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Abstract
In this paper, we consider the following p-Kirchhoff equation:

(P) –
[
M(‖u‖p)]p–1�pu = f (x,u) in �

with Dirichlet boundary conditions, where � is a bounded domain in R
N . Under

proper assumptions onM and f , we obtain three existence theorems of infinitely
many solutions for problem (P) by the fountain theorem. Moreover, for a special
nonlinearity f (x,u) = λ|u|q–2u + |u|r–2u (1 < q < p < r < p∗), we prove that problem (P)
has at least two nonnegative solutions via the Nehari manifold method and a
sequence of solutions with negative energy by the dual fountain theorem.
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1 Introduction
In this paper, we consider the following p-Kirchhoff equation:

–
[
M

(‖u‖p)]p–
�pu = f (x, u) in �, u =  on ∂�, (.)

where M, f are continuous functions, � is a bounded domain in R
N with smooth bound-

ary, ‖u‖p =
∫
�

|∇u|p dx ( < p < N ). Let X be the Sobolev space W ,p
 (�) endowed with the

norm ‖u‖.
Problem (.) began to attract the attention of researchers mainly after the work of Li-

ons [], where a functional analysis approach was proposed to attack it. Since then, much
attention has been paid to the existence of nontrivial solutions, sign-changing solutions,
ground state solutions, multiplicity of solutions and concentration of solutions for the fol-
lowing case:

–
(

a + b
∫

�

|∇u|p dx
)

�pu = f (x, u) in �, u =  on ∂�. (.)

See [–] and the references therein.
For example, Wu [] showed that problem (.) has a nontrivial solution and a se-

quence of high energy solutions by using the mountain pass theorem and symmetric

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-017-0775-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0775-z&domain=pdf
mailto:slbhuangjc@163.com


Huang et al. Boundary Value Problems  (2017) 2017:41 Page 2 of 16

mountain pass theorem. Similar consideration can be found in Nie and Wu [], where
radial potentials were considered. Chen et al. [] treated equation (.) when f (x, t) =
λa(x)|u|q–u + b(x)|u|r–u ( < q < p =  < r < ∗). Using the Nehari manifold and fibering
maps, they established the existence of multiple positive solutions for (.).

However, the study of problem (.) becomes more difficult since M is a general func-
tion. Alves et al. [] and Corrêa and Figueiredo [] showed that the problem has a positive
solution by the mountain pass theorem, where M is supposed to satisfy the following con-
ditions:

(M) M(t) ≥ m for all t ≥ .
(M′

) M̂(t) ≥ [M(t)]p–t for all t ≥ , where M̂(t) =
∫ t

 [M(s)]p– ds.

In [], Liu established the existence of infinite solutions to a Kirchhoff-type equation
like (.). By the fountain theorem and dual fountain theorem, they investigated the prob-
lem with M satisfying (M) and

(M′
) M(t) ≤ m for all t > .

Very recently, Figueiredo and Nascimento [] and Santos Jr. [] considered solutions
of (.) by the minimization argument and the minimax method, respectively, where p = 
and M satisfies (M) and

(M′
) the function t �→ M(t) is increasing, and the function t �→ M(t)

t is decreasing.

Note that M(t) = a+bt does not satisfy (M′
) for p =  and (M′

). Moreover, M(t) = a+btk

does not satisfy (M′
), (M′

) for all k >  and (M′
) for all k > .

Motivated mainly by [, , ], we shall establish conditions on M and f under which
problem (.) possesses infinitely many solutions in the present paper.

Instead of (M′
)-(M′

), we make the following assumptions on M:

(M) There exists σ >  such that

M̂(t) ≥ σ
[
M(t)

]p–t

holds for all t ≥ , where M̂(t) =
∫ t

 [M(s)]p– ds.
(M) There exist μ > ,σ >  and s > p– such that for all t ≥ 

M̂(t) ≥ σ
[
M(t)

]p–t + μts.

