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Abstract
In this paper, we investigate the existence of positive solutions for a class of singular
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1 Introduction
Reaction-diffusion problems often arise in physics, chemistry, biology, economics, and
various engineering fields. A class of reaction-diffusion equations

wt = wxx + H(w) ()

includes several known evolution equations. For equation (), if traveling wave satisfies
w(x, t) = W (x – Ct) with speed C, then equation () can be converted to a second-order
ordinary differential equation

W ′′ + CW ′ + H(W ) = . ()

With appropriate boundary value conditions, the existence of positive solution of equa-
tion () is significant and helpful. The Liebau phenomenon, which is in honor of the physi-
cian Liebauh’s pioneering work, is the occurrence of valveless pumping through the appli-
cation of a periodic force at a place which lies asymmetric with respect to system config-
uration. Propst [] made use of differential equations to model a periodically forced flow
through different pipe-tank configurations. In one pipe-one tank configuration, ignore the
singularity in the corresponding differential equation model, namely

⎧
⎨

⎩

u′′(t) + au′(t) + 
u (b(u′(t)) – e(t)) + c = , t ∈ [, T],

u() = u(T), u′() = u′(T).
()
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According to the physical meaning of the involved parameters, assume a ≥ , b > , c > ,
and e is continuous and T-periodic on [, +∞). In [], Cid et al. applied the substitution
u = xμ, μ = 

b+ , and then transformed the singular periodic boundary value problem ()
to the regular problem

⎧
⎨

⎩

x′′(t) + ax′(t) + s(t)xβ – r(t)xα = , t ∈ [, T],

x() = x(T), x′() = x′(T),
()

where r(t) = e(t)
μ

, s(t) = c
μ

, α =  – μ, β =  – μ. Based on the lower and upper solution
technique, the existence and asymptotic stability of positive solutions for () are obtained.

In this paper, we discuss the positive solutions of the following periodic boundary value
problem (PBVP):

⎧
⎨

⎩

x′′(t) + ax′(t) + kx(t) = λf (t, x(t)), t ∈ (, T),

x() = x(T), x′() = x′(T),
()

where a ≥ , k ∈ (–∞, +∞), λ >  is a parameter, f : (, T) × (, +∞) → [, +∞) is a con-
tinuous function and f (t, u) may be singular at t = , t = T and u = .

In recent years, the existence of solutions for differential equations has been widely stud-
ied by many scholars in the mathematical sense (see [–] and the references therein).
In [, ], through the use of Guo-Krasnosel’skii’s fixed point theorem, the existence and
multiplicity of positive solutions for the following periodic boundary value problem were
established.

⎧
⎨

⎩

–x′′(t) + ρx(t) = f (t, x(t)), t ∈ [, π ],ρ > ,

x() = x(π ), x′() = x′(π ),
()

⎧
⎨

⎩

x′′(t) + ρx(t) = f (t, x(t)), t ∈ [, π ],  < ρ < 
 ,

x() = x(π ), x′() = x′(π ).
()

In [], the author researched PBVP () by using an Lp-anti-maximum principle and ob-
tained the existence results in order to overcome the difficulties of the symbol of Green’s
functions for the corresponding linear periodic problem:

⎧
⎨

⎩

x′′(t) + a(t)x(t) = f (x(t)) + a(t)x(t), t ∈ [, T],

x() = x(T), x′() = x′(T).
()

Motivated by the above works, we consider PBVP (). In (), if f (t, x(t)) = mx(t)+s(t)xβ –
r(t)xα , then () is a special case of (). Compared with [, ], in which the existence and
multiplicity of positive solutions for () () are considered, we not only obtain the existence
of positive solutions for (), but also increase the parameter λ and get the explicit range of
λ by using the fixed point theory in cones. Therefore, our article contains, promotes, and
improves the previous results to a certain extent.
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2 Preliminaries and lemmas
In this section, we present some notations and lemmas that will be used in the proof of
our main results.

