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Abstract
We are concerned with ground-state solutions for the following Kirchhoff type
equation with critical nonlinearity:

{
–(ε2a + εb

∫
R3 |∇u|2)�u + V(x)u = λW(x)|u|p–2u + |u|4u in R

3,

u > 0, u ∈ H1(R3),

where ε is a small positive parameter, a,b > 0, λ > 0, 2 < p ≤ 4, V andW are two
potentials. Under proper assumptions, we prove that, for ε > 0 sufficiently small, the
above problem has a positive ground-state solution uε by using a monotonicity trick
and a new version of global compactness lemma. Moreover, we use another global
compactness method due to Gui (Commun. Partial Differ. Equ. 21:787-820, 1996) to
show that uε is concentrated around a set which is related to the set where the
potential V(x) attains its global minima or the set where the potentialW(x) attains its
global maxima as ε → 0.
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1 Introduction
In this paper, we study the following Kirchhoff type equation with critical nonlinearity:

⎧⎨
⎩–(εa + εb

∫
R |∇u|)�u + V (x)u = λW (x)|u|p–u + |u|u in R

,

u > , u ∈ H(R),
(.)

where ε is a small positive parameter, a, b > , λ > ,  < p ≤ .
Problem (.) is a variant type of the following Dirichlet problem of Kirchhoff type:

⎧⎨
⎩–(a + b

∫
�

|∇u|)�u = f (x, u) in �,

u =  on ∂�,
(.)
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where � ⊂ R
 is a smooth domain. Such problems are often referred to as nonlocal be-

cause of the presence of the term (
∫
�

|∇u|)�u, which implies that equation (.) is no
longer a pointwise identity. This phenomenon provokes some mathematical difficulties,
which make the study of such a class of problems particularly interesting. On the other
hand, problem (.) is related to the stationary analog of the equation

⎧⎨
⎩utt – (a + b

∫
�

|∇xu|)�xu = f (x, u) (x ∈ �, t > ),

u(·, t)|∂� =  (t ≥ ),
(.)

proposed by Kirchhoff in [] as the existence of the classical D’Alembert wave equations
for free vibration of elastic strings. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations. In (.), u denotes the displace-
ment, f (x, u) the external force and b the initial tension, while a is related to the intrinsic
properties of the string (such as Young’s modulus). We have to point out that nonlocal
problems also appear in other fields as biological systems, where u describes a process
which depends on the average of itself (for example, the population density). After the pi-
oneer work of Lions [], where a functional analysis approach was proposed, the Kirchhoff
type equations began to arouse the attention of researchers.

In [], Alves, Corrêa and Ma used the mountain pass theorem to get the existence result
of the following Kirchhoff type problem:

⎧⎨
⎩M(

∫
�

|∇u|)�u = f (x, u) in �,

u =  on ∂�,

where � is a smooth bounded domain inR
N , M is a positive function, and f is of subcritical

growth.
In [], Arosio and Panizzi proved the well-posedness (existence, uniqueness and contin-

uous dependence of the local solution upon the initial data) of the Cauchy-Dirichlet type
problem related to (.) in the Hadamard sense as a special case of an abstract second-
order Cauchy problem in a Hilbert space.

In [], Perera and Zhang studied (.) under the conditions N = , , , f is a Carathéo-
dory function on �×R and satisfies limt→

f (x,t)
at = λ, lim|t|→∞ f (x,t)

bt = μ uniformly for x ∈ �.
They used the Yang index and critical group to obtain a nontrivial solution of (.).

In [], He and Zou considered and obtained infinitely many solutions of (.) by using a
local minimum method and the fountain theorem.

In [], Chen et al. considered the following Kirchhoff type equation:

⎧⎨
⎩–(a + b

∫
�

|∇u|)�u = λf (x)|u|q–u + g(x)|u|p–u in �,

u =  on ∂�,

where � is a smooth bounded domain in R
N with  < q <  < p < ∗ (∗ = N

N– if N ≥ ,
∗ = ∞ if N = , ), the weight function f , g ∈ C(�̄) satisfies max{f , } 
=  and max{g,
} 
= . By using the Nehari manifold and fibering map methods, multiple positive so-
lutions were obtained under proper assumptions.
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Recently, in [], Li and Ye studied

⎧⎨
⎩–(a + b

∫
R |∇u|)�u + V (x)u = |u|p–u, x ∈R

,

u ∈ H(R), u > , x ∈R
,  < p < ,

(.)

and the potential V satisfies

(V) V (x) ∈ C(R,R) is weakly differentiable and satisfies (∇V (x), x) ∈ L 
 (R) ∪ L∞(R)

and V (x) – (∇V (x), x) ≥  a.e. x ∈R
.

(V) V (x) ≤ lim inf|y|→+∞ V (y) < +∞ and the inequality is strict in a subset of positive
Lebesgue measure.

(V) infu∈H(R)\{}
∫
R |∇u|+V (x)u∫

R u > .

They proved that (.) has a positive ground-state solution. For more results, we can refer
to [, –] and the references therein.

We note that problem (.) with b =  is motivated by the search for standing wave
solutions for the nonlinear Schrödinger equation, which is one of the main subjects in
nonlinear analysis. Different approaches have been taken to deal with this problem under
various hypotheses on the potentials and the nonlinearities (see [, ] and so on).

Our motivation to study (.) mainly comes from the results of perturbed Schrödinger
equations, i.e.

–ε�u + V (x)u = |u|q–u, x ∈R
N , (.)

where  < q < ∗, N ≥ .
Many mathematicians proved the existence, concentration and multiplicity of solutions

for (.), we refer to [, –].
Under the condition

(V) V∞ = lim inf|x|→∞ V (x) > V = infx∈RN V (x) > 

on V (x), He and Zou in [] studied (.) with the nonlinearity replaced by f (u), where
f ∈ C(R+,R+) and satisfies

(AR) ∃μ >  such that

 < μ

∫ u


f (s) ds ≤ f (u)u for all u ≥ ,

lims→
f (s)
s = , lim|s|→∞ f (s)

|s|q =  for some  < q <  and f (s)
s is strictly increasing for s > .

They obtained the existence, concentration and multiplicity of solutions for (.) by the
same arguments as in [–]. In [], Wang et al. extended the result of [] with the
case that the nonlinearity is of critical growth.

2 Main results
Before stating our theorem, we first give some notations. Set

τ := min
R

V , V :=
{

x ∈R
 : V (x) = τ

}
, τ∞ := lim|x|→∞ V (x),

κ := max
R

W , W :=
{

x ∈R
 : W (x) = κ

}
, κ∞ := lim|x|→∞ W (x).
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We will use the following hypotheses on the potentials:

(P) V and W are bounded locally Hölder continuous functions with τ >  and infR W > .
(P) Either (i) τ < τ∞ and there exist R > , xv ∈ V such that W (xv) ≥ W (x) for all |x| ≥ R,

or (ii) κ > κ∞ and there exist R > , xw ∈W such that V (xw) ≤ V (x) for all |x| ≥ R.
(P) V and W are weakly differentiable and satisfy

(∇V (x), x
) ∈ Lr

(
R

) for some r ∈
[




,∞
]

and

(∇W (x), x
) ∈ Lr

(
R

) for some r ∈
[


 – p

,∞
]

with

(q – )V (x) – 
(∇V (x), x

) ≥ , (p – q)W (x) + 
(∇W (x), x

) ≥ , a.e. R

for some  < q < p, where (·, ·) is the usual inner product in R
.

Note that the idea of introducing condition (P) is actually due to Ding. In [], Ding
and Liu studied the existence and concentration of semiclassical solutions for Schrödinger
equations with magnetic fields under the condition (P). It seems that, under the condi-
tions (P), (P), the existence and concentration behavior of positive solutions to (.) have
not ever been studied. So in this paper we shall fill this gap. Precisely, we will find a family
of positive ground-state solutions for (.) with some properties, such as concentration
and exponential decay.

Observe that, in case (P)-(i), we can assume that W (xv) = maxx∈V W (x) and set

Av :=
{

x ∈ V : W (x) = W (xv)
} ∪ {

x /∈ V : W (x) > W (xv)
}

,

in case (P)-(ii), we can assume that V (xw) = minx∈W V (x) and set

Aw :=
{

x ∈W : V (x) = V (xw)
} ∪ {

x /∈W : V (x) < V (xw)
}

.

Obviously, Av and Aw are bounded. Moreover, Av = Aw = V ∩W if V ∩W 
= ∅. In par-
ticular, Av = V if W is a constant and Aw = W if V is a constant.