We also suppose that f satisfies the following conditions:

(f) There are constants  < p < q < p∗ = Np
N–p and C >  such that

∣
∣f (x, t)

∣
∣ ≤ C

(
 + |t|q–)

for all x ∈ �, t ∈R.
(f) f (x, t) = o(|t|p–) as t →  uniformly for any x ∈ �.
(f) f (x, –t) = –f (x, t) for all x ∈ �, t ∈R.
(f) There exists p

σ
< α < p∗ such that  < αF(x, t) ≤ tf (x, t) for all x ∈ �, t ∈ R, where

F(x, t) =
∫ t

 f (x, s) ds.
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(f) There exist max{ p
σ

, p} < α < p∗ and r >  such that

inf
x∈�,|u|=r

F(x, u) > 

and

 < αF(x, t) ≤ tf (x, t)

for all x ∈ � and |t| ≥ r.
(f)  < p

σ
F(x, t) ≤ tf (x, t) holds for all x ∈ �, t ∈R.

(f) F(x,t)
tp/σ → +∞ as |t| → ∞ uniformly in x ∈ �.

The associated energy functional to equation (.) is

J(u) =

p

M̂
(‖u‖p) –

∫

�

F(x, u) dx. (.)

For any φ ∈ C∞
 (�), we have

〈
J ′(u),φ

〉
=

[
M

(‖u‖p)]p–
∫

�

|∇u|p–∇u · ∇φ dx –
∫

�

f (x, u)φ dx. (.)

We have the following results by the fountain theorem.

Theorem . Assume (f)-(f) and (M)-(M). Then problem (.) has a sequence {un} of
solutions in X with J(un) → ∞ as n → ∞.

Theorem . Assume (f)-(f), (f) and (M)-(M). Then problem (.) has a sequence {un}
of solutions in X with J(un) → ∞ as n → ∞.

Theorem . Assume (f)-(f), (f)-(f) and (M), (M). Then problem (.) has a sequence
{un} of solutions in X with J(un) → ∞ as n → ∞.

Furthermore, we also consider a special nonlinearity f (x, u) = λ|u|q–u + |u|r–u ( < q <
p < r < p∗). In this case, the associated energy functional is Jλ defined by

Jλ(u) =

p

M̂
(‖u‖p) –


q

∫

�

λ|u|q dx –

r

∫

�

|u|r dx, (.)

where M̂(s) =
∫ s

 [M(t)]p– dt.
Note that this nonlinearity does not satisfy conditions (f), (f)-(f). For this case, we will

prove that problem (.) has at least two nonnegative solutions by extracting a minimizing
sequence from the Nehari manifold, and we will obtain a sequence of weak solutions with
negative energy by the dual fountain theorem.

Theorem . Let f (x, u) = λ|u|q–u + |u|r–u, where  < q < min{p, p
σ
} ≤ max{p, p

σ
} < r < p∗.

Suppose that M satisfies (M), (M) and
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(M) M is differentiable for all t ≥  and there exist some d >  such that

(r – p)M(t) > dp(p – )M′(t)t ≥ .

Then there exists λ >  such that problem (.) has at least two nonnegative solutions for
all  < λ < λ.

Theorem . Let f (x, u) = λ|u|q–u + |u|r–u, where  < q < min{p, p
σ
} ≤ max{p, p

σ
} < r < p∗.

Suppose that M satisfies (M) and (M). Then problem (.) has a sequence of solutions uk

such that Jλ(uk) <  and Jλ(uk) →  as k → ∞.

Remark . Set M(t) = a + btk (a, b, k > ). Then we can easily deduce that
(i) M satisfies (M) for all p >  and  < σ ≤ 

(p–)k+ ;
(ii) M satisfies (M) for one of the following cases:

() s = , p ≥ ,  – σ – σ (p – )k ≥ , and  < sμ ≤ ( – σ )ap–;
() s = k + , p ≥ ,  < σ < , and  < sμ ≤ (( – σ )b – σ (p – )bk)ap–;

(iii) M satisfies (M) for r – p > dpk.

Remark . Let M(t) = a + b ln( + t) (a, b > , t ≥ ). By direct calculation, one has

M̂(t) =
∫ t



(
M(t)

)p– dt

= t
(
M(t)

)p– –
∫ t


b(p – )

(
M(t)

)p– dt +
∫ t



b(p – )M(t)p–

 + t
dt

≥ t
(
M(t)

)p– – b(p – )tM(t)p–

≥ t
(
M(t)

)p–
(

 –
b(p – )

a

)
.

Hence M satisfies (M) for p > , b(p – ) < a,  < σ ≤  – b(p–)
a .