Lemma . ([, ]) Let h ∈ C(, T) ∩ L(, T), then the boundary value problem

⎧
⎨

⎩

x′′(t) + ax′(t) + kx(t) = h(t), t ∈ [, T],

x() = x(T), x′() = x′(T)
()

has an integral representation

x(t) =
∫ T


G(t, s)h(s) ds,

where G(t, s) is the related Green’s function.

Lemma . ([]) Assume that condition (H) holds,

(H) k > , k < ( π
T ) + ( a

 ).

Then G(t, s) has the following properties:
(i) G(t, s) > , (t, s) ∈ [, T] × [, T];

(ii)
∫ T

 G(t, s) ds = 
k ;

(iii) There exists a constant ξ ∈ (, ) such that G(t, s) ≥ G(s, s) ≥ ξG(t, s),
(t, s) ∈ [, T] × [, T].

Let X = C[, T], then X is a Banach space with the norm ‖x‖ = maxt∈[,T] |x(t)|. Denote

K =
{

x ∈ X : x(t) ≥ ξ‖x‖, t ∈ [, T]
}

,

where ξ is defined as Lemma .. It is easy to see that K is a positive and normal cone in X.
For any  < r < R < +∞, let Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}. In this paper, we always assume
that the following conditions hold.

(H) f : (, T) × (, +∞) → [, +∞) is a continuous function and

f (t, u) ≤ φ(t)
(
g(u) + h(u)

)
, (t, u) ∈ (, T) × (, +∞),

where φ : (, T) → [, +∞) is continuous and singular at t = , T , φ(t) 
≡  on [, +∞),
g : (, +∞) → [, +∞) is continuous and nonincreasing, h : [, +∞) → [, +∞) is
continuous.

(H)
∫ T

 G(s, s)φ(s) ds < +∞.

Under assumptions (H)-(H), for any n ∈ N, N is a natural number set, we define a
nonlinear integral operator An : K → X by

(Anx)(t) = λ

∫ T


G(t, s)fn

(
s, x(s)

)
ds, t ∈ [, T], ()
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where fn(t, u) = f (t, (u + 
n )). Obviously, the existence of solutions to () is equivalent to

the existence of solutions in K for the operator equation Anx = x defined by (). In this
paper, the proof of the main theorem is based on the fixed point theory in cones. We list
the following lemmas which are needed in our study.

Lemma . ([]) Let K be a positive cone in a real Banach space X. Denote Kr = {x ∈ K :
‖x‖ < r}, Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R},  < r < R < +∞. Let A : K r,R → K be a completely
continuous operator. If the following conditions are satisfied:

() ‖Ax‖ ≤ ‖x‖, ∀x ∈ ∂KR;
() There exists x ∈ ∂K such that x 
= Ax + mx, ∀x ∈ ∂Kr , m > .

Then A has fixed points in Kr,R.

Remark . If () and () are satisfied for x ∈ ∂Kr and x ∈ ∂KR, respectively, then
Lemma . is still true.

Lemma . ([]) Let K be a positive cone in a Banach space E, 
 and 
 be bounded
open sets in E, θ ∈ 
, 
 ⊂ 
, A : K ∩ 
\
 → P be a completely continuous operator.
If the following conditions are satisfied:

‖Ax‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂
, ‖Ax‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂
,

or

‖Ax‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂
, ‖Ax‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂
,

then A has at least one fixed point in K ∩ (
\
).

3 Main results
Theorem . Assume that (H)-(H) hold, then An : K → K is a completely continuous
operator for any fixed n ∈N.

Proof Let λ >  and n ∈ N be fixed. For any x ∈ K and t ∈ [, T], by Lemma ., we have

λ

∫ T


G(s, s)fn

(
s, x(s)

)
ds ≤ (Anx)(t) = λ

∫ T


G(t, s)fn

(
s, x(s)

)
ds

≤ λ

ξ

∫ T


G(t, s)fn

(
s, x(s)

)
ds.

This implies that (Anx)(t) ≥ ξ‖Anx‖, therefore An(K) ⊂ K . By a standard argument, under
assumptions (H)-(H), we know that An : K → K is well defined.

