′∥∥ – ( – θ – εc)M

(‖∇u‖)‖∇u‖ + cε

∥
∥∇u′∥∥

+
∫

�

(
M

(‖∇u‖)∂u
∂ν

+
∂u′

∂ν

)(
m · ∇u +

(
n


– θ

)
u
)

d�

–



∫

�

(m · ν)M
(‖∇u‖)|∇u| d�

+ n
∫

�

F(u) dx –
(

n


– θ

)∫

�

f (u)u dx +
∫

�

uy′ d� –
∫

�

q(x)|y| d�. (.)

We know that

(
k′ ∗ u

)
(t) = –

(
k′ ◦ u

)
(t) + u(t)

[
k(t) – k()

]
. (.)

From (.), the boundary condition (.) can be written as

M
(‖∇u‖)∂u

∂ν
+

∂u′

∂ν
= –τ

{
u′ + k(t)u – k′ ◦ u – k(t)u

}
. (.)

Applying Young’s and Poincaré’s inequalities, (.), (.) and (.) with α = 
 , we obtain,

for ε > ,

∫

�

(
M

(‖∇u‖)∂u
∂ν

+
∂u′

∂ν

)(
m · ∇u +

(
n


– θ

)
u
)

d�

≤ ε

∫

�

(
|m · ∇u| +

(
n


– θ

)

|u|
)

d� + cε

∫

�

∣∣
∣∣

(
M

(‖∇u‖)∂u
∂ν

+
∂u′

∂ν

)∣∣
∣∣



d�

≤ εc
∫

�

(m · ν)M
(‖∇u‖)|∇u| d� + cε

∥
∥y′∥∥

�

+ C
∫

�

(∣∣u′∣∣ +
∣∣k(t)u

∣∣ – k′�u +
∣∣k(t)u

∣∣)d�. (.)
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By (.), (.) and Young’s inequality, we get, for ε > ,

∫

�

uy′ d� ≤ εm‖∇u‖ +
cε

mλ

∥
∥y′∥∥

�
≤ εM

(‖∇u‖)‖∇u‖ +
cε

mλ

∥
∥y′∥∥

�
(.)

and




∫

�

(m · ν)
∣
∣u′∣∣ d� ≤ R

λ

∥
∥∇u′∥∥. (.)

Substituting (.)-(.) into (.) and using (.), we deduce that

�′(t) ≤ –θ
∥∥u′∥∥ – ( – θ – εc – ε)M

(‖∇u‖)‖∇u‖ +
(

cε +
R

λ

)∥∥∇u′∥∥

–
(

n

δ – δθ – θ

)∫

�

F(u) dx + C
∫

�

(∣∣u′∣∣ +
∣∣k(t)u

∣∣ – k′�u +
∣∣k(t)u

∣∣)d�

+
(

cε +
cε

mλ

)∥
∥y′∥∥

�
–

∫

�

q(x)|y| d�

–
(




– εc
)∫

�

(m · ν)M
(‖∇u‖)|∇u| d�.

Using (.) and choosing ε small enough, we have estimate (.). �

Proof of Theorem . Let us introduce the Lyapunov functional

L(t) := NE(t) + �(t)

with N > . From (.) and (.), we obtain, for all t ≥ t,

L′(t) ≤ –θ
∥∥u′∥∥ – ( – θ – εc – ε)M

(‖∇u‖)‖∇u‖ –
(

n

δ – δθ – θ

)∫

�

F(u) dx

+
(

τN


k′(t) + Ck(t)
)

‖u‖
� –

(
N – cε –

R
λ

)∥∥∇u′∥∥ –
(

τN


– C
)∥∥u′∥∥

�

+
(

τN


+ C
)

k(t)‖u‖
� –

τN


∫

�

k′′�u d� – C
∫

�

k′�u d�

–
∫

�

q(x)|y| d� –
(

pN – cε –
cε

mλ

)∥
∥y′∥∥

�
.

We take θ , ε and ε >  so small that

(
n


– θ

)
δ – θ > ,  – θ – εc – ε > .

And then, choosing N large, for some positive constant θ, we have

L′(t) ≤ –θE(t) +
(

τN


+ C
)

k(t)‖u‖
� – C

∫

�

k′�u d�,
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which, using the fact that limt→∞ k(t) = , yields, for large t,

L′(t) ≤ –θE(t) – C
∫

�

k′�u d�, ∀t ≥ t. (.)

Meanwhile, we can choose N even larger so that

L(t) ∼ E(t). (.)

Therefore, from (.), (.) and (.), we get

L′(t) ≤ –θE(t) +
C
d

∫ t


k′′(s)

∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

– C
∫ t

t

k′(s)
∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

≤ –θE(t) –
C
dτ

E′(t) – C
∫ t

t

k′(s)
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds, ∀t ≥ t. (.)

We take L(t) = L(t) + C
dτ

E(t), which is clearly equivalent to E(t). Then by (.) we arrive
at

L′(t) ≤ –θE(t) – C
∫ t

t

k′(s)
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds. (.)