Our main results are as follows.

Theorem . Let (P), (P) holds. (A) Suppose (P)-(i) holds.

(a) There exist λ∗ >  and ε∗ >  such that, for each λ ∈ [λ∗,∞) and ε ∈ (, ε∗), (.) pos-
sesses a positive ground-state solution uε ∈ H(R). If additionally, V and W are uni-
formly continuous functions on R

, then uε satisfies:
(a) there exists a maximum point xε of uε with

lim
ε→

dist(xε ,Av) = ,
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(a) ∃C, C > ,

uε(x) ≤ C exp

(
–

C

ε
|x – xε|

)
.

(B) Suppose (P)-(ii) holds, then all the conclusions of (A) (with Av replaced by Aw) re-
main true.

The proof is based on the variational method. The main difficulties in proving The-
orem . lie in the fact that the nonlinearity λW (x)|u|p–u + |u|u ( < p ≤ ) does not
satisfy the (AR) condition, which prevents us from obtaining a bounded (PS) sequence
and the lack of compactness due to the unboundedness of the domain R

 and the non-
linearity with the critical Sobolev growth. As we will see later, the competing effect of
λW (x)|u|p–u + |u|u ( < p ≤ ) and the lack of compactness of the embedding prevent
us from using the variational method in a standard way.

To overcome these difficulties, inspired by [], we use a proposition due to Jeanjean
(Proposition . below) to construct a special bounded (PS) sequence and we recover the
compactness by using a version of global compactness lemma (Lemma . below).

To complete this section, we sketch our proof.
We will work with the following equation, equivalent to (.):

⎧⎨
⎩–(a + b

∫
R |∇u|)�u + V (εx)u = λW (εx)|u|p–u + |u|u in R

,

u > , u ∈ H(R),
(.)

with the energy functional

Iε(u) =
a


∫
R

|∇u| +



∫
R

V (εx)u +
b


(∫
R

|∇u|
)

–
λ

p

∫
R

W (εx)
(
u+)p –




∫
R

(
u+), u ∈ H(

R
).

We can easily check that Iε possesses the mountain-pass geometry. But it is difficult to get
the boundedness of any (PS) sequence for  < p ≤ . To overcome this difficulty, in the
spirit of [, ], we use the following proposition due to Jeanjean [].

Proposition . (Theorem . of []) Let X be a Banach space equipped with a norm
‖ · ‖X and let J ⊂R

+ be an interval, we consider a family {	μ}μ∈J of C-functional on X of
the form

	μ(u) = A(u) – μB(u), ∀μ ∈ J ,

where B(u) ≥ , ∀u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖X → ∞.
We assume that there are two points v, v in X such that

cμ = inf
γ∈�

max
t∈[,]

	μ

(
γ (t)

)
> max

{
	μ(v),	μ(v)

}
, ∀μ ∈ J ,
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where

� =
{
γ ∈ C

(
[, ], X

)
: γ () = v,γ () = v

}
.

Then, for almost every μ ∈ J , there is a bounded (PS)cμ sequence for 	μ, that is, there is a
sequence {un(μ)} ⊂ X such that

(i) {un(μ)} is bounded in X ,
(ii) 	μ(un(μ)) → cμ,

(iii) 	′
μ(un(μ)) →  in X–, where X– is the dual space of X .

Applying Proposition . to the following functional:

Iε,μ(u) =
a


∫
R

|∇u| +



∫
R

V (εx)u +
b


(∫
R

|∇u|
)

– μ

[
λ

p

∫
R

W (εx)
(
u+)p +




∫
R

(
u+)

]
, u ∈ H(

R
),μ ∈ [ – δ, ],

then, for a.e. μ ∈ [ – δ, ], ε >  small but fixed, there exists a bounded (PS)cε,μ sequence
{un} for Iε,μ in H(R), where cε,μ, δ are given below.

In order to prove that Icε,μ satisfies the (PS)cε,μ condition, inspired by [], we will establish
a version of global compactness lemma (Lemma . below).

At last, we note that the concentration result in Theorem . is obtained by using a
similar method which is related to Proposition . in [].

3 Proof of Theorem 2.1
The equation

⎧⎨
⎩–(a + b

∫
R |∇u|)�u + u = λ|u|p–u + |u|u in R

,

u > , u ∈ H(R),
(.)

is the limiting equation of (.). In view of [], we have the following.

Proposition . Equation (.) has a positive ground-state solution ũ ∈ H(R) with c <

 abS + 

 bS + 
 (bS + aS) 

 , where c is the least energy level of (.).

Equation (.) can be rewritten as

⎧⎨
⎩–(a + b

∫
R |∇u|)�u + V (εx)u = λW (εx)|u|p–u + |u|u in R

,

u > , u ∈ H(R),
(.)

and the corresponding energy functional is

Iε(u) =
a


∫
R

|∇u| +



∫
R

V (εx)u +
b


(∫
R

|∇u|
)

–
λ

p

∫
R

W (εx)
(
u+)p –




∫
R

(
u+), u ∈ H(

R
).
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Since V is bounded and τ := minR V > ,

‖u‖ε :=
(∫

R
|∇u| + V (εx)u

) 


is an equivalent norm in H(R).
By Proposition ., for any x ∈ R

, let wμ be a positive ground-state solution to the
equation

⎧⎨
⎩–(a + b

∫
R |∇u|)�u + V (x)u = μ[λW (x)|u|p–u + |u|u] in R

,

u > , u ∈ H(R),  < μ ≤ ,

with the energy functional

IV (x),W (x),μ(u) =
a


∫
R

|∇u| +



∫
R

V (x)u +
b


(∫
R

|∇u|
)

–

p
μλ

∫
R

W (x)
(
u+)p –




μ

∫
R

(
u+), u ∈ H(

R
),  < μ ≤ .

Denote the mountain-pass level of IV (x),W (x),μ by cV (x),W (x),μ. From [], we see that

cV (x),W (x),μ := inf
γ∈�V (x),W (x),μ

max
t∈[,]

IV (x),W (x),μ
(
γ (t)

)
= inf

u∈H(R)\{}
max

t>
IV (x),W (x),μ(ut) = inf

u∈MV (x),W (x),μ
IV (x),W (x),μ(u) > ,

where

�V (x),W (x),μ :=
{
γ ∈ C

(
[, ], H(

R
)) : γ () = , IV (x),W (x),μ

(
γ ()

)
< 

}
,

MV (x),W (x),μ :=
{

u ∈ H(
R

)\{} : GV (x),W (x),μ(u) = 
}

and

GV (x),W (x),μ(u) = a
∫
R

|∇u| + 
∫
R

V (x)u + b
(∫

R
|∇u|

)

– μ

[
p + 

p
λ

∫
R

W (x)
(
u+)p + 

∫
R

(
u+)

]
.

We have the following lemma.

Lemma . For any {μn} with μn → –, up to a subsequence, ∃{yn} ⊂R
 such that {wμn (x+

yn)} is convergent in H(R).

Proof Since

cV (x),W (x), 


≥ cV (x),W (x),μn

= IV (x),W (x),μn (wμn ) –


p + 
GV (x),W (x),μn (wμn )
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=
p + 

(p + )
a

∫
R

|∇wμn | +
p – 

(p + )

∫
R

V (x)w
μn

+
p – 

(p + )
b
(∫

R
|∇wμn |

)

+
 – p

(p + )
μn

∫
R

w
μn ,

{wμn} is bounded in H(R).
By the vanishing theorem, ∃{yn} ⊂R

 and set w̃μn (x) := wμn (x + yn), we may assume that
∃w̃ ∈ H(R)\{} such that

⎧⎪⎪⎨
⎪⎪⎩

w̃μn ⇀ w̃ in H(R),

w̃μn → w̃ in Ls
loc(R) for all  ≤ s < ,

w̃μn → w̃ a.e. in R
.

Moreover, w̃ satisfies

–
(
a + bA)�w̃ + V (x)w̃ = λW (x)

(
w̃+)p– +

(
w̃+),

where A = limn→∞
∫
R |∇w̃μn | and

∫
R |∇w̃| ≤ A.

Next, we claim that

lim
n→∞ cV (x),W (x),μn = cV (x),W (x),. (.)