Moreover, M satisfies (M) for p = , s = ,  < σ ≤  and σ + μ ≤ a – b.

The rest of the paper is organized as follows. In Section , we present some properties of
(PS)c sequences. The proofs of Theorems .-. are given in Section . Then we establish
some properties of the Nehari manifold and give the proofs of Theorems . and . in the
last section.

2 Properties of (PS)c sequences
We say that {un} is a (PS)c sequence for the functional J if

J(un) → c and J ′(un) →  in X∗,

where X∗ denotes the dual space of X. If every (PS)c sequence of J has a strong convergent
subsequence, then we say that J satisfies the (PS) condition.

In this section, we derive some results related to the (PS)c sequence.

Lemma . Assume (f) and (M). Then any bounded (PS)c sequence of J has a strong
convergent subsequence.
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Proof The proof is almost the same as Lemma . in [], though it was supposed (f̃)
|f (x, t)| ≤ C|t|q– instead of (f) there. �

By Lemma ., in order to get a strong convergent subsequence from any (PS)c sequence
of J , it suffices to verify the boundedness of the (PS)c sequence. In the following, we present
three lemmas about the boundedness of the (PS)c sequence of J under different assump-
tions on the functions M and f .

Lemma . Assume that M satisfies (M)-(M) and f satisfies (f). Then any (PS)c se-
quence of the functional J is bounded in X.

Proof Let {un} be a (PS)c sequence of the functional J . Then by (M)-(M) and (f), one
has

c +  + ‖un‖ ≥ J(un) –

α

〈
J ′(un), un

〉

=

p

M̂
(‖un‖p) –

∫

�

F(x, un) dx –

α

[
M

(‖un‖p)]p–‖un‖p

+

α

∫

�

f (x, un)un dx

≥
(

σ

p
–


α

)[
M

(‖un‖p)]p–‖un‖p –
∫

�

(
F(x, un) –


α

f (x, un)un

)
dx

≥
(

σ

p
–


α

)
mp–

 ‖un‖p.

Therefore, {un} is bounded in X. �

Lemma . If assumptions (M), (M), (f), (f) and (f) are satisfied, then any (PS)c se-
quence of the functional J is bounded in X.

Proof Set h(t) = F(x, t–z)tα , t ∈ [,∞). For |z| ≥ r and  ≤ t ≤ r–|z|, we deduce from (f)
that

h′(t) = f
(
x, t–z

)(
–zt–)tα + F

(
x, t–z

)
αtα–

= tα–[αF
(
x, t–z

)
– t–zf

(
x, t–z

)] ≤ .

Hence h() ≥ h(r–|z|). Therefore,

F(x, z) ≥ r–αF
(
x, r|z|–z

)|z|α ≥ C|z|α ,

where C = r–α infx∈�,|u|=r F(x, u) > . Then there exists β such that max{ p
σ

, p} < β < α and

lim|u|→∞
F(x, u)
|u|β = +∞.

Let {un} be a (PS)c sequence of the functional J . In the following, we prove that {un} is
bounded in X. Suppose, on the contrary, that {un} is unbounded. Then we can assume,
without loss of generality, that ‖un‖ → ∞ as n → ∞.
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By integrating (M), we obtain

M̂(t) ≤ M̂(t)
(

t
t

)/σ

, (.)

and so

M(t) ≤
(

M̂(t)
σ t/σ



) 
p–

t
–σ

σ (p–) (.)

holds for all t ≥ t > . Consequently,

[M(‖un‖p)]p–‖un‖p

‖un‖β
≤

M̂(t)
σ t/σ


‖un‖p –σ

σ ‖un‖p

‖un‖β

=
M̂(t)
σ t/σ


‖un‖ p

σ –β →  as n → ∞.

Note that

〈J ′(un), un〉
‖un‖β

=
[M(‖un‖p)]p–‖un‖p

‖un‖β
–

∫

�

f (x, un)un

‖un‖β
dx,

we deduce that

lim
n→∞

∫

�

f (x, un)un

‖un‖β
dx = .

Set vn = un
‖un‖ . Since X is a Banach space and ‖vn‖ = , passing to a subsequence if neces-

sary, there is a point v ∈ X such that

vn ⇀ v weakly in X, vn → v strongly in Lβ (�), and vn → v a.e. in �.