(A) The special case H(t) = ctp and  ≤ p < 
 :

Case . p = : From (.), (.) and (.), we have

L′(t) ≤ –θE(t) –
C
cτ

E′(t), ∀t ≥ t,

which yields

(
L +

C
cτ

E
)′

(t) ≤ –θE(t), ∀t ≥ t.

By (.), we find that L + C
cτ E ∼ E. Then we easily obtain

E(t) ≤ c′e–ct = c′G–(t),

where

G(t) =
∫ 

t


sH ′(εs)

ds =
∫ 

t


sc

ds = –
ln t
c

.

Case .  < p < 
 : We see that

∫ ∞



(
–k′(s)

)–δ ds < ∞ (.)
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for any δ <  – p. Using (.) and taking t even larger if needed, we get, for all t ≥ t,

I(t) :=
∫ t

t

(
–k′(s)

)–δ
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds ≤ cE()

∫ t

t

(
–k′(s)

)–δ ds < . (.)

From Hölder’s inequality, (.), (.), (.) and (.), we deduce that

∫ t

t

(
–k′(s)

)∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

=
∫ t

t

(
–k′(s)

)(p–+δ)( δ
p–+δ

)(–k′(s)
)–δ

∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

≤
(∫ t

t

(
–k′(s)

)p–+δ(–k′(s)
)–δ

∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds

) δ
p–+δ

×
(∫ t

t

(
–k′(s)

)–δ
∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

) p–
p–+δ

= I(t)
(


I(t)

∫ t

t

(
–k′(s)

)p–+δ(–k′(s)
)–δ

∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds

) δ
p–+δ

≤
(∫ t

t

(
–k′(s)

)p
∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

) δ
p–+δ

≤
(


c

) δ
p–+δ (

–E′(t)
) δ

p–+δ . (.)

Hence, by (.), estimate (.) yields, for δ = 
 ,

L′(t) ≤ –θE(t) +
C

c


p–

(
–E′(t)

) 
p– . (.)

Multiplying (.) by Eγ (t), with γ = p – , and using Young’s inequality, we have

(
LEγ

)′(t) ≤ –θEγ +(t) +
C

c


γ +
Eγ (t)

(
–E′(t)

) 
γ + ≤ –θEγ +(t) + εEγ +(t) + Cε

(
–E′(t)

)
,

where we have used the fact E′(t) ≤ , ∀t ≥ t. Then, taking ε < θ, we obtain, for some
C > ,

L′
(t) ≤ –CLγ +

 (t),

where L = LEγ + CεE ∼ E. Hence we get

E(t) ≤ c

(c′ + c′′t)

γ

. (.)

On the other hand, using (.), we have, for p < 
 ,

∫ t



∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds ≤ c

∫ t


E(s) ds ≤

∫ ∞



c

(c′ + c′′t)


p–
dt < +∞. (.)
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Therefore, by Hölder’s inequality, (.), (.) and (.), estimate (.) yields

L′(t) ≤ –θE(t) + C
(∫ t



∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

) p–
p ((

–k′(s)
)p�u

) 
p

≤ –θE(t) + c
(
k′′�u

) 
p ≤ –θE(t) + c

(
–E′(t)

) 
p . (.)

Then, multiplying (.) by Eγ (t) with γ = p –  and repeating the above steps, we see that

E(t) ≤ c

(c′ + c′′t)

γ

= cG–(a′ + a′′t
)
,

where

G(t) =


cpε
p–


∫ 

t


sp ds =


cp(p – )εp–



(


tp– – 
)

.

(B) The general case: Because of the ideas presented in [, , ], this case is obtained
as follows. We define η(t) by

η(t) :=
∫ t

t

–k′(s)
H–

 (k′′(s))

∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds,

where H satisfies (.). Like in (.), we see that η(t) satisfies

η(t) < , ∀t ≥ t. (.)

Moreover, we define κ(t) by

κ(t) :=
∫ t

t

k′′(s)
–k′(s)

H–
 (k′′(s))

∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds.

Because H() =  and H is strictly convex on (, r], then

H(λx) ≤ λH(x) (.)

provided  ≤ λ ≤  and x ∈ (, r]. From (.), (.) and (.), we get

∫ t

t

–k′(s)
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds ≤ H–


(
κ(t)

)
. (.)

Indeed,

κ(t) =


η(t)

∫ t

t

η(t)H
[
H–


(
k′′(s)

)] –k′(s)
H–

 (k′′(s))

∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds

≥ 
η(t)

∫ t

t

H
[
η(t)H–


(
k′′(s)

)] –k′(s)
H–

 (k′′(s))

∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

≥ H

(∫ t

t

–k′(s)
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds

)
.
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Then by (.) estimate (.) yields

L′(t) ≤ –θE(t) + CH–


(
κ(t)

)
, ∀t ≥ t. (.)

Now, for ε < r and α > , we define the functional

F(t) := H ′


(
ε

E(t)
E()

)
L(t) + αE(t),

which satisfies, for some α,α > ,

αF(t) ≤ E(t) ≤ αF(t). (.)

