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Abstract
This paper is concerned with the existence of positive periodic solutions for the
prescribed mean curvature Rayleigh equations with a singularity. Our results are
based on the Manásevich-Mawhin continuation theorem. The results to be obtained
here extend the existing ones in the literature. Moreover, an example is given to
illustrate the applicability of our results.
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1 Introduction
The Rayleigh equation arises from many applied fields, such as the physics, mechanics,
and engineering technique fields. So, it is meaningful and necessary to study the periodic
solutions for the Rayleigh equation. In , Gaines and Mawhin [] discussed the exis-
tence of solutions for the following Rayleigh equation:

u′′(t) + f
(
u′(t)

)
+ g

(
t, u(t)

)
= .

By applying the continuation theorems, Gaines and Mawhin proved that the Rayleigh
equation can support periodic solutions.

In recent years, the prescribed mean curvature equation and its modified forms have
been studied widely since they arise from some certain problems associated with differen-
tial geometry and physics such as combustible gas dynamics; see [–] and the references
therein. Due to the wide range of application background of the prescribed mean curva-
ture equations, many researchers have worked on the existence of periodic solutions for
the prescribed mean curvature equations. For the related papers, we refer the reader to
[–].

On this basis of work of Gaines and Mawhin [], some researchers discussed the ex-
istence of periodic solutions to some types of prescribed mean curvature Rayleigh equa-
tions; see [, ] and the references therein. For example, by using Mawhin’s continuation
theorem in the coincidence degree theory, Li et al. [] considered the periodic solutions
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for the following prescribed mean curvature Rayleigh equation:

(
x′(t)

√
 + (x′(t))

)′
+ f

(
t, x′(t)

)
+ g

(
t, x

(
t – τ (t)

))
= e(t), (.)

where τ , e ∈ C(R,R) are T-periodic, and f , g ∈ C(R × R,R) are T-periodic in the first
argument, T >  is a constant.

Singular equations appear in a great deal of physical models and play an important role
in the differential equations. Recently, Lu and Kong in [] extended the prescribed mean
curvature Liénard equations to the singular case and studied the positive periodic solu-
tions for the following prescribed mean curvature Liénard equation with a singularity:

(
u′(t)

√
 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
u(t – σ )

)
= e(t), (.)

where σ = kT , k = , , . . . , n, f and g : (, +∞) → R are continuous functions, g can be
singular at u = , i.e., g(u) can be unbounded as u → +. e(t) is T-periodic with

∫ T
 e(t) dt =

. In order to establish the existence result of positive periodic solutions, the authors gave
the following conditions:

[A] There exist positive constants D and D with D < D such that
() For each positive continuous T-periodic function x(t) satisfying

∫ T
 g(x(t)) dt = ,

there exists a positive point τ ∈ [, T] such that

D ≤ x(τ ) ≤ D;

() g(x) <  for all x ∈ (, D) and g(x) >  for all x > D.
[A] g(x(t)) = g(x(t)) + g(x(t)), where g : (, +∞) →R is a continuous function and

() There exist positive constants m and m such that g(x) ≤ mx + m;

()
∫ 


g(x) dx = –∞.

[A] There exist positive constants γ , c, c such that γ < f (x) ≤ c|x| + c.

By applying the Manásevich-Mawhin continuation theorem, the authors proved that
equation (.) has at least one positive T-periodic solution.

Based on Lu and Kong in [], Chen and Kong [] further study the existence of positive
periodic solutions for a prescribed mean curvature p-Laplacian equation with a singularity
of repulsive type and a time-varying delay

(
ϕp

(
x′(t)

√
 + (x′(t))

))′
+ βx′(t) + g

(
t, x(t), x

(
t – τ (t)

))
= p(t),

where g : [, T] × (, +∞) × (, +∞) → R is a continuous function. g can be singular at
u = , i.e., g can be unbounded as u → +. τ , p ∈ (R,R) are T-periodic with

∫ T
 p(t) dt = ,

β is a constant.
Compared with the results in the literature, the prescribed mean curvature Rayleigh

equations with singular effects have been scarcely studied.
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Inspired by the above facts, in this paper, we further consider the following prescribed
mean curvature Rayleigh equations with a singularity:

(
u′(t)

√
 + (u′(t))

)′
+ f

(
t, u′(t)

)
+ g

(
u(t – τ )

)
= e(t), (.)

where f ∈ C([, T]×R,R) is a T-periodic function about t and f (t, ) = , g : (, +∞) →R

is a continuous function and has a strong singularity at the origin:

lim
x→+

∫ 

x
g(s) ds = +∞. (.)

e ∈ C([, T],R) is a T-periodic function,  ≤ τ < T and τ is a constant. By means of the
Manásevich-Mawhin continuation theorem, we prove that (.) has at least one positive
T-periodic solution.