Next, for any positive integers n, m ∈ N, we define an operator An,m : K → X by

(An,mx)(t) = λ

∫ T– 
m


m

G(t, s)fn
(
s, x(s)

)
ds, t ∈ [, T]. ()

In a similar discussion, An,m : K → X is well defined and An,m(K) ⊆ K . In what follows, we
will prove that An,m : K → K is completely continuous for each m ≥ . Firstly, we show that
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An,m : K → K is continuous. Let xυ , x ∈ K satisfy ‖xυ – x‖ →  as υ → +∞. Notice that
t ∈ [ 

m , T – 
m ], |fn(t, xυ(t)) – fn(t, x(t))| →  as υ → +∞. Using the Lebesgue dominated

convergence theorem, we have

∣
∣
∣
∣λ

∫ T– 
m


m

G(t, s)fn
(
s, xυ(s)

)
ds – λ

∫ T– 
m


m

G(t, s)fn
(
s, x(s)

)
ds

∣
∣
∣
∣

≤ λ

ξ

∫ T– 
m


m

G(s, s)
∣
∣fn

(
s, xυ(s)

)
– fn

(
s, x(s)

)∣
∣ds → , υ → +∞.

Therefore

‖An,mxυ – An,mx‖ ≤ λ

ξ

∫ T– 
m


m

G(s, s)
∣
∣fn

(
s, xυ(s)

)
– fn

(
s, x(s)

)∣
∣ds → , υ → +∞.

So, An,m : K → C[, T] is continuous for any natural numbers n, m. Then An,m : K → K is
continuous for any natural numbers n, m.

Let D ⊂ K be any bounded set, then for any x ∈ D, we have ‖x‖ ≤ r, and then  < ξr ≤
x(t) ≤ r for any t ∈ [, T]. By (H)-(H), for any x ∈ D, we have

∣
∣
∣
∣λ

∫ T– 
m


m

G(t, s)fn
(
s, x(s)

)
ds

∣
∣
∣
∣

≤ λ

ξ

∫ T– 
m


m

G(s, s)φ(s)
(

g
(

x(s) +

n

)

+ h
(

x(s) +

n

))

ds

≤ λ

ξ

∫ T– 
m


m

G(s, s)φ(s)
(

g
(

ξr +

n

)

+ h
(

x(s) +

n

))

ds

≤ λ

ξ

∫ T– 
m


m

G(s, s)φ(s)
(

g(ξr) + max
y∈[ξr,r+]

h(y)
)

ds

< +∞. ()

So, An,mD is bounded in K .
In order to show that An,m is a compact operator, we only need to show that An,mD is

equicontinuous. For any ε > , by the continuity of G(t, s) on [, T] × [, T], there exists
δ >  such that for any t, t ∈ [, T], s ∈ [ 

m , T – 
m ], and |t – t| < δ, we have

∣
∣G(t, s) – G(t, s)

∣
∣ < ε

(

λ

∫ T– 
m


m

φ(s)
(

g(ξr) + max
y∈[ξr,r+]

h(y)
)

ds
)–

.

Then, for any x ∈ D, for any t, t ∈ [, T], s ∈ [ 
m , T – 

m ], and |t – t| < δ, we have

∣
∣(An,m)(t) – (An,m)(t)

∣
∣

≤ λ

∫ T– 
m


m

∣
∣G(t, s) – G(t, s)

∣
∣fn

(
s, x(s)

)
ds

≤ λ

∫ T– 
m


m

∣
∣G(t, s) – G(t, s)

∣
∣φ(s)

(

g
(

x(s) +

n

)

+ h
(

x(s) +

n

))

ds
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≤ λ

∫ T– 
m


m

∣
∣G(t, s) – G(t, s)

∣
∣φ(s)

(
g(ξr) + max

y∈[ξr,r+]
h(y)

)
ds

< ε,

which means that An,mD is equicontinuous. By the Arzela-Ascoli theorem, An,mD is a rel-
atively compact set and so An,m : K → K is a completely continuous operator.