Indeed, ∃tn >  such that (w)tn ∈ MV (x),W (x),μn , then dIV (x),W (x),μn ((w)t )
dt |t=tn =  shows

that {tn} is bounded. Hence, we have

cV (x),W (x), ≤ cV (x),W (x),μn ≤ IV (x),W (x),μn

(
(w)tn

)
= IV (x),W (x),

(
(w)tn

)
+


p

( – μn)λ
∫
R

W (x)(w)p
tn +




( – μn)
∫
R

(w)
tn

≤ IV (x),W (x),(w) + o() = cV (x),W (x), + o(),

(.) holds.
Since limn→∞

∫
R |∇w̃μn | ≥ ∫

R |∇w̃|, we check that GV (x),W (x),(w̃) ≤ , then by (.),
we get w̃μn → w̃ in H(R). �

By Lemma ., w̃
μn , w̃p

μn , w̃
μn are uniformly integrable near ∞. Since {μn} is arbitrary,

then ∃δ >  small but fixed, {yμ} ⊂R
 for all μ ∈ [ – δ, ],

w̃
μ, w̃p

μ, w̃
μ are uniformly integrable near ∞, (.)

where w̃μ(x) := wμ(x + yμ).
Next, we will show that ∃C̄ >  which is independent of μ ∈ [ – δ, ] such that

∫
R

wp
μ +

∫
R

w
μ ≥ C̄. (.)

Indeed, assuming the contrary, ∃{μj} ⊂ [ – δ, ] with μj → – such that

∫
R

wp
μj

+
∫
R

w
μj

→  as j → ∞.
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In view of the definition of wμj ,

a
∫
R

|∇wμj | +
∫
R

V (x)w
μj

+ b
(∫

R
|∇wμj |

)

= λμj

∫
R

W (x)wp
μj

+ μj

∫
R

w
μj

,

then ‖wμj‖H(R) →  as j → ∞, which contradicts cV (x),W (x), >  by (.).
Consider the following functional:

Iε,μ(u) =
a


∫
R

|∇u| +



∫
R

V (εx)u +
b


(∫
R

|∇u|
)

– μ

[
λ

p

∫
R

W (εx)
(
u+)p +




∫
R

(
u+)

]
, u ∈ H(

R
),μ ∈ [ – δ, ].

Denote

A(u) :=
a


∫
R

|∇u| +



∫
R

V (εx)u +
b


(∫
R

|∇u|
)

and

B(u) :=
[

λ

p

∫
R

W (εx)
(
u+)p +




∫
R

(
u+)

]
,

we will show that A(u) and B(u) satisfy the conditions of Proposition . for ε >  small.
For any u ∈ H(R),

λ

p

∫
R

W (εx)
(
u+)p +




∫
R

(
u+) ≥ 

and

a


∫
R

|∇u| +



∫
R

V (εx)u +
b


(∫
R

|∇u|
)

→ +∞ as ‖u‖H(R) → ∞.

Set Wε,μ,t(x) := tη(
√

ε x
t – x√

εt )w̃μ( x
t – x

εt ), where η is a smooth cut-off function with  ≤
η ≤ , η =  on B(), η =  on R

\B(), |∇η| ≤ C.
Since δ >  is small, we may assume that  – δ > 

 , then Iε,μ(u) ≤ I‖V‖L∞ ,inf W , 


(u) and

I‖V‖L∞ ,inf W , 


(Wε,μ,t)

=
a


∫
R

|∇Wε,μ,t| +


‖V‖L∞

∫
R

W 
ε,μ,t +

b


(∫
R

|∇Wε,μ,t|
)

–
λ

p
inf W

∫
R

W p
ε,μ,t –




∫
R

W 
ε,μ,t

x′= x
t – x

εt=
a


t
∫
R

∣∣∇η
(√

εx′)√εw̃μ

(
x′) + η

(√
εx′)∇w̃μ

(
x′)∣∣

+


‖V‖L∞ t

∫
R

η(√εx′)w̃
μ

(
x′)

+
b


t
(∫

R

∣∣∇η
(√

εx′)√εw̃μ

(
x′) + η

(√
εx′)∇w̃μ

(
x′)∣∣

)
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–
λ

p
inf
R

W tp+
∫
R

ηp(√εx′)w̃p
μ

(
x′)

–



t

∫
R

η(√εx′)w̃
μ

(
x′)

≤ Ct
(∫

R
w̃

μ +
∫
R

|∇w̃μ|
)

+ Ct
((∫

R
w̃

μ

)

+
(∫

R
|∇w̃μ|

))
+ Ct

∫
R

w̃
μ

–
λ

p
inf
R

W tp+
∫

B/
√

ε()
w̃p

μ –



t

∫
B/

√
ε ()

w̃
μ → –∞

as t → +∞ uniformly for all ε >  small and μ ∈ [ – δ, ], where we have used (.) and
(.). Taking t >  large, we get

Iε,μ(Wε,μ,t ) ≤ I‖V‖L∞ ,inf W , 


(Wε,μ,t ) < –

for all μ ∈ [ – δ, ], ε >  small.
Using the Sobolev embedding theorem, we have

Iε,μ(u) ≥ a


∫
R

|∇u| +
τ



∫
R

u –
κ

p
λ

∫
R

(
u+)p –




∫
R

(
u+)

≥ C‖u‖
H(R) – Cλ‖u‖p

H(R) – C‖u‖
H(R) > 

for all u ∈ H(R) with ‖u‖H(R) small since p > .
Hence, we can define

cε,μ := inf
γ∈�μ

max
t∈[,]

Iε,μ
(
γ (t)

)
> max

{
Iε,μ(), Iε,μ(Wε,μ,t )

}

for all μ ∈ [ – δ, ], ε >  small, where

�μ :=
{
γ ∈ C

(
[, ], H(

R
)) : γ () = ,γ () = Wε,μ,t

}
.

Lemma . For any x ∈R
, limε→ cε,μ ≤ cV (x),W (x),μ uniformly for all μ ∈ [ – δ, ].

Proof Define Wε,μ, := limt→ Wε,μ,t in H(R) sense, then Wε,μ, = . Thus, setting γμ(s) :=
Wε,μ,st ( ≤ s ≤ ), we have γμ ∈ �μ, then

cε,μ ≤ max
s∈[,]

Iε,μ
(
γμ(s)

)
= max

t∈[,t]
Iε,μ(Wε,μ,t)

and we just need to verify that

lim
ε→

max
t∈[,t]

Iε,μ(Wε,μ,t) ≤ cV (x),W (x),μ (.)

uniformly for μ ∈ [ – δ, ].
Indeed,

max
t∈[,t]

Iε,μ(Wε,μ,t)

x′= x
t – x

εt= max
t∈[,t]

a


t
∫
R

∣∣∇η
(√

εx′)√εw̃μ

(
x′) + η

(√
εx′)∇w̃μ

(
x′)∣∣
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+



t
∫
R

V
(
εtx′ + x

)
η(√εx′)w̃

μ

(
x′)

+
b


t
(∫

R

∣∣∇η
(√

εx′)√εw̃μ

(
x′) + η

(√
εx′)∇w̃μ

(
x′)∣∣

)

–
λ

p
μtp+

∫
R

W
(
εtx′ + x

)
ηp(√εx′)w̃p

μ

(
x′) –




μt
∫
R

η(√εx′)w̃
μ

(
x′)

≤ o() + max
t∈[,t]

a


t
∫
R

|∇w̃μ| +



t
∫
R

V (x)w̃
μ +

b


t
(∫

R
|∇w̃μ|

)

–
λ

p
μtp+

∫
R

W (x)w̃p
μ –




μt
∫
R

w̃
μ

≤ o() + sup
t∈[,+∞)

IV (x),W (x),μ
(
(w̃μ)t

)
= o() + cV (x),W (x),μ,

where we have used (.). Notice that o() →  as ε →  uniformly for μ ∈ [ – δ, ], then
(.) holds, the lemma is proved. �

Suppose that (P)-(i) holds, assume that xv ∈ V such that

W (xv) := max
x∈V

W (x).

By (P)-(i), τ < τ∞ and W (xv) ≥ κ∞, then cτ ,W (xv),μ < cτ∞ ,κ∞,μ , and combining with
Lemma ., we have

cε,μ < cτ∞ ,κ∞,μ (.)

for all μ ∈ [ – δ, ] and ε >  small. Similarly, if (P)-(ii) holds, (.) is still true for all
μ ∈ [ – δ, ] and ε >  small.