Denote � := {x ∈ �|v(x) �= }. Then |un(x)| → ∞ for a.e. x ∈ �. By assumptions (f), (f)
and (f), we know that there exist constants C, C >  such that

f (x, u)u ≥ C|u|β – C|u|p for all (x, u) ∈ � ×R.

Therefore
∫

�

f (x, un)un

‖un‖β
dx ≥ C

∫

�

|vn|β dx – C

∫

�

|vn|p
‖un‖β–p dx.

Consequently,

lim
n→∞

∫

�

f (x, un)un

‖un‖β
dx ≥ C

∫

�

|v|β dx = C

∫

�

|v|β dx.

If meas(�) > , then

 = lim
n→∞

∫

�

f (x, un)un

‖un‖β
dx ≥ C

∫

�

|v|β dx > .
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This is a contradiction. Hence meas(�) = . So, v(x) =  a.e. in �. Moreover, by (f), (f)
and (f) we know that there is a constant C >  such that


α

uf (x, u) – F(x, u) ≥ –C|u|p for all (x, u) ∈ � ×R.

Consequently,


‖un‖p

[
J(un) –


α

〈
J ′(un), un

〉]

≥
(

σ

p
–


α

)[
M

(‖un‖p)]p–

–
∫

�

(
F(x, un) –


α

f (x, un)un

)


‖un‖p dx

≥
(

σ

p
–


α

)
mp–

 – C

∫

�

|vn|p dx.

This implies  ≥ ( σ
p – 

α
)mp–

 . But this is again impossible. Therefore {un} is bounded
in X. �

Note that α > p
σ

in assumptions (f) and (f). Now, we consider the case α = p
σ

. In this
case, we should strengthen our assumption on M. Then, we have the following result.

Lemma . Assume that conditions (M), (M) and (f) are satisfied. Then any (PS)c se-
quence of the functional J is bounded.

Proof It follows from the assumptions that

c +  + ‖un‖ ≥ J(un) –
σ

p
〈
J ′(un), un

〉

≥ μ

p
‖un‖ps –

∫

�

(
F(x, un) –

σ

p
f (x, un)un

)
dx

≥ μ

p
‖un‖ps.

Since ps > , ‖un‖ is bounded in X. �

3 Proofs of Theorems 1.1-1.3
In this section, we use the following fountain theorem to prove Theorems .-..

Lemma . (Fountain theorem []) Let X be a Banach space with the norm ‖ · ‖, and let
Xi be a sequence of subspace of X with dim Xi < ∞ for each i ∈N. Further, set

X =
∞⊕

i=

Xi, Yk =
k⊕

i=

Xi, Zk =
∞⊕

i=k

Xi.

Consider an even functional � ∈ C(X,R). Assume that for each k ∈N, there exist ρk > γk >
 such that



Huang et al. Boundary Value Problems  (2017) 2017:41 Page 8 of 16

(�) ak := maxu∈Yk ,‖u‖=ρk �(u) ≤ ,
(�) bk := infu∈Zk ,‖u‖=γk �(u) → +∞, k → +∞,
(�) � satisfies the (PS)c condition for every c > .

Then � has an unbounded sequence of critical values.

Proof of Theorem . Since X = W ,p
 (�) is a reflexive and separable Banach space, it is well

known that there exist ej ∈ X and e∗
j ∈ X∗ (j = , , . . .) such that

() 〈ei, e∗
j 〉 = δij, where δij =  for i = j and δij =  for i �= j.

() X = span{e, e, . . .}, X∗ = span{e∗
 , e∗

, . . .}.
Set Xi = span{ei}, Yk =

⊕k
i= Xi, Zk =

⊕∞
i=k Xi.

In the following, we verify that J satisfies all the conditions of the fountain theorem.
. By (f), the energy functional J is even.
. In view of (f) and (f), there exist positive constants C and C such that

F(x, u) ≥ C|u|α – C for all (x, u) ∈ � ×R.

Moreover, inequality (.) implies that there exist constants C, C >  such that

M̂(t) ≤ Ct/σ + C (.)

for all t ≥ . Hence

J(u) ≤ 
p
(
C‖u‖ p

σ + C
)

–
∫

�

(
C|u|α – C

)
dx.