Finally, we show that An : K → K is a completely continuous operator. For any t ∈ [, T]
and x ∈ S = {x ∈ K ,‖x‖ ≤ }, by (), (), we have

λ

∫ 
m


G(t, s)fn

(
s, x(s)

)
ds + λ

∫ T

T– 
m

G(t, s)fn
(
s, x(s)

)
ds

≤ λ

ξ

(∫ 
m


+

∫ T

T– 
m

)

G(s, s)φ(s)
(

g
(

x(s) +

n

)

+ h
(

x(s) +

n

))

ds

≤ λ

ξ

(∫ 
m


+

∫ T

T– 
m

)

G(s, s)φ(s)
(

g
(


n

)

+ max
y∈[ 

n ,]
h(y)

)

ds

→ , m → +∞.

Hence

‖An – An,m‖ = sup
x∈S

‖Anx – An,mx‖ → , m → +∞.

Therefore, by An,m : K → K is a completely continuous operator, we get that An : K → K
is a completely continuous operator. �

Theorem . Assume that (H)-(H) hold and f satisfies the following condition:

(H) There exists [a, b] ⊂ (, T) such that

lim
u→+∞ min

t∈[a,b]

f (t, u)
u

= +∞.

Then there exists λ >  such that PBVP () has at least one positive solution for any λ ∈
(,λ).

Proof Choose r > , let

λ = min

{

,
ξr

∫ T
 G(s, s)φ(s)(g(ξr) + maxy∈[ξr,r+] h(y)) ds

}

.

Let Kr = {x ∈ K : ‖x‖ < r}. For any x ∈ ∂Kr , t ∈ [, T], by the definition of ‖ · ‖, we have

x(t) ≤ ‖x‖ ≤ r, x(t) ≥ ξ‖x‖ ≥ ξr.

For any λ ∈ (,λ), we have

∣
∣(Anx)(t)

∣
∣ =

∣
∣
∣
∣λ

∫ T


G(t, s)fn

(
s, x(s)

)
ds

∣
∣
∣
∣

≤ λ

ξ

∫ T


G(s, s)φ(s)

(

g
(

x(s) +

n

)

+ h
(

x(s) +

n

))

ds



Wang et al. Boundary Value Problems  (2017) 2017:49 Page 7 of 11

≤ λ

ξ

∫ T


G(s, s)φ(s)

(

g
(

ξr +

n

)

+ h
(

x(s) +

n

))

ds

≤ λ

ξ

∫ T


G(s, s)φ(s)

(
g(ξr) + max

y∈[ξr,r+]
h(y)

)
ds

< r.

Thus,

‖Anx‖ ≤ ‖x‖ for any x ∈ ∂Kr . ()

On the other hand, by the inequality in (H), choose l >  such that λlξr
∫ b

a G(s, s) ds > ,
then there exists N∗ >  such that

f (t, u) ≥ lu, u ≥ N∗, t ∈ [a, b].

Let r > max{r, N∗
ξ

}, Kr = {x ∈ K : ‖x‖ < r}. Take q ≡  ∈ ∂K = {x ∈ K : ‖x‖ = }. For any
x ∈ ∂Kr , μ > , n ∈N, we will show

x 
= Anx + μq. ()

Otherwise, there exist x ∈ ∂Kr and μ >  such that x = Anx + μq. From x ∈ ∂Kr ,
we know that ‖x‖ = r. Then, for t ∈ [a, b], we have

x(t) ≥ ξ‖x‖ ≥ ξr ≥ N∗.

Hence, we conclude that

x(t) = λ

∫ T


G(t, s)fn

(
s, x(s)

)
ds + μ

≥ λ

∫ b

a
G(s, s)fn

(
s, x(s)

)
ds + μ

≥ λ

∫ b

a
G(s, s)lξr ds + μ

≥ r + μ > r.