Lemma . Suppose that (P), (P), (P) hold and p ∈ (, ]. Fix ε > , for every μ ∈ [ –
δ, ], let {un} ⊂ H(R) be a bounded (PS)c sequence for Iε,μ with  < c < 

 ab S

μ
+ 

 b S

μ +


 (b S

μ/ + a S
μ/ ) 

 , then there exists a u ∈ H(R), a number k ∈ N ∪ {}, k functions
w, . . . , wk of H(R) and k sequences of points {yj

n} ⊂R
,  ≤ j ≤ k and A ∈R, such that

(i) un ⇀ u in H(R) with J ′
ε,μ(u) =  and

∫
R |∇un| → A as n → ∞;

(ii) |yj
n| → +∞, |yi

n – yj
n| → +∞ as n → ∞ if i 
= j;

(iii) wj 
=  and J ′
τ∞ ,κ∞,μ (wj) = ;

(iv) ‖un – u –
∑k

j= wj(· – yj
n)‖H(R) →  as n → ∞;

(v) Iε,μ(un) + b
 A = Jε,μ(u) +

∑k
j= Jτ∞ ,κ∞,μ (wj) + o();

(vi) A =
∫
R |∇u| +

∑k
j=

∫
R |∇wj|,

where

Jε,μ(u) =
a + bA



∫
R

|∇u| +



∫
R

V (εx)u

–
μ

p
λ

∫
R

W (εx)
(
u+)p –




μ

∫
R

(
u+), u ∈ H(

R
),
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and

Jτ∞ ,κ∞ ,μ(u) =
a + bA



∫
R

|∇u| +


τ∞

∫
R

u

–
μ

p
λκ∞

∫
R

(
u+)p –




μ

∫
R

(
u+), u ∈ H(

R
).

Proof Since {un} is bounded in H(R), then ∃u ∈ H(R) and A ∈R, up to a subsequence,
such that as n → ∞,

un ⇀ u in H(
R

),
∫
R

|∇un| → A and
∫
R

|∇u| ≤ A.

I ′
ε,μ(un) →  implies that

(
a + bA)∫

R
∇u · ∇ϕ +

∫
R

V (εx)uϕ – μλ

∫
R

W (εx)
(
u+)p–

ϕ – μ

∫
R

(
u+)

ϕ = ,

∀ϕ ∈ H(
R

),

i.e. J ′
ε,μ(u) = .

Since

Jε,μ(un)

=
a + bA



∫
R

|∇un| +



∫
R

V (εx)u
n –

μ

p
λ

∫
R

W (εx)
(
u+

n
)p –




μ

∫
R

(
u+

n
)

=
a


∫
R

|∇un| +



∫
R

V (εx)u
n +

b


(∫
R

|∇un|
)

–
μ

p
λ

∫
R

W (εx)
(
u+

n
)p

–



μ

∫
R

(
u+

n
) +

b


A + o()

= Iε,μ(un) +
b


A + o()

and

〈
J ′

ε,μ(un),ϕ
〉

=
(
a + bA)∫

R
∇un · ∇ϕ +

∫
R

V (εx)unϕ – μλ

∫
R

W (εx)
(
u+

n
)p–

ϕ – μ

∫
R

(
u+

n
)

ϕ

=
〈
I ′

ε,μ(un),ϕ
〉
+ o()

∫
R

∇un · ∇ϕ

=
〈
I ′

ε,μ(un),ϕ
〉
+ o()‖ϕ‖H(R),

we conclude that as n → ∞,

Jε,μ(un) → c +
b


A (.)

and

J ′
ε,μ(un) →  in

(
H(

R
))–. (.)
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Step : Set un, = un – u, by the Brezis-Lieb theorem ([], Theorem ),

∫
R

|∇un,| =
∫
R

|∇un| –
∫
R

|∇u| + o(), (.)
∫
R

u
n, =

∫
R

u
n –

∫
R

u + o(),
∫
R

(
u+

n,
)p =

∫
R

(
u+

n
)p –

∫
R

(
u+)p + o(),

∫
R

(
u+

n,
) =

∫
R

(
u+

n
) –

∫
R

(
u+) + o(), (.)

Jτ∞ ,κ∞ ,μ(un,) = Jε,μ(un) – Jε,μ(u) + o(), (.)

J ′
τ∞ ,κ∞ ,μ(un,) →  in

(
H(

R
))–. (.)

Next, we claim that one of the following conclusions holds for un,:
() un, →  in H(R) or
() ∃r,β >  and a sequence {y

n} ⊂R
 such that

∫
Br(y

n)
u

n, ≥ β > .

Indeed, suppose that () does not hold, then by the vanishing theorem due to Lion ([],
Lemma .), we have

un, →  in Ls(
R

) for s ∈ (, ), (.)

and combining with 〈J ′
τ∞ ,κ∞ ,μ(un,), un,〉 = o(), we get

(
a + bA)∫

R
|∇un,| + τ∞

∫
R

u
n, – μ

∫
R

(
u+

n,
) = o(). (.)

Now, we have the following equalities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Jε,μ(u) = a+bA


∫
R |∇u| + 


∫
R V (εx)u – μ

p λ
∫
R W (εx)(u+)p – 

μ
∫
R (u+),

 = (a + bA)
∫
R |∇u| +

∫
R V (εx)u – μλ

∫
R W (εx)(u+)p – μ

∫
R (u+),

 = a+bA


∫
R |∇u| + 


∫
R V (εx)u + 


∫
R (DV (εx), εx)u

– 
pμλ

∫
R W (εx)(u+)p – 

pμλ
∫
R (DW (εx), εx)(u+)p – 

μ
∫
R (u+).

The first one comes from the definition of Jε,μ. The second one follows by 〈J ′
ε,μ(u), u〉 = .

The third one is the Pohozaev identity applying to J ′
ε,μ(u) = . From these equalities and

(P), we have

Jε,μ(u) –
b


A
∫
R

|∇u|

= Jε,μ(u) –
b


A
∫
R

|∇u|

–


q + 

[

(
a + bA)∫

R
|∇u| + 

∫
R

V (εx)u +
∫
R

(
DV (εx), εx

)
u
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–
p + 

p
μλ

∫
R

W (εx)
(
u+)p –


p
μλ

∫
R

(
DW (εx), εx

)(
u+)p – μ

∫
R

(
u+)

]

=
(q + )a + (q – )bA

(q + )

∫
R

|∇u| +
 – q

(q + )
μ

∫
R

(
u+)

+
q – 

(q + )

∫
R

V (εx)u –


(q + )

∫
R

(
DV (εx), εx

)
u

+

p

p – q
q + 

μλ

∫
R

W (εx)
(
u+)p +


p


q + 

μλ

∫
R

(
DW (εx), εx

)(
u+)p ≥ . (.)

In view of (.), (.), (.), (.), (.) and (.), we have

c = Jτ∞ ,κ∞ ,μ(un,) + Jε,μ(u) –
b


A + o()

≥ Jτ∞ ,κ∞ ,μ(un,) +
b


A
∫
R

|∇u| –
b


A + o()

=
a + bA



∫
R

|∇un,| +


τ∞

∫
R

u
n, –


p
μλκ∞

∫
R

(
u+

n,
)p –




μ

∫
R

(
u+

n,
)

+
b


A
∫
R

|∇u| –
b


A + o()

=
a


∫
R

|∇un,| +


τ∞

∫
R

u
n, +

b


A
∫
R

|∇un,| –



μ

∫
R

(
u+

n,
) + o(). (.)

Using the definition of S, we get

∫
R

|∇un,| ≥ S
(∫

R

(
u+

n,
)

) 


. (.)

In view of (.), we assume that

a
∫
R

|∇un,| + τ∞
∫
R

u
n, → l, (.)

bA
∫
R

|∇un,| → l, (.)

μ

∫
R

(
u+

n,
) → l + l. (.)

Equations (.), (.), (.), (.), (.) and (.) yield

l = lim
n→∞ a

∫
R

|∇un,| + τ∞
∫
R

u
n, ≥ lim

n→∞ a
∫
R

|∇un,|

≥ lim
n→∞ aS

(∫
R

(
u+

n,
)

) 


= aS
(

l + l

μ

) 


, (.)

l = lim
n→∞ bA

∫
R

|∇un,| = lim
n→∞ b

(∫
R

|∇un,| +
∫
R

|∇u|
)∫

R
|∇un,|

≥ lim
n→∞ b

(∫
R

|∇un,|
)

≥ lim
n→∞ bS

(∫
R

(
u+

n,
)

) 
 ≥ bS

(
l + l

μ

) 


, (.)
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and

c ≥ 


l +



l –



(l + l) =



l +



l. (.)

Combining (.) and (.), we have

l + l ≥ aS
(

l + l

μ

) 


+ bS
(

l + l

μ

) 


.