Remark . The theorem and methods used to obtain the periodic solutions to (.) in
[] and [] can be applied to the (.) if there is no singularity in (.). So, we extend the
prescribed mean curvature Rayleigh equations to the singular case.

Remark . If x ∈ C(R,R) with T-periodic, then f (x)x′ in equation (.) satisfies
∫ T

 f (x(t))x′(t) dt = , which is crucial to obtain the priori bounds of T-periodic solutions
for equation (.). However, the first order derivative term in equation (.) is f (t, x′). Gen-
erally,

∫ T
 f (t, x′(t)) dt =  does not hold. For example, let us define

f
(
t, x′(t)

)
=

(
 – sin t

)
x′(t),

then it is easy to see that
∫ T

 ( – sin t)x′(t) dt �=  for some x ∈ C(R,R). This implies
that our method to complete estimate the priori bounds for all T-periodic solutions to
equation (.) is different from the corresponding ones.

Remark . From [] and [], the conditions composed on e(t) and p(t) are
∫ T

 e(t) dt = 
and

∫ T
 p(t) dt = . But, in this paper, it is unnecessary. For example, let us define

e(t) =
ecos t


,

then it is easy to see that
∫ T


ecos t

 dt �= . So, our results can be more general.

2 Preliminary
Throughout this paper, for any T-periodic continuous function u(t), we always use the
notations as follows:

‖u‖ =
(∫ T



∣∣u(t)
∣∣ dt

)/

and ‖u‖ = max
t∈[,T]

∣∣u(t)
∣∣.

In order to use Lemma ., let us consider the problem

⎧
⎨

⎩

u′(t) = φ(v(t)) = v(t)√
–v(t)

,

v′(t) = –f (t,φ(v(t))) – g(u(t – τ )) + e(t).
(.)
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Obviously, if (u(t), v(t))
 is a solution of (.), then u(t) is a solution of (.).

Lemma . ([]) Assume that there exist positive constants E, E, E with E < E such
that the following conditions hold:

() for each λ ∈ (, ], each possible positive T-periodic solution x = (u, v)
 to the system

⎧
⎨

⎩

u′(t) = λφ(v(t)) = λ v(t)√
–v(t)

,

v′(t) = –λf (t,φ(v(t))) – λg(u(t – τ )) + λe(t),

satisfies the inequalities E < u(t) < E and ‖u′‖ < E for all t ∈ [, T].
() Each possible solution C to the equation g(C) – 

T
∫ T

 e(t) dt =  satisfies

E < C < E.

() We have (g(E) – 
T

∫ T
 e(t) dt)(g(E) – 

T
∫ T

 e(t) dt) < .
Then equation (.) has at least one positive T-periodic solution.

Lemma . ([]) Let u(t) be a continuously differentiable T-periodic function. Then, for
any t ∈ [, T],

(∫ T



∣
∣u(t)

∣
∣ dt

)/

≤ T
π

(∫ T



∣
∣u′(t)

∣
∣ dt

)/

+
√

T
∣
∣u(t)

∣
∣.

For the sake of convenience, we list the following assumptions:
(H) There exist constants  < d < d such that

g(x) – e(t) > , ∀x ∈ (, d), and g(x) – e(t) < , ∀x ∈ (d, +∞), t ∈ [, T].

(H) There exist positive constants m and m such that

∣
∣g(x)

∣
∣ ≤ mx + m, ∀x ∈ (, +∞).

(H) There exists a positive constant a such that

f (t, x)x ≥ a|x|, ∀(t, x) ∈ [, T] ×R.

(H) There exist positive constants β and γ such that

f (t, x) ≤ β|x| + γ , ∀(t, x) ∈ [, T] ×R.