This implies that r > r, which is a contradiction. This yields that () holds.
It follows from the above discussion, (), (), Lemma . and Theorem . that, for any

n ∈N, λ ∈ (,λ), An has a fixed point xn ∈ Kr \ Kr .
Let {xn}∞n= be the sequence of solutions of PBVP (). It is easy to see that they are uni-

formly bounded. From xn ∈ Kr \ Kr , we know that

r ≥ ‖xn‖ ≥ xn(t) ≥ ξ‖xn‖ ≥ ξr, t ∈ [, T].

For any ε > , by the continuity of G(t, s) on [, T] × [, T], there exists δ >  such that for
any t, t, s ∈ [, T], |t – t| < δ, we have

∣
∣G(t, s) – G(t, s)

∣
∣ < ε

(

λ

∫ T


φ(s)

(
g(ξr) + max

y∈[ξr,r+]
h(y)

)
ds

)–

.
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Then, for any t, t, s ∈ [, T], |t – t| < δ, we obtain

∣
∣xn(t) – xn(t)

∣
∣

≤ λ

∫ T



∣
∣G(t, s) – G(t, s)

∣
∣fn

(
s, xn(s)

)
ds

≤ λ

∫ T



∣
∣G(t, s) – G(t, s)

∣
∣φ(s)

(

g
(

xn(s) +

n

)

+ h
(

xn(s) +

n

))

ds

≤ λ

∫ T



∣
∣G(t, s) – G(t, s)

∣
∣φ(s)

(
g(ξr) + max

y∈[ξr,r+]
h(y)

)
ds

< ε. ()

Similarly to (), together with (), by the Ascoli-Arzela theorem, the sequence {xn}∞n=

has a subsequence being uniformly convergent on [, T]. Without loss of generality, we still
assume that {xn}∞n= itself uniformly converges to x on [, T]. Since {xn}∞n= ∈ Kr \ Kr ⊂ K ,
we have xn ≥ . Besides, we have

xn(t) = xn

(



)

+ x′
n

(



)(

t –



)

– a
∫ t




(

xn(s) – xn

(



))

ds

– k
∫ t




∫ s




(xn(ς ) – λfn
(
ς , xn(ς )

)
dς ds, t ∈ (, T). ()

Since {x′
n( 

 )}∞n= is bounded, without loss of generality, we may assume x′
n( 

 ) → c as n →
+∞. Then, by () and the Lebesgue dominated convergence theorem, we have

x(t) = x
(




)

+ c

(

t –



)

– a
∫ t




(

x(s) – x
(




))

ds

– k
∫ t




∫ s




(x(ς ) – λf
(
ς , x(ς )

)
dς ds, t ∈ (, T). ()

By (), the direct computation shows that

x′′(t) + ax′(t) + kx(t) = λf
(
t, x(t)

)
, t ∈ (, T).

On the other hand, let n → +∞ in the following boundary conditions:

xn() = xn(T), x′
n() = x′

n(T).

Therefore, we deduce that x is a solution of PBVP (). The proof is completed. �

Theorem . Assume that (H)-(H) hold and f satisfies the following condition:

(H) There exists [c, d] ⊂ (, T) such that

lim inf
u→+∞ min

t∈[c,d]
f (t, u) >


∫ d

c G(s, s) ds
, lim

u→+∞
h(u)

u
= .
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Then there exists λ >  such that PBVP () has at least one positive solution for any λ ∈
(λ, +∞).

Proof By the first inequality of (H), we have that there exists N∗ >  such that for any
t ∈ [c, d], u > N∗, we have

f (t, u) >


∫ d
c G(s, s) ds

. ()

Select λ = max{, N∗
ξ

}. In the following proof, we suppose λ > λ, choose R = λ, KR = {x ∈
K : ‖x‖ < R}. For any x ∈ ∂KR , t ∈ [c, d], we have

x(t) ≥ ξ‖x‖ ≥ ξR > N∗.

Then, by (), we have

∣
∣(Txn)(t)

∣
∣ = λ

∫ T


G(t, s)fn

(
s, x(s)

)
ds ≥ λ

∫ d

c
G(s, s)fn

(
s, x(s)

)
ds

≥ λ

∫ d

c
G(s, s)


∫ d

c G(s, s)
ds ≥ R.