If l + l 
= , we get

(l + l)

 ≥ 



[
b
(

S
μ/

)

+

√
bS

μ/ +
aS
μ/

]
,

then

c ≥ 


l +



l ≥ 


aS
μ/ (l + l)


 +




bS

μ/ (l + l)



≥ 


ab
S

μ
+




b S

μ +




(
b S

μ/ + a
S

μ/

) 


,

a contradiction. Hence l + l = , i.e.

un, →  in H(
R

) as n → ∞,

() holds.
If () holds, the proof is completed for k = . If () holds, denote wn,(x) = un,(x + y

n),
then

∫
Br ()

w
n, ≥ β > .

Up to a subsequence, wn, ⇀ w in H(R) with w 
=  and J ′
τ∞ ,κ∞ ,μ(w) = . Moreover,

un, ⇀  in H(R) implies that {y
n} is unbounded.

Step : Set un,(x) = un(x) – u(x) – w(x – y
n), we can similarly check that

∫
R

|∇un,| =
∫
R

|∇un| –
∫
R

|∇u| –
∫
R

|∇w| + o(),
∫
R

u
n, =

∫
R

u
n –

∫
R

u –
∫
R

w
 + o(),

∫
R

(
u+

n,
)p =

∫
R

(
u+

n
)p –

∫
R

(
u+)p –

∫
R

(
w+


)p + o(),

∫
R

(
u+

n,
) =

∫
R

(
u+

n
) –

∫
R

(
u+) –

∫
R

(
w+


) + o(),

Jτ∞ ,κ∞ ,μ(un,) = Jε,μ(un) – Jε,μ(u) – Jτ∞ ,κ∞ ,μ(w) + o(),

J ′
τ∞ ,κ∞ ,μ(un,) →  in

(
H(

R
))–.
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Similar to Step , if () holds for un,, then

‖un,‖H(R) =
∥∥un – u – w

(
x – y

n
)∥∥

H(R) →  as n → ∞,

c +
b


A + o() = Jε,μ(un) = Jε,μ(u) + Jτ∞ ,κ∞ ,μ(w) + o()

and

A + o() =
∫
R

|∇un| =
∫
R

|∇un,| +
∫
R

|∇u| +
∫
R

|∇w| + o()

=
∫
R

|∇u| +
∫
R

|∇w| + o(),

the lemma holds for k = .
If () holds for un,, i.e. ∃r′,β ′ >  and a sequence {y

n} ⊂R
 such that

∫
Br′ (y

n)
u

n, ≥ β ′ > ,

then ∫
Br′ (y

n–y
n)

u
n,

(
x + y

n
) ≥ β ′ > .

un,(x + y
n) ⇀  in H(R) implies that |y

n – y
n| → +∞.

Since {y
n} is unbounded and w ∈ H(R), we can easily check that

w
(
x – y

n
)
⇀  in H(

R
),

then

un,(x) := un(x) – u(x) – w
(
x – y

n
)
⇀  in H(

R
) as n → ∞,

which implies that {y
n} must be unbounded. Denote wn,(x) = un,(x + y

n), then
∫

Br′ ()
w

n, ≥ β ′ > ,

up to a subsequence, wn, ⇀ w in H(R) with w 
=  and J ′
τ∞ ,κ∞ ,μ(w) =  and next pro-

ceed by iteration. Since wk is a nontrivial critical point of Jτ∞ ,κ∞ ,μ, Jτ∞ ,κ∞ ,μ(wk) ≥ c′
τ∞ ,κ∞ ,μ,

where c′
τ∞ ,κ∞ ,μ is the mountain-pass value of the functional Jτ∞ ,κ∞ ,μ. Hence the iteration

must stop at some finite index k. The proof is completed. �

Proof of Theorem .(A)-(a) We divide the proof into three steps.
Step : Since Iε,μ possesses the geometry of Proposition . for ε >  small with μ ∈

[ – δ, ], then by Proposition ., for ε >  small but fixed, for almost every μ ∈ [ – δ, ],
there exists a bounded (PS)cε,μ sequence {un} for Iε,μ. Using the same argument as in the
proof of Lemma . of [], we can check that

cτ∞ ,κ∞ ,μ <



ab
S

μ
+




b S

μ +




(
b S

μ/ + a
S

μ/

) 


, μ ∈ [ – δ, ],
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for λ >  large. Combining with (.), we have

cε,μ <



ab
S

μ
+




b S

μ +




(
b S

μ/ + a
S

μ/

) 


, μ ∈ [ – δ, ],

for λ >  large, ε >  small.
In view of Lemma ., there exist a uε,μ ∈ H(R), a number k ∈ N ∪ {}, k functions

w, . . . , wk of H(R) and k sequences of points {yj
n} ⊂ R

,  ≤ j ≤ k and Aε,μ ∈ R, such
that

(i) un ⇀ uε,μ in H(R) with J ′
ε,μ(uε,μ) =  and

∫
R |∇un| → A

ε,μ as n → ∞;
(ii) |yj

n| → +∞, |yi
n – yj

n| → +∞ as n → ∞ if i 
= j;
(iii) wj 
=  and J ′

τ∞ ,κ∞,μ (wj) = ;
(iv) ‖un – uε,μ – wj(· – yj

n)‖H(R) →  as n → ∞;
(v) Iε,μ(un) + b

 A
ε,μ = Jε,μ(uε,μ) +

∑k
j= Jτ∞ ,κ∞,μ (wj) + o();

(vi) A
ε,μ =

∫
R |∇uε,μ| +

∑k
j=

∫
R |∇wj|.

By (.), we have

Jε,μ(uε,μ) ≥ b


A
ε,μ

∫
R

|∇uε,μ|. (.)

Applying Pohozaev’s identity to J ′
τ∞ ,κ∞ ,μ(wj) = , we have

P̃ε,μ(wj) =
a + bA

ε,μ



∫
R

|∇wj| +


τ∞

∫
R

w
j –


p
μλκ∞

∫
R

(
w+

j
)p –



μ

∫
R

(
w+

j
) = ,

then

 =
〈
J ′

τ∞ ,κ∞ ,μ(wj), wj
〉
+ P̃ε,μ(wj)

= 
(
a + bA

ε,μ
)∫

R
|∇wj| + τ∞

∫
R

w
j –

p + 
p

μλκ∞
∫
R

(
w+

j
)p – μ

∫
R

(
w+

j
)

≥ Gτ∞ ,κ∞ ,μ(wj). (.)

Hence, there exists tj ∈ (, ] such that (wj)tj := tjwj(t–
j x) ∈Mτ∞ ,κ∞ ,μ, we get

Jτ∞ ,κ∞ ,μ(wj) –
b


A
ε,μ

∫
R

|∇wj|

= Jτ∞ ,κ∞ ,μ(wj) –
b


A
ε,μ

∫
R

|∇wj| –


(〈

J ′
τ∞ ,κ∞ ,μ(wj), wj

〉
+ P̃ε,μ(wj)

)

=
a


∫
R

|∇wj| +



τ∞

∫
R

w
j +

p – 
p

μλκ∞
∫
R

(
w+

j
)p +




μ

∫
R

(
w+

j
)

≥ a


t
j

∫
R

|∇wj| +



τ∞t

j

∫
R

w
j +

p – 
p

μλκ∞tp+
j

∫
R

(
w+

j
)p +




μt
j

∫
R

(
w+

j
)

= Iτ∞ ,κ∞ ,μ
(
(wj)tj

)
–




Gτ∞ ,κ∞ ,μ
(
(wj)tj

) ≥ cτ∞ ,κ∞ ,μ, (.)
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and combining with (.), we have

cε,μ +
b


A
ε,μ = Jε,μ(uε,μ) +

k∑
j=

Jτ∞ ,κ∞ ,μ(wj)

≥ b


A
ε,μ

∫
R

|∇uε,μ| + kcτ∞ ,κ∞ ,μ +
b


A
ε,μ

k∑
j=

∫
R

|∇wj|

=
b


A
ε,μ + kcτ∞ ,κ∞ ,μ.