3 Main results
In this section, we will consider the existence of positive periodic solution for (.) with a
singularity.

First of all, we embed equation (.) into the following equation family with a parameter
λ ∈ (, ]:

⎧
⎨

⎩

u′(t) = λφ(v(t)) = λ v(t)√
–v(t)

,

v′(t) = –λf (t,φ(v(t))) – λg(u(t – τ )) + λe(t).
(.)
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Theorem . Suppose the conditions (H)-(H) hold, aπ > mT and

β
√

TA +
(
mA + m + ‖e‖ + γ

)
T < ,

where A = π
√

T(md+m+‖e‖)
aπ–mT , A = d + A, then there exist positive constants A, A, A

and A, which are independent of λ such that

A ≤ u(t) ≤ A,
∥∥u′∥∥

 ≤ A, ‖v‖ ≤ A,

where x = (u, v)
 is any solution to equation (.), λ ∈ (, ].

Proof Let t, t, respectively, be the global maximum point and global minimum point u(t)
on [, T]; then u′(t) =  and u′(t) = . We claim that

v′(t) ≥ . (.)

In fact, if (.) does not hold, then there exists ε >  such that v′(t) <  for t ∈ (t – ε, t + ε).
Therefore, v(t) is strictly decreasing for t ∈ (t – ε, t + ε). Thus, from the first equation
of (.), we can see that u′(t) is strictly decreasing for t ∈ (t – ε, t + ε). This contradicts
the definition of t. Therefore, (.) is true. From the second equation of (.), (.) and
f (t, ) = , we have

g
(
u(t – τ )

)
– e(t) ≤ . (.)

In a similar way, we get

g
(
u(t – τ )

)
– e(t) ≥ . (.)

It follows from (H), (.) and (.) that

u(t – τ ) ≥ d and u(t – τ ) ≤ d.

Thus, we can see that there exists a point t ∈ [, T] such that

d ≤ u(t) ≤ d. (.)

Multiplying the second equation of (.) by u′(t) and integrating over the interval [, T],
we have

 =
∫ T


v′(t)u′(t) dt = λ

∫ T



v(t)
√

 – v(t)
· v′(t) dt

= –λ

∫ T


f
(

t,
u′(t)
λ

)
u′(t) dt – λ

∫ T


g
(
u(t – τ )

)
u′(t) dt

+ λ

∫ T


e(t)u′(t) dt,



Li and Ge Boundary Value Problems  (2017) 2017:61 Page 6 of 11

which together with (H) and (H) gives

a
∫ T



∣∣u′(t)
∣∣ dt

≤ λ

∫ T



∣
∣g

(
u(t – τ )

)∣∣
∣
∣u′(t)

∣
∣dt + λ

∫ T



∣
∣e(t)

∣
∣
∣
∣u′(t)

∣
∣dt

≤ λ ·
∫ T



(
m

∣∣u(t – τ )
∣∣ + m

)∣∣u′(t)
∣∣dt + λ · ‖e‖

√
T ·

(∫ T



∣∣u′(t)
∣∣ dt

)/

≤ λ · m

(∫ T



∣∣u(t)
∣∣ dt

)/(∫ T



∣∣u′(t)
∣∣ dt

)/

+ λ · m
√

T
(∫ T



∣∣u′(t)
∣∣ dt

)/

+ λ · ‖e‖
√

T ·
(∫ T



∣
∣u′(t)

∣
∣ dt

)/

.

By using Lemma . and (.), we have

a
∫ T



∣
∣u′(t)

∣
∣ dt

≤ λ · m

[
T
π

(∫ T



∣∣u′(t)
∣∣ dt

)/

+
√

Td

](∫ T



∣∣u′(t)
∣∣ dt

)/

+ λ · m
√

T
(∫ T



∣∣u′(t)
∣∣ dt

)/

+ λ · ‖e‖
√

T ·
(∫ T



∣∣u′(t)
∣∣ dt

)/

= λ · mT
π

∫ T



∣
∣u′(t)

∣
∣ dt + λ · md

√
T

(∫ T



∣
∣u′(t)

∣
∣ dt

)/

+ λ · m
√

T
(∫ T



∣∣u′(t)
∣∣ dt

)/

+ λ · ‖e‖
√

T ·
(∫ T



∣∣u′(t)
∣∣ dt

)/

,

i.e.,

a
∥∥u′∥∥

 = a
∫ T



∣∣u′(t)
∣∣ dt

≤ mT
π

∥
∥u′∥∥

 + md
√

T
∥
∥u′∥∥

 + m
√

T
∥
∥u′∥∥

 + ‖e‖
√

T
∥
∥u′∥∥

.

Since aπ > mT , we have

∥∥u′∥∥
 ≤ π

√
T(md + m + ‖e‖)

aπ – mT
:= A. (.)