Since all norms are equivalent on the finite dimensional space Yk and α > p
σ

, we have

ak := max
u∈Yk ,‖u‖=ρk

J(u) < 

for ‖u‖ = ρk sufficiently large.
. Set βk = supu∈Zk ,‖u‖=(

∫
�

|u|q dx)/q. From the fact Zk+ ⊂ Zk , it is clear that  ≤ βk+ ≤
βk . Hence βk → β ≥  as k → +∞. By the definition of βk , there exists uk ∈ Zk with
‖uk‖ =  such that

–/k ≤ βk –
(∫

�

|uk|q dx
)/q

≤ 

for all k ≥ . Then there exists a subsequence of {uk} (not relabeled) such that uk ⇀ u in
X and 〈u, e∗

j 〉 = limk→∞〈uk , e∗
j 〉 =  for all j ≥ . Thus u = . This shows uk ⇀  in X and so

uk →  in Lq(�). Thus β = .
For any ε > , (f) and (f) imply

∣∣F(x, u)
∣∣ ≤ ε|u|p + C(ε)|u|q
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for some C(ε) > . Therefore, for any u ∈ Zk , there holds

J(u) ≥ 
p
σ
[
M

(‖u‖p)]p–‖u‖p –
∫

�

F(x, u) dx

≥ σ

p
mp–

 ‖u‖p – ε

∫

�

|u|p dx – C(ε)
∫

�

|u|q dx

≥
(

σ

p
mp–

 – εS–
p

)
‖u‖p – C(ε)βq

k ‖u‖q,

where Sp is the best Sobolev constant for the embedding of X into Lp(�), i.e.,

‖u‖Lp(�) ≤ S–/p
p ‖u‖.

Select ε so small that σ
p mp–

 – εS–
p >  and let

γk =
( σ

p mp–
 – εS–

p

C(ε)βq
k

) 
q–p

,

we obtain

bk := inf
u∈Zk ,‖u‖=γk

J(u) ≥ 


(
σ

p
mp–

 – εS–
p

)
γ

p
k .

Since βk → , we have bk → +∞ as k → +∞.
. By Lemmas . and ., J satisfies the (PS)c condition. Consequently, the conclusion

follows from the fountain theorem. �

Proof of Theorem . It follows from Lemmas . and . that J satisfies the (PS)c condition.
Similar to the proof of Theorem ., we have that all the conditions of Lemma . are
fulfilled. �

Proof of Theorem . By Lemmas . and ., J satisfies the (PS)c condition. From the proof
of Theorem ., it is sufficient to show that condition (�) in Lemma . is satisfied.

By (f), (f) and (f), we deduce that for any M > , there exists a constant C(M) >  such
that

F(x, u) ≥ M|u| p
σ – C(M).

Since (M) implies (M), it follows that (.) still holds. Therefore

J(u) ≤ 
p
(
C‖u‖ p

σ + C
)

–
∫

�

(
M|u| p

σ – C(M)
)

dx.

Note that all norms are equivalent on the finite dimensional space Yk , there exists a con-
stant μ >  such that

J(u) ≤ 
p
(
C‖u‖ p

σ + C
)

– μM‖u‖ p
σ + C(M)|�|

=
(

C

p
– μM

)
‖u‖ p

σ +
C

p
+ C(M)|�|.
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Fix M > C
pμ

, then there exists large ρk >  such that

ak := max
u∈Yk ,‖u‖=ρk

J(u) < .

This completes the proof. �

4 Proofs of Theorems 1.4 and 1.5
In this section, we consider a special case f (x, u) = λ|u|q–u + |u|r–u ( < q < p < r < p∗). In
this case, the associated energy functional is

Jλ(u) =

p

M̂
(‖u‖p) –


q

∫

�

λ|u|q dx –

r

∫

�

|u|r dx, (.)

where M̂(s) =
∫ s

 [M(t)]p– dt. It is well known that the energy functional Jλ(u) is of class
C in X = H

(�) and the solutions of problem (.) are the critical points of the energy
functional. Since Jλ is not bounded below on X, it is useful to consider the problem on the
Nehari manifold

N =
{

u ∈ X\{}|〈J ′
λ(u), u

〉
= 

}
,

where 〈·, ·〉 denotes the usual duality. Clearly, u ∈N if and only if

[
M

(‖u‖p)]p–‖u‖p =
∫

�

λ|u|q dx +
∫

�

|u|r dx.