If k ≥ , we get cε,μ ≥ cτ∞ ,κ∞ ,μ for ε >  small, which contradicts (.). Hence k = , then
un → uε,μ in H(R) for ε >  small and almost every μ ∈ [ – δ, ], i.e. for ε >  small and
almost every μ ∈ [ – δ, ], I ′

ε,μ(uε,μ) =  and Iε,μ(uε,μ) = cε,μ.
Step : Fix ε >  small, choose a sequence {μn} ⊂ [ – δ, ] satisfying μn → , we get a

sequence of nontrivial critical points {uε,μn} of Iε,μn with Iε,μn (uε,μn ) = cε,μn . We have the
following equalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

∫
R |∇uε,μn | + 


∫
R V (εx)u

ε,μn + b
 (

∫
R |∇uε,μn |)

– μn
λ
p
∫
R W (εx)(u+

ε,μn )p – μn


∫
R (u+

ε,μn ) = cε,μn ,

a
∫
R |∇uε,μn | +

∫
R V (εx)u

ε,μn + b(
∫
R |∇uε,μn |)

– μnλ
∫
R W (εx)(u+

ε,μn )p – μn
∫
R (u+

ε,μn ) = ,
a

∫
R |∇uε,μn | + 


∫
R V (εx)u

ε,μn + 

∫
R (DV (εx), εx)u

ε,μn

+ b
 (

∫
R |∇uε,μn |) – 

pμnλ
∫
R W (εx)(u+

ε,μn )p

– 
pμnλ

∫
R (DW (εx), εx)(u+

ε,μn )p – 
μn

∫
R (u+

ε,μn ) = .

The first one comes from the definition of cε,μn . The second one follows by 〈I ′
ε,μn (uε,μn ),

uε,μn〉 = . The third one is the Pohozaev identity applying to I ′
ε,μn (uε,μn ) = , then we get

q + 
(q + )

a
∫
R

|∇uε,μn | +
q – 

(q + )
b
(∫

R
|∇uε,μn |

)

+
 – q

(q + )
μn

∫
R

(
u+

ε,μn

)

+
q – 

(q + )

∫
R

V (εx)u
ε,μn –


(q + )

∫
R

(
DV (εx), εx

)
u

ε,μn

+

p

p – q
q + 

μnλ

∫
R

W (εx)
(
u+

ε,μn

)p +

p


q + 

μnλ

∫
R

(
DW (εx), εx

)(
u+

ε,μn

)p

= cε,μn ≤ cε,–δ (.)

and

(



–

p

)
a

∫
R

|∇uε,μn | +
(




–

p

)∫
R

V (εx)u
ε,μn +

(



–

p

)
b
(∫

R
|∇uε,μn |

)

+
(


p

–



)
μn

∫
R

(
u+

ε,μn

) = cε,μn ≤ cε,–δ . (.)

By (.) and (P),
∫
R |∇uε,μn | must be bounded, then by (.), a

∫
R |∇uε,μn | +∫

R V (εx)u
ε,μn is bounded, i.e. {uε,μn} is bounded in H(R). Hence, we get
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lim
n→∞ Iε,(uε,μn )

= lim
n→∞

(
Iε,μn (uε,μn ) +


p

(μn – )λ
∫
R

W (εx)
(
u+

ε,μn

)p +



(μn – )
∫
R

(
u+

ε,μn

)
)

= lim
n→∞ cε,μn = cε,

and

∣∣〈I ′
ε,(uε,μn ),ϕ

〉∣∣
=

∣∣∣∣〈I ′
ε,μn (uε,μn ),ϕ

〉
+


p

(μn – )λ
∫
R

W (εx)
(
u+

ε,μn

)p–
ϕ +




(μn – )
∫
R

(
u+

ε,μn

)
ϕ

∣∣∣∣
≤ C( – μn)λ

(∫
R

(
u+

ε,μn

)p
) p–

p
(∫

R
|ϕ|p

) 
p

+ ( – μn)
(∫

R

(
u+

ε,μn

)
) 


(∫

R
|ϕ|

) 


= o()‖ϕ‖H(R), ∀ϕ ∈ H(
R

),

i.e. {uε,μn} is, in fact, a bounded (PS)cε, sequence for Iε = Iε,. Using the same argument in
Step  with μ = , we can easily check that ∃uε, ∈ H(R) such that uε,μn → uε, in H(R)
and I ′

ε(uε,) = , Iε(uε,) = cε,.
Step : Next, we prove the existence of a ground-state solution for (.). Set

mε := inf
{

Iε(u)|I ′
ε(u) = , u ∈ H(

R
)\{}}.

By (.) and (P), we see that  ≤ mε ≤ Iε(uε,) = cε, < +∞. Let {un} be a sequence of
nontrivial critical points of Iε such that Iε(un) → mε . By the same argument as in Step ,
we see that {un} is a bounded (PS)mε sequence of Iε . Similar to the argument in Step , we
see that ∃wε ∈ H(R) such that

un → wε in H(
R

). (.)

Next, we will show that mε > . Since

 =
〈
I ′

ε(un), un
〉

= a
∫
R

|∇un| +
∫
R

V (εx)u
n + b

(∫
R

|∇un|
)

– λ

∫
R

W (εx)
(
u+

n
)p –

∫
R

(
u+

ε,μn

)

≥ C‖un‖
H(R) – Cλ‖un‖p

H(R) – C‖un‖
H(R),

which implies that ‖un‖H(R) ≥ C∗ > , then by (.), ‖wε‖H(R) ≥ C∗ > , i.e. wε 
= .
Similar to (.), we deduce that mε > . Hence Iε(wε) = mε > , I ′

ε(wε) = . By the
standard elliptic estimate and the strong maximum principle, we see that wε > . Set
uε(x) = wε(x/ε), uε is in fact a positive ground-state solution of (.). �

Next, we will prove the concentration result of Theorem . by using a similar method
related to Proposition . in [].
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Proof of Theorem .(A)-(a) For any εj → , similar to (.), (.), we can easily check
that wεj is bounded in H(R).

By the vanishing theorem, we have ∃{y
εj
} ⊂R

, R,β >  such that

∫
BR(y

εj )
w

εj
≥ β > .

Set vεj (x) = wεj (x + y
εj

), then vεj satisfies

–
(

a + b
∫
R

|∇vεj |
)

�vεj + V
(
εjx + εjy

εj

)
vεj = λW

(
εjx + εjy

εj

)
vp–
εj

+ v
εj

, (.)

and, up to a subsequence, ∃v ∈ H(R)\{}, such that

⎧⎪⎪⎨
⎪⎪⎩

vεj ⇀ v in H(R),

vεj → v in Ls
loc(R),  ≤ s < ,

vεj → v a.e.

(.)

Denote A := limj→∞
∫
R |∇vεj |, and it is trivial that

∫
R

|∇v| ≤ A.

Since V and W are bounded with τ >  and infR W > , then, up to a subsequence, as
j → ∞,

V
(
εjy

εj

) → V
(
x) > , W

(
εjy

εj

) → W
(
x) > ,

where

εjy
εj

→ x as j → ∞ (
x might be ∞)

.

In view of the uniformly continuous of V and W in R
, we can easily check that

V
(
εjx + εjy

εj

) → V
(
x) > , W

(
εjx + εjy

εj

) → W
(
x) >  as j → ∞

uniformly on any compact set. Consequently, we have

(
a + bA)∫

R
∇v · ∇ϕ + V

(
x)∫

R
vϕ = λW

(
x)∫

R
vp–

 ϕ +
∫
R

v
ϕ, ∀ϕ ∈ C∞

c
(
R

),

then v solves

–
(
a + bA)�u + V

(
x)u = λW

(
x)up– + u (.)
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with the energy functional JV (x),W (x), where the functional is defined as

Ja,b (u) =
a + bA



∫
R

|∇u| +
a



∫
R

u –
b

p
λ

∫
R

(
u+)p –




∫
R

(
u+),

u ∈ H(
R

), (.)

a, b are positive constants.
Set

Jε(u) :=
a + bA



∫
R

|∇u| +



∫
R

V (εx)u –
λ

p

∫
R

W (εx)
(
u+)p –




∫
R

(
u+),

u ∈ H(
R

).

Similar to (.), (.), we have

Jεj (wεj ) = Iεj (wεj ) +
b


A + o()

and

J ′
εj (wεj ) →  in

(
H(

R
))– as j → ∞.

Now, we consider wεj ,(x) = wεj (x) – v(x – y
εj

)χεj (x – y
εj

), where χε(x) = χ (
√

εx) for ε > 
small and χ (x) is a smooth cut-off function with  ≤ χ (x) ≤ , χ (x) =  on B(), χ (x) = 
on R

\B() and |∇χ | ≤ C for some constant C > . It is easy to verify that wεj ,(x) is
bounded in H(R). Furthermore, for any ϕ ∈ H(R) with ‖ϕ‖H(R) ≤ , we have

〈
J ′

εj (wεj ,),ϕ
〉

=
〈
J ′

εj (wεj ),ϕ
〉
–

〈
J ′

εj

(
v

(
x – y

εj

)
χεj

(
x – y

εj

))
,ϕ

〉
+ λ

∫
R

W (εjx)
(
wp–

εj
ϕ –

(
w+

εj ,
)p–

ϕ –
(
v

(
x – y

εj

)
χεj

(
x – y

εj

))p–
ϕ
)

+
∫
R

(
w

εj
ϕ –

(
w+

εj ,
)

ϕ –
(
v

(
x – y

εj

)
χεj

(
x – y

εj

))
ϕ
)

= o() + (I) + (II) + (III). (.)