By using a similar analysis as in [, ], we can compute to find

F ′
(t) ≤ –

(
θE() – εC

) E(t)
E()

H ′


(
ε

E(t)
E()

)
– CE′(t) + αE′(t).

Therefore, with a suitable choice of ε and α, we have, for all t ≥ t,

F ′
(t) ≤ –α

(
E(t)
E()

)
H ′



(
ε

E(t)
E()

)
= –αH

(
E(t)
E()

)
, (.)

where α >  and H(t) = tH ′
(εt). From

H ′
(t) = H ′

(εt) + εtH ′′
 (εt)

and the strict convexity of H on (, r], we find that H ′
(t), H(t) >  on (, ]. We denote

J(t) =
αF(t)

E()
,

which is clearly equivalent to E(t). From (.) and (.), we obtain

J ′(t) ≤ –
αα

E()
H

(
E(t)
E()

)
≤ –kH

(
J(t)

)
, ∀t ≥ t,

where k = αα
E() > . Consequently, a simple integration gives, for some k, k > ,

J(t) ≤ H–
 (kt + k), ∀t ≥ t, (.)

where H(t) =
∫ 

t


H(s) ds. Here, we have used the properties of H and the fact that
limt→ H(t) = +∞ and H is a strictly decreasing function on (, ]. Using (.), we see
that (.) holds.

Furthermore, if
∫ t

 H(t) dt < +∞, then
∫ +∞

 H–
 (t) dt < +∞. From (.), we get

∫ +∞
 E(t) dt < ∞ and

∫ t



∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds ≤ c

∫ t


E(s) ds < +∞.
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Analogously, we define, for large t,

ξ (t) :=
∫ t

t

∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds < 

and

χ (t) :=
∫ t

t

k′′(s)
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds.

Using (.), (.) and the strict convexity of H , we find that

∫ t

t

(
–k′(s)

)∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds ≤ H–(χ (t)

)
. (.)

Indeed,

χ (t) ≥ 
ξ (t)

∫ t

t

ξ (t)H
(
–k′(s)

)∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds

≥ 
ξ (t)

∫ t

t

H
(
–ξ (t)k′(s)

)∫

�

∣∣u(t) – u(t – s)
∣∣ d� ds

≥ H
(∫ t

t

–k′(s)
∫

�

∣
∣u(t) – u(t – s)

∣
∣ d� ds

)
.

Hence, by (.), estimate (.) becomes

L′(t) ≤ –θE(t) + CH–(χ (t)
)
, ∀t ≥ t.

Consequently, repeating the same procedures, we deduce that for some c, c and c > ,

E(t) ≤ cG–(ct + c),

where G(t) =
∫ 

t


sH′(εs) ds. �

Examples We give some examples to explain the energy decay rates given by Theo-
rem ..

() As in [], let  < q < 

k′(t) = – exp
(
–tq),

then k′′(t) = H(–k′(t)), where H(t) = qt

[ln(/t)]

q –

for t ∈ (, r], r < . Therefore,

E(t) ≤ c exp
(
–ωtq).

() As in [], if

k′(t) = –


a + tq
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for q >  and a >  , then k′′(t) = H(–k′(t)), where

H(t) = qt
(


t

– a
)– 

q
.

Since

H ′(t) =
q( + 

q – at)

( 
t – a)


q

, H ′′(t) =
aq

t (t – +q–
√

q–
aq )(t – +q+

√
q–

aq )

( 
t – a)+ 

q
,

then the function H satisfies hypothesis (H) on the interval (, r] for any  < r < +q–
√

q–
aq .

By taking D(t) = tα , (.) is satisfied for any α > q
q– . Then an explicit rate of decay can be

obtained by Theorem .. The function H(t) = H(tα) has derivative

H ′
(t) =

qαtα–[ + 
q – atα]

( 
tα – a)


q

.

Therefore,

H(t) =
∫ 

t


sH ′

(εs)
ds =

∫ 

t

[ 
(εs)α – a]


q

qαs(εs)α–[ + 
q – a(εs)α]

ds.

Now, we see that if α < q
+q ,

∫ 


H(t) dt ≤ ε

q–α–αq
q



α(α – q + αq)[ + 
q – aεα

 ]

∫ 



[
t

q–α–αq
q – 

]
dt

=
ε

q–α–αq
q



α(q – α – αq)[ + 
q – aεα

 ]
< +∞.

Choosing 
εs = v and ε < a–, we have

G(t) =
∫ 

t


sH ′(εs)

ds =
∫ 

t

( 
εs – a)


q

sq( + 
q – aεs)

ds =
∫ 

εt


ε

(v – a)

q v–

q( + 
q – a

v )
dv

≤ 
q( + 

q – aε)

∫ 
εt


ε

v

q – dv =


 + 

q – aε

[(


εt

) 
q

–
(


ε

) 
q
]

.

Hence,

G–(t) ≤ 

ε[( 
ε

)

q + ( + 

q – aε)t]q
.

Consequently, we can use (.) to conclude that the energy decays

E(t) ≤ c̃

c̃ + c̃tq ,

where c̃i (i = , , ) are constants.
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