Since N is a much smaller set than X, it is easier to study Jλ(u) on the Nehari manifold.
Moreover, we have the following result.

Lemma . Assume σ r > p and M satisfies (M), (M). Then the energy functional Jλ is
coercive and bounded below on N .

Proof We denote by Cs the best Sobolev constant for the embedding of X in Ls(�) with
 < s < p∗. In particular,

‖u‖Ls(�) ≤ C–/p
s ‖u‖ for all u ∈ X\{}.

Let u ∈N . Then we have

Jλ(u) =

p

M̂
(‖u‖p) –


q

∫

�

λ|u|q dx –

r

∫

�

|u|r dx

≥ 
p
σ
[
M

(‖u‖p)]p–‖u‖p –

q

∫

�

λ|u|q dx –

r

{[
M

(‖u‖p)]p–‖u‖p –
∫

�

λ|u|q dx
}

=
(

σ

p
–


r

)[
M

(‖u‖p)]p–‖u‖p – λ

(

q

–

r

)∫

�

|u|q dx

≥
(

σ

p
–


r

)
mp–

 ‖u‖p – λ

(

q

–

r

)
C

– q
p

q ‖u‖q.

Since σ
p > 

r and q < p < r, Jλ is coercive and bounded below on N . �
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The Nehari manifold N is closely linked to the behavior of the fibering map Ku : t →
Jλ(tu). For u ∈ X, we have

Ku(t) =

p

M̂
(
tp‖u‖p) –


q

tq
∫

�

λ|u|q dx –

r

tr
∫

�

|u|r dx;

K ′
u(t) =

[
M

(
tp‖u‖p)]p–tp–‖u‖p – λtq–

∫

�

|u|q dx – tr–
∫

�

|u|r dx;

K ′′
u (t) =

[
M

(
tp‖u‖p)]p–(p – )tp–‖u‖p

+ p(p – )tp–‖u‖p[M
(
tp‖u‖p)]p–M′(tp‖u‖p)

– λ(q – )tq–
∫

�

|u|q dx – (r – )tr–
∫

�

|u|r dx.

Clearly, tu ∈N if and only if K ′
u(t) = . It is natural to split N into three parts correspond-

ing to local minima, local maxima and points of inflection, i.e.,

N + =
{

u ∈N |K ′′
u () > 

}
,

N  =
{

u ∈N |K ′′
u () = 

}
,

N – =
{

u ∈N |K ′′
u () < 

}
.

Then we have the following lemmas.

Lemma . Suppose that u is a local minimizer of Jλ on N and u /∈ N . Then u is a
critical point of Jλ.

Proof Our proof is almost the same as that of Binding et al. [] and Brown and
Zhang []. �

Lemma . Suppose that M satisfies (M) and (M). Then there exists λ >  such that
N  = ∅ for all  < λ < λ.

Proof For each u ∈N , we have

K ′′
u () = (p – q)

[
M

(‖u‖p)]p–‖u‖p + p(p – )‖u‖p[M
(‖u‖p)]p–M′(‖u‖p)

– (r – q)
∫

�

|u|r dx (.)

= –(r – p)
[
M

(‖u‖p)]p–‖u‖p + p(p – )‖u‖p[M
(‖u‖p)]p–M′(‖u‖p)

+ λ(r – q)
∫

�

|u|q dx. (.)

Furthermore, if u ∈N , then

(p – q)mp–
 ‖u‖p ≤ (p – q)

[
M

(‖u‖p)]p–‖u‖p + p(p – )‖u‖p[M
(‖u‖p)]p–M′(‖u‖p)

= (r – q)
∫

�

|u|r dx ≤ (r – q)C
– r

p
r ‖u‖r



Huang et al. Boundary Value Problems  (2017) 2017:41 Page 12 of 16

and

(r – p)(d – )
d

mp–
 ‖u‖p ≤ (r – p)(d – )

d
[
M

(‖u‖p)]p–‖u‖p

≤ (r – p)
[
M

(‖u‖p)]p–‖u‖p

– p(p – )‖u‖p[M
(‖u‖p)]p–M′(‖u‖p)

≤ λ(r – q)C
– q

p
q ‖u‖q.