By means of the Hölder inequality, (.) and (.), we have

‖u‖ = max
t∈[,T]

∣
∣u(t)

∣
∣ ≤ max

t∈[,T]

∣∣
∣∣u(t) +

∫ t

t

u′(s) ds
∣∣
∣∣

≤ d +
∫ T



∣
∣u′(s)

∣
∣ds ≤ d +

√
T

∥
∥u′∥∥



≤ d +
πT(md + m + ‖e‖)

aπ – mT
:= A. (.)
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Clearly, A is independent of λ.
From the second equation of (.), we have

∫ T



∣
∣v′(t)

∣
∣dt ≤ λ

∫ T



∣∣
∣∣f

(
t,

u′(t)
λ

)∣∣
∣∣dt + λ

∫ T



∣
∣g

(
u(t – τ )

)∣∣dt

+ λ

∫ T



∣∣e(t)
∣∣dt. (.)

Furthermore, from (.) and (H), we get

∫ T



∣
∣g

(
u(t – τ )

)∣∣dt ≤
∫ T



[
mu(t – τ ) + m

]
dt

≤ mT · ‖u‖ + mT

≤ mAT + mT . (.)

Substituting (.) into (.) and by using (H), (.) and (.), we can obtain

∫ T



∣
∣v′(t)

∣
∣dt ≤ λ

∫ T



∣∣
∣∣f

(
t,

u′(t)
λ

)∣∣
∣∣dt + λ

∫ T



∣
∣g

(
u(t – τ )

)∣∣dt + λ

∫ T



∣
∣e(t)

∣
∣dt

≤ λ

∫ T



(
β

∣
∣∣
∣
u′(t)
λ

∣
∣∣
∣ + γ

)
dt + mAT + mT + ‖e‖T

≤ β

∫ T



∣
∣u′(t)

∣
∣dt + γ T + mAT + mT + ‖e‖T

≤ β
√

T
∥∥u′∥∥

 + γ T + mAT + mT + ‖e‖T

≤ β
√

TA +
(
mA + m + ‖e‖ + γ

)
T . (.)

Integrating the first equation of (.) on the interval [, T], we have

∫ T


u′(t) dt =

∫ T



v(t)
√

 – v(t)
dt = .

Then we can see that there exists η ∈ [, T] such that v(η) = . It implies that

∣∣v(t)
∣∣ =

∣
∣∣
∣

∫ t

η

v′(s) ds + v(η)
∣
∣∣
∣ ≤

∫ T



∣∣v′(s)
∣∣ds,

which together with (.) yields

∣∣v(t)
∣∣ ≤

∫ T



∣∣v′(s)
∣∣ds

≤ β
√

TA +
(
mA + m + ‖e‖ + γ

)
T := A. (.)

Since β
√

TA + (mA + m + ‖e‖ + γ )T < , we have

‖v‖ = max
t∈[,T]

∣∣v(t)
∣∣ ≤ A < . (.)
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Clearly, A is independent of λ.
From the first equation of (.), we can see that

∥∥u′∥∥
 ≤ λ max

t∈[,T]

|v(t)|
√

 – v(t)
≤ λ · A

 – A


≤ A

 – A


:= A. (.)

Clearly, A is independent of λ.
In the following, we will prove that there exists a positive constant A which is dependent

of λ such that

u(t) ≥ A. (.)

Indeed, it follows from the second equation of (.) that

v′(t + τ ) = –λf
(

t + τ ,
u′(t + τ )

λ

)
– λg

(
u(t)

)
+ λe(t + τ ). (.)

Multiplying both sides of (.) by u′(t) and integrating on [ξ , t], here ξ ∈ [, T], we get

λ

∫ u(t)

u(ξ )
g(u) du = λ

∫ t

ξ

g
(
u(s)

)
u′(s) ds

= –
∫ t

ξ

v′(t + τ )u′(t) dt – λ

∫ t

ξ

f
(

t + τ ,
u′(t + τ )

λ

)
u′(t) dt

+ λ

∫ t

ξ

e(t + τ )u′(t) dt;

then

λ

∣
∣∣
∣

∫ u(t)

u(ξ )
g(u) du

∣
∣∣
∣ =

∫ T



∣∣v′(t + τ )
∣∣∣∣u′(t)

∣∣dt

+ λ

∫ T



∣
∣∣
∣f

(
t + τ ,

u′(t + τ )
λ

)∣
∣∣
∣ · ∣∣u′(t)

∣∣dt

+ λ

∫ T



∣
∣e(t + τ )

∣
∣
∣
∣u′(t)

∣
∣dt. (.)