Therefore, we have

‖Anx‖ ≥ ‖x‖ for any x ∈ ∂KR . ()

Based on the second inequality in (H) and the continuity of h(u) on [, +∞), for

c = max

{

,
(

λ

ξ

∫ T


G(s, s)φ(s) ds

)–}

,

there exists N∗ >  such that when x ≥ N∗, for any  ≤ z ≤ x, we have h(z) ≤ cx. Select

R ≥
{

, R, N∗,
λ

ξ

∫ T


G(s, s)φ(s)g(ξR) ds

}

.

Then, for any x ∈ ∂KR , t ∈ [, +∞), we have

x(t) ≤ ‖x‖ ≤ R, x(t) ≥ ξ‖x‖ ≥ ξR.

Hence, we gain

∣
∣(Anx)(t)

∣
∣ =

∣
∣
∣
∣λ

∫ T


G(t, s)fn

(
s, x(s)

)
ds

∣
∣
∣
∣

≤ λ

ξ

∫ T


G(s, s)φ(s)

(

g
(

x(s) +

n

)

+ h
(

x(s) +

n

))

ds

≤ λ

ξ

∫ T


G(s, s)φ(s)

(

g
(

ξR +

n

)

+ h
(

x(s) +

n

))

ds

≤ λ

ξ

∫ T


G(s, s)φ(s)

(
g(ξR) + c(R + )

)
ds ≤ R.
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Thus,

‖Anx‖ ≤ ‖x‖ for any x ∈ ∂KR . ()

It follows from the above discussion, (), (), Lemma . and Theorem . that, for
n ∈N, λ ∈ (λ, +∞), An has a fixed point xn ∈ KR \ KR satisfying R ≤ ‖xn‖ ≤ R. The rest
of the proof is similar to Theorem .. That is the proof of Theorem .. �

Corollary . The conclusion of Theorem . is valid if (H) is replaced by the following:

(H∗
) There exists [c, d] ⊂ (, T) such that

lim inf
u→+∞ min

t∈[c,d]
f (t, u) = +∞, lim

u→+∞
h(u)

u
= .

Remark . From the proof of Theorems . and ., we can obtain the main results
under the condition that the function f (t, u) not only has singularity on t but also has
singularity on u, and we use the approximation method to overcome the difficulty caused
by singularity.

Remark . In this paper, we can get the positive solution of PBVP () when the param-
eter λ is sufficiently large and small; concretely, we can choose λ ∈ (, ) and λ ∈ (, +∞).
What is more, the solution x in PBVP () satisfies x(t) >  for any t ∈ [, T].

4 Examples
Consider the PBVP

⎧
⎨

⎩

x′′(t) + 
 x′(t) + x(t) = λf (t, x(t)), t ∈ [, ],

x() = x(), x′() = x′(),
()

where a = 
 , k = , T = . Obviously, (H) holds. Take f (t, u) = √

t(–t) ( √
u + u), we can

suppose φ(t) = √
t(–t) , g(u) = √

u , h(u) = u. Since the continuous function G(t, s) is positive
for all t, s ∈ [, T], there exist constants C > , C >  such that  < C < G(t, s) < C for all
t, s ∈ [, T]. Together with G(t, s) ≥ G(s, s) ≥ ξG(t, s), (t, s) ∈ [, T] × [, T] in Lemma .,
we have  < ξC < G(s, s) < C, so we can get

∫ T


G(s, s)φ(s) ds =

∫ 


G(s, s)φ(s) ds < C

∫ 



√
s( – s)

ds

= C

∫ 




√


 – (s – 

 )
ds = C

∫ 




√

 – ((s – 
 ))

ds

= C

∫ 

–

√
 – u

du
(

u = 
(

s – 


))

= C lim
u→

 arcsin u = π < +∞,

lim
u→+∞ min

t∈[a,b]

f (t, u)
u

= +∞.
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So all the conditions of Theorem . are satisfied. By Theorem ., PBVP () has at least
one positive solution provided λ is small enough.
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