Consequently,

(
(p – q)mp–



(r – q)C–r/p
r

)/(r–p)

≤ ‖u‖ ≤
(

λd(r – q)C–q/p
q

(r – p)(d – )mp–


)/(p–q)

.

Therefore,

λ ≥ λ :=
(

(p – q)mp–


(r – q)C–r/p
r

)(p–q)/(r–p) (r – p)(d – )mp–


d(r – q)C–q/p
q

.

Hence N  = ∅ for all  < λ < λ. �

Lemma . Suppose that conditions (M), (M) hold. Assume also  < λ < λ
d

d– and q <
p
σ

< r. Then, for each u ∈ X\{}, there exist t+ and t– such that t+u ∈N + and t–u ∈N –.

Proof Fix u ∈ X\{}. Then it follows from condition (M) that

K ′
u(t) =

[
M

(
tp‖u‖p)]p–tp–‖u‖p – λtq–

∫

�

|u|q dx – tr–
∫

�

|u|r dx

≥ mp–
 tp–‖u‖p – λtq–

∫

�

|u|q dx – tr–
∫

�

|u|r dx

= tp–(mp–
 ‖u‖p – h(t)

)
,

where h(t) = λtq–p ∫
�

|u|q dx + tr–p ∫
�

|u|r dx. Since

h′(t) = λ(q – p)tq–p–
∫

�

|u|q dx + (r – p)tr–p–
∫

�

|u|r dx,

we obtain h′(tM) =  for

tM =
(

λ(p – q)
∫
�

|u|q dx
(r – p)

∫
�

|u|r dx

) 
r–q

.

Moreover,

h(tM) =
(

r – p
p – q

+ 
)

tr–p
M

∫

�

|u|r dx

=
r – q
p – q

(
λ(p – q)

∫
�

|u|q dx
(r – p)

∫
�

|u|r dx

) r–p
r–q

∫

�

|u|r dx
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=
r – q
p – q

(
λ(p – q)

r – p

) r–p
r–q

(∫

�

|u|q dx
) r–p

r–q
(∫

�

|u|r dx
) p–q

r–q

≤ r – q
p – q

(
λ(p – q)

r – p

) r–p
r–q

C
– q(r–p)

p(r–q)
q C

– r(p–q)
p(r–q)

r ‖u‖p.

Hence mp–
 ‖u‖p > h(tM) and so K ′

u(tM) >  for all

 < λ < m
(p–) r–q

r–p
 Cq/p

q C
r(p–q)
p(r–p)

r
r – p
p – q

(
p – q
r – q

) r–q
r–p

= λ
d

d – 
.

On the other hand, it follows from (.) that

K ′
u(t) =

[
M

(
tp‖u‖p)]p–tp–‖u‖p – λtq–

∫

�

|u|q dx – tr–
∫

�

|u|r dx

≤ M̂(t)
σ t/σ


‖u‖ p

σ t
p
σ – – λtq–

∫

�

|u|q dx – tr–
∫

�

|u|r dx.

Since q < p
σ

< r, there exist  < t < tM < t such that K ′
u(t) < , K ′

u(t) < . Note thatN  = ∅,
we deduce that there exist t+, t– such that K ′

u(t+) = K ′
u(t–) =  and K ′′

u (t+) >  > K ′′
u (t–).

Hence t+u ∈N + and t–u ∈N –. �

Proof of Theorem . By Lemma ., we write N = N + ∪N – and define

α+
λ = inf

u∈N +
Jλ(u), α–

λ = inf
u∈N–

Jλ(u).

In view of Lemma . and the Ekeland variational principle [], there exist minimizing
sequences {u+

n} and {u–
n} for Jλ on N + and N – such that

Jλ
(
u+

n
)

= α+
λ + o(), Jλ

(
u–

n
)

= α–
λ + o()

and

J ′
λ

(
u+

n
)

= o(), J ′
λ

(
u–

n
)

= o().