First, we see

(I) = –
〈
J ′

εj

(
v

(
x – y

εj

)
χεj

(
x – y

εj

))
,ϕ

〉
= –

〈
J ′

εj

(
v

(
x – y

εj

)
χεj

(
x – y

εj

))
,ϕ

〉
+

〈
J ′

V (x),W (x)(v),χεjϕ
(
x + y

εj

)〉
= –

(
a + bA)∫

R
∇(vχεj ) · ∇ϕ

(
x + y

εj

)
+

(
a + bA)∫

R
∇v · ∇(

χεjϕ
(
x + y

εj

))

–
∫
R

V
(
εjx + εjy

εj

)
vχεjϕ

(
x + y

εj

)
+

∫
R

V
(
x)vχεjϕ

(
x + y

εj

)

+ λ

∫
R

W
(
εjx + εjy

εj

)
(vχεj )

p–ϕ
(
x + y

εj

)
– λ

∫
R

W
(
x)vp–

 χεjϕ
(
x + y

εj

)

+
∫
R

(vχεj )
ϕ

(
x + y

εj

)
–

∫
R

v
χεjϕ

(
x + y

εj

)
= o(), (.)

where we have used (.).
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Next, we study (II),

(II) = λ

∫
R

W (εjx)
(
wp–

εj
ϕ –

(
w+

εj ,
)p–

ϕ –
(
v

(
x – y

εj

)
χεj

(
x – y

εj

))p–
ϕ
)

= λ

∫
R

W
(
εjx + εjy

εj

)(
vp–
εj

–
(
w+

εj ,
)p–(x + y

εj

)
– (vχεj )

p–)ϕ(
x + y

εj

)
. (.)

For any given δ >  small, we can choose a bounded domain � ⊂R
 such that

∫
R\�

|∇v| + v
 + vp

 + v
 ≤ δ.

Hence,

∣∣∣∣
∫
R\�

W
(
εjx + εjy

εj

)(
v(x)χεj (x)

)p–
ϕ
(
x + y

εj

)∣∣∣∣
≤ C

∫
R\�

vp–
 (x)

∣∣ϕ(
x + y

εj

)∣∣

≤ C
(∫

R\�
vp



) p–
p

(∫
R\�

∣∣ϕ(
x + y

εj

)∣∣p
) 

p

≤ C‖ϕ‖H(R)δ
p–

p ≤ Cδ
p–

p (.)

and
∣∣∣∣
∫
R\�

W
(
εjx + εjy

εj

)(
vp–
εj

(x) –
(
w+

εj ,
)p–(x + y

εj

))
ϕ
(
x + y

εj

)∣∣∣∣
=

∣∣∣∣
∫
R\�

W
(
εjx + εjy

εj

)(
vp–
εj

(x) –
(
vεj (x) – v(x)χεj (x)

)+(p–))
ϕ
(
x + y

εj

)∣∣∣∣
≤ C

∫
R\�

v
(
vp–

 + vp–
εj

)∣∣ϕ(
x + y

εj

)∣∣

≤ C
(∫

R\�
vp



) p–
p

(∫
R\�

∣∣ϕ(
x + y

εj

)∣∣p
) 

p

+ C
(∫

R\�
vp



) 
p
(∫

R\�
vp
εj

) p–
p

(∫
R\�

∣∣ϕ(
x + y

εj

)∣∣p
) 

p

≤ C‖ϕ‖H(R)

(∫
R\�

vp


) p–
p

+ C‖ϕ‖H(R)

(∫
R\�

vp


) 
p

≤ C
(
δ

p–
p + δ


p
)
. (.)

In view of (.), vεj → v in Lp(�). Since � ⊂ B/√εj () for εj small, we have

∣∣∣∣
∫

�

W
(
εjx + εjy

εj

)(
vp–
εj

–
(
w+

εj ,
)p–(x + y

εj

)
– (vχεj )

p–)ϕ(
x + y

εj

)∣∣∣∣
=

∣∣∣∣
∫

�

W
(
εjx + εjy

εj

)(
vp–
εj

– (vεj – v)+(p–) – vp–


)
ϕ
(
x + y

εj

)∣∣∣∣
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≤ C
(∫

�

|vεj – v|p
) p–

p
(∫

�

∣∣ϕ(
x + y

εj

)∣∣p
) 

p

+ C
(∫

�

∣∣vp–
εj

– vp–


∣∣ p
p–

) p–
p

(∫
�

∣∣ϕ(
x + y

εj

)∣∣p
) 

p

≤ C‖ϕ‖H(R)

(∫
�

|vεj – v|p
) p–

p
+ C‖ϕ‖H(R)

(∫
�

∣∣vp–
εj

– vp–


∣∣ p
p–

) p–
p

= o(). (.)

Therefore, (.)-(.) lead to (II) = o(). Before studying (III), we first claim that

vεj → v in L
loc

(
R

). (.)

Indeed, in view of (.), we may assume that

|∇vεj | ⇀ |∇v| + μ and v
εj

⇀ v
 + ν,

where μ and ν are two bounded nonnegative measures on R
. By the concentration com-

pactness principle II (Lemma . of []), we obtain an at most countable index set �,
sequence {xi} ⊂R

 and {μi}, {νi} ⊂ (,∞) such that

μ ≥
∑
i∈�

μiδxi , ν =
∑
i∈�

νiδxi and S(νi)

 ≤ μi. (.)

It suffices to show that, for any bounded domain �, {xi}i∈� ∩ � = ∅. Suppose, by contra-
diction, that xi ∈ � for some i ∈ �. Define, for ρ > , the function ψρ(x) := ψ( x–xi

ρ
) where

ψ is a smooth cut-off function such that ψ =  on B(), ψ =  on R
\B(),  ≤ ψ ≤  and

|∇ψ | ≤ C. We suppose that ρ is chosen in such a way that the support of ψρ is contained
in �. By (.), we see

a
∫
R

|∇vεj |ψρ + a
∫
R

(∇vεj · ∇ψρ)vεj +
∫
R

V
(
εjx + εjy

εj

)
v
εj
ψρ

+ b
∫
R

|∇vεj |
(∫

R
|∇vεj |ψρ

)
+ b

∫
R

|∇vεj |
∫
R

(∇vεj · ∇ψρ)vεj

= λ

∫
R

W
(
εjx + εjy

εj

)
vp
εj
ψρ +

∫
R

v
εj
ψρ . (.)

Since

lim
j→∞

∣∣∣∣
∫
R

(∇vεj · ∇ψρ)vεj

∣∣∣∣ ≤ lim
j→∞

(∫
R

|∇vεj |
) 

 ·
(∫

R
v
εj
|∇ψρ |

) 


≤ C
(∫

R
v

 |∇ψρ |
) 

 ≤ C
(∫

Bρ (xi)
v



) 

(∫

Bρ (xi)
|∇ψρ |

) 


≤ C
(∫

Bρ (xi)
v



) 
 →  as ρ → , (.)

lim
j→∞ a

∫
R

|∇vεj |ψρ ≥ a
∫
R

|∇v|ψρ + aμi → aμi as ρ → , (.)
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lim
j→∞ b

∫
R

|∇vεj |
(∫

R
|∇vεj |ψρ

)

≥ lim
j→∞ b

(∫
R

|∇vεj |ψρ

)

≥ b
(∫

R
|∇v|ψρ + μi

)

→ bμ
i as ρ → , (.)

lim
j→∞λ

∫
R

W
(
εjx + εjy

εj

)
vp
εj
ψρ

= λ

∫
R

W
(
x)vp

ψρ →  as ρ → , (.)

and

lim
j→∞

∫
R

v
εj
ψρ =

∫
R

vp
ψρ + νi → νi as ρ → , (.)

we obtain from (.)

aμi + bμ
i ≤ νi.

Combining with (.), we have

(νi)/ ≥ bS +
√

bS + aS


.