Furthermore, Lemma . implies that there exist u+
 and u–

 such that u+
n → u+

 and u–
n → u–



strongly in X. Note that u+
n ∈ N + implies K ′

u+
n
() =  and K ′′

u+
n
() > . Letting n → ∞, we

deduce that K ′
u+ () =  and K ′′

u+ () ≥ , and so u+ ∈ N + ∪ N . By Lemma ., we obtain
u+ ∈ N +. Similarly, u– ∈ N –. Since Jλ(u) = Jλ(|u|), we may assume u+

 and u–
 are non-

negative. Moreover, it can be deduced from Lemma . that u+
 and u–

 are nonnegative
solutions of equation (.). Finally, since N + ∩ N – = ∅, we infer that u+

 and u–
 are two

distinct solutions. �

Finally, we prove Theorem . by the following dual fountain theorem.

Theorem . (Dual fountain theorem []) Assume that J ∈ C(X,R) satisfies J(–u) = J(u).
If for every k ∈N there exist ρk > rk >  such that

(B) ak := infu∈Zk ,‖u‖=ρk J(u) ≥  as k → ∞,
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(B) bk := maxu∈Yk ,‖u‖=rk J(u) < ,
(B) dk := infu∈Zk ,‖u‖≤ρk J(u) →  as k → ∞,
(B) J satisfies the (PS)∗c condition for every c ∈ [dk , ), that is, any sequence {unj} ⊂ X such

that

unj ∈ Ynj , J(unj ) → c, J|′Ynj
→ , as nj → ∞

has a convergent subsequence.

Then J has a sequence of negative critical points {uk} with J(uk) → .

Proof of Theorem . . Let

βk := sup
u∈Zk ,‖u‖=

(∫

�

|u|q dx
)/q

.

Then by (M)-(M), for all u ∈ Zk , there holds

Jλ(u) =

p

M̂
(‖u‖p) –


q

∫

�

λ|u|q dx –

r

∫

�

|u|r dx

≥ 
p
σmp–

 ‖u‖p –
λ

q
β

q
k ‖u‖q –


r

C
– r

p
r ‖u‖r .

Since p < r, we have


p

σmp–
 ‖u‖p ≥ 

r
C

– r
p

r ‖u‖r for all ‖u‖ ≤ R =
(

σ rCr/p
r mp–


p

)/(r–p)

.

Therefore,

Jλ(u) ≥ 
p

σmp–
 ‖u‖p –

λ

q
β

q
k ‖u‖q for all u ∈ Zk with ‖u‖ ≤ R. (.)

Choose

ρk =
(

pλβ
q
k

qσmp–


)/(p–q)

.

It follows from βk →  that ρk → . Hence there exists k >  such that ρk ≤ R for all
k > k. Consequently, Jλ(u) ≥  for all k > k, u ∈ Zk and ‖u‖ = ρk . This gives (B).

. Since in the finite dimensional space Yk all norms are equivalent, there exist positive
constants C, C such that

∫

�

|u|q dx ≥ C‖u‖q and
∫

�

|u|r dx ≥ C‖u‖r .

Then, by (.), we obtain for all u ∈ Yk

Jλ(u) ≤ M̂(t)
pt/σ


‖u‖ p

σ –
λ

q
C‖u‖q –

C

r
‖u‖r .
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Notice that p
σ

> q and r > q, we deduce that Jλ(u) <  for ‖u‖ = rk sufficiently small and (B)
is proved.

. It follows from (.) that, for all u ∈ Zk with ‖u‖ ≤ ρk and k > k,

Jλ(u) ≥ –
λ

q
β

q
k ρ

q
k .

Since βk →  and ρk →  as k → ∞, relation (B) is satisfied.
. Finally, we prove that Jλ satisfies the (PS)∗c condition. Let {unj} be a sequence such that

{unj} ⊂ Ynj , Jλ(unj ) → c and J|′Ynj
→  as nj → ∞. Then by (M)-(M) we have

c +  + ‖unj‖ ≥ Jλ(unj ) –

r
〈
J ′
λ(unj ), unj

〉

=

p

M̂
(‖unj‖p) –


r
[
M

(‖unj‖p)]p–‖unj‖p – λ

(

q

–

r

)∫

�

|unj |q dx

≥
(

σ

p
–


r

)
mp–

 ‖unj‖p – λ

(

q

–

r

)
C–q/p

q ‖unj‖q.

This implies ‖unj‖ is bounded. Obviously, f satisfies (f). Hence, by Lemma ., Jλ satisfies
the (PS)∗c condition.

We complete the proof by applying the dual fountain theorem. �
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