On the other hand,

mεj = Iεj (wεj ) –


q + 
[〈

I ′
εj (wεj ), wεj

〉
+ Pεj (wεj )

]

=
q + 

(q + )
a

∫
R

|∇wεj | +
q – 

(q + )
b
(∫

R
|∇wεj |

)

+
 – q

(q + )

∫
R

w
εj

+


(q + )

[∫
R

(
(q – )V (εjx) – 

(∇V (εjx), εjx
))

w
εj

]

+
λ

p(q + )

[∫
R

(
(p – q)W (εjx) + 

(∇W (εjx), εjx
))

wp
εj

]

≥ q + 
(q + )

a
∫
R

|∇wεj | +
q – 

(q + )
b
(∫

R
|∇wεj |

)

+
 – q

(q + )

∫
R

w
εj

=
q + 

(q + )
a

∫
R

|∇vεj | +
q – 

(q + )
b
(∫

R
|∇vεj |

)

+
 – q

(q + )

∫
R

v
εj

≥ q + 
(q + )

aμi +
q – 

(q + )
bμ

i +
 – q

(q + )
νi + o(), (.)

where we have used (P) and notice that

Pεj (wεj ) :=
a


∫
R

|∇wεj | +



∫
R

V (εjx)w
εj

+



∫
R

(
DV (εjx), εjx

)
w

εj

+
b


(∫
R

|∇wεj |
)

–

p
λ

∫
R

W (εjx)wp
εj
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–

p
λ

∫
R

(
DW (εjx), εjx

)
wp

εj
–




∫
R

w
εj

= 

is the Pohozaev identity applying to I ′
εj (wεj ) = .

Since mεj ≤ cεj , ≤ cV (x),W (x), + o() < 
 abS + 

 bS + 
 (bS + aS) 

 for any x ∈R


and εj >  small, then, up to a subsequence, we may assume that, as j → ∞,

mεj → c <



abS +



bS +




(
bS + aS

) 
 .

By (.),

c̄ ≥ q + 
(q + )

aμi +
q – 

(q + )
bμ

i +
 – q

(q + )
νi

≥ q + 
(q + )

aS(νi)/ +
q – 

(q + )
bS(νi)/ +

 – q
(q + )

νi

≥ q + 
(q + )

aS
bS +

√
bS + aS


+
q – 

(q + )
bS

(
bS +

√
bS + aS


)

+
 – q

(q + )

(
bS +

√
bS + aS


)

=



abS +



bS +




(
bS + aS

) 
 .

This leads to a contradiction, hence (.) holds.
Similar to the proof of (II), we can easily check that (III) = o(). By (.), we have

J ′
εj (wεj ,) →  in

(
H(

R
))– as j → ∞.

We also claim that

Jεj (wεj ,) → c +
b


A – JV (x),W (x)(v) as j → ∞. (.)

Indeed,

Jεj (wεj ,) = Jεj (wεj ) – Jεj

(
v

(
x – y

εj

)
χεj

(
x – y

εj

))
–

(
a + bA)∫

R
∇(

v
(
x – y

εj

)
χεj

(
x – y

εj

)) · ∇wεj ,

–
∫
R

V (εjx)v
(
x – y

εj

)
χεj

(
x – y

εj

)
wεj ,(x)

+
λ

p

∫
R

W (εjx)
(
wp

εj
–

(
w+

εj ,
)p – vp


(
x – y

εj

)
χp

εj

(
x – y

εj

))
+




∫
R

(
w

εj
–

(
w+

εj ,
) – v


(
x – y

εj

)
χ

εj

(
x – y

εj

))
= c +

b


A + o() + (IV ) + (V ) + (VI) + (VII) + (VIII),

(IV ) = –Jεj

(
v

(
x – y

εj

)
χεj

(
x – y

εj

))
= –

a + bA



∫
R

∣∣∇(vχεj )
∣∣ –




∫
R

V
(
εjx + εjy

εj

)
(vχεj )
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+
λ

p

∫
R

W
(
εjx + εjy

εj

)
(vχεj )

p +



∫
R

(vχεj )


= –JV (x),W (x)(v) + o(),

(V ) = –
(
a + bA)∫

R
∇(

v
(
x – y

εj

)
χεj

(
x – y

εj

)) · ∇wεj ,

= –
(
a + bA)∫

R
∇(vχεj ) · ∇(vεj – vχεj )

=
(
a + bA)∫

R

∣∣∇(vχεj )
∣∣ –

(
a + bA)∫

R
∇(vχεj )∇vεj

=
(
a + bA)∫

R
|∇v|χ

εj
–

(
a + bA)∫

R
∇v∇vεjχεj + o() = o(),

where we have used (.).
Similar to (V ), (II), (III), we can easily check that (VI) = o(), (VII) = o() and (VIII) =

o(), then (.) holds.
Next, we repeat the above procedure for wεj , and so on. It is easy to see that JV (xi),W (xi)(vi)

obtained in this process is always larger than the mountain-pass value of Jτ ,κ , therefore,
the process will stop at finite k. Similar to the proof of Lemma ., we see that, for εj → ,
there is a sequence of j, a nonnegative integer k and k sequences {yi

εj
},  ≤ i ≤ k, such that,

as j → ∞,

∥∥∥∥∥wεj (x) –
k∑

i=

vi
(
x – yi

εj

)
χεj

(
x – yi

εj

)∥∥∥∥∥
H(R)

→ , (.)

c̄ +
b


A =
k∑

i=

JV (xi),W (xi)(vi) and A =
k∑

i=

∫
R

|∇vi|, (.)

where vi is a nontrivial critical point of JV (xi),W (xi).
Using the same argument as in (.), we get

JV (xi),W (xi)(vi) ≥ cV (xi),W (xi), +
b


A
∫
R

|∇vi|,

then in view of (.), we have

c +
b


A =
k∑

i=

JV (xi),W (xi)(vi)

≥
k∑

i=

cV (xi),W (xi), +
b


A
k∑

i=

∫
R

|∇vi|

=
k∑

i=

cV (xi),W (xi), +
b


A,

i.e.

c ≥
k∑

i=

cV (xi),W (xi),.
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In view of Lemma . and (.), c ≤ cV (x),W (x),, then we conclude that k = , i.e.

c = cV (x),W (x),.

By (.), we have

∥∥wεj (x) – v
(
x – y

εj

)
χεj

(
x – y

εj

)∥∥
H(R) → ,

then by the Sobolev inequality, we get

‖vεj – v‖L(R) ≤ ‖vεj – vχεj‖L(R) + ‖vχεj – v‖L(R) →  as j → ∞.

Hence, v
εj

is uniformly integrable near ∞, the Brezis-Kato type argument and the maxi-
mum principle yield

lim|x|→∞ vεj (x) =  uniformly for j. (.)

Next, we assume that (P)-(i) holds.
We claim that {εjy

εj
} is bounded. Assuming to the contrary that |εjy

εj
| → ∞, then

V (x) = τ∞ > τ and W (x) = κ∞ ≤ W (xv), hence cV (x),W (x), = cτ∞ ,κ∞ , > cτ ,W (xv),. But, from
Lemma ., we have

cV (x),W (x), = c = lim
j→∞ mεj ≤ lim

j→∞ cεj , ≤ cV (xv),W (xv), = cτ ,W (xv),, (.)

a contradiction.
We will show that x ∈Av. In fact, if x ∈ V , by (.), we have

cτ ,W (x), ≤ cV (x),W (x), ≤ cτ ,W (xv),,

which implies that W (x) ≥ W (xv). By the definition of W (xv), W (x) ≤ maxx∈V W (x) =
W (xv), then W (x) = W (xv).

If x /∈ V , then V (x) > τ . Assuming to the contrary that W (x) ≤ W (xv), then
cV (x),W (x), > cτ ,W (xv),, which contradicts (.).

Let Pεj a maximum point of vεj , since �vεj (Pεj ) ≤ , (.) implies that

V
(
εjPεj + εjy

εj

)
vεj (Pεj ) ≤ λW

(
εjPεj + εjy

εj

)
vp–
εj

(Pεj ) + v
εj

(Pεj )

which gives vεj (Pεj ) ≥ C > . By (.), Pεj must be bounded. Denote xεj = εjPεj + εjy
εj

, it
is clear that xεj is a maximum point of uεj , then xεj → Av. Since {εj} is arbitrary, Theo-
rem .(A)-(a) is proved. �

To complete the proof of Theorem .(A), we only need to prove the exponential decay
result. Since the proof is standard (see [], for example), we omit the details for simplicity.
Note that all the conclusions of Theorem .(B) can be similarly proved to Theorem .(A).
Thus, this completes the proof of Theorem ..
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