Furthermore, by (.) and (.) we obtain

∫ T



∣∣v′(t + τ )
∣∣∣∣u′(t)

∣∣dt ≤ ∥∥u′∥∥
 ·

∫ T



∣∣v′(t + τ )
∣∣dt

≤ λ · A

 – A


· [β√
TA +

(
mA + m + ‖e‖ + γ

)
T

]
. (.)

By using (H) and (.), we have

∫ T



∣
∣∣∣f

(
t + τ ,

u′(t + τ )
λ

)∣
∣∣∣ · ∣∣u′(t)

∣∣dt

≤
∫ T



(
β

∣∣
∣∣
u′(t + τ )

λ

∣∣
∣∣ + γ

)∣
∣u′(t)

∣
∣dt
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≤ β

∫ T



∣
∣∣∣
u′(t + τ )

λ

∣
∣∣∣ · ∣∣u′(t)

∣∣dt + γ

∫ T



∣∣u′(t)
∣∣dt

≤ βT
λ

· ∥∥u′∥∥
 + γ T · ∥∥u′∥∥



≤ βT
λ

·
(

λ · A

 – A


)

+ γ T · λ · A

 – A


≤ βT · λ ·
(

A

 – A


)

+ γ T · λ · A

 – A


. (.)

Substituting (.) and (.) into (.), we obtain

λ

∣∣
∣∣

∫ u(t)

u(ξ )
g(u) du

∣∣
∣∣ ≤

∫ T



∣
∣v′(t + τ )

∣
∣
∣
∣u′(t)

∣
∣dt + λ

∫ T



∣∣
∣∣f

(
t + τ ,

u′(t + τ )
λ

)∣∣
∣∣
∣
∣u′(t)

∣
∣dt

+ λ

∫ T



∣
∣e(t + τ )

∣
∣
∣
∣u′(t)

∣
∣dt

≤ λ · A

 – A


· [β√
TA +

(
mA + m + ‖e‖ + γ

)
T

]

+ βT · λ ·
(

A

 – A


)

+ γ T · λ · A

 – A


+ λ · ‖e‖ ·
(

A

 – A


)

i.e.,

∣∣
∣∣

∫ u(t)

u(ξ )
g(u) du

∣∣
∣∣ ≤ A

 – A


· [β√
TA +

(
mA + m + ‖e‖ + γ

)
T

]

+ βT ·
(

A

 – A


)

+ γ T · A

 – A


+ ‖e‖ · A

 – A


.

From the strong force condition (.), we know that (.) holds. Therefore, from (.),
(.), (.) and (.), we can see that the proof of Theorem . is now completed. �

Theorem . Assume that the conditions in Theorem . hold, then equation (.) has at
least one positive T-periodic solution.

Proof Define

 < E < min{d, A}, E > max{d, A}, E > A.

It follows from (.), (.), (.) and (.) that

E < u(t) < E,
∥
∥u′∥∥

 < E. (.)

Then we can see that the condition () of Lemma . is satisfied.
For a possible solution C to the equation

g(C) –

T

∫ T


e(t) dt = ,

it is easy to see that E < C < E is satisfied. Thus, the condition () of Lemma . is satisfied.



Li and Ge Boundary Value Problems  (2017) 2017:61 Page 10 of 11

Finally, we prove that the condition () of Lemma . is also satisfied. In fact, from (H),
we have

g(E) –

T

∫ T


e(t) dt > ,

and

g(E) –

T

∫ T


e(t) dt < ,

which implies that the condition () of Lemma . is also satisfied. Therefore, by applica-
tion of Lemma ., we conclude that (.) has at least one positive T-periodic solution. �

4 Example
Consider the following prescribed mean curvature Rayleigh equations with a singularity:

(
u′(t)

√
 + (u′(t))

)′
+

(
 – sin t

)
u′(t) –


u(t – )

+
u(t – )


=

ecos t


. (.)

Conclusion Problem (.) has at least one positive π/-periodic solution.

Proof Corresponding to equation (.), we have

f
(
t, u′(t)

)
=

(
 – sin t

)
u′(t), e(t) =

ecos t


,

g
(
u(t – )

)
= –


u(t – )

+
u(t – )


, T =

π


.

It is easy to see that (H)-(H) hold if we choose

d = , m =



, m =



, a = , β = , γ =



.

Moreover, aπ > mT and

A =
π

√
T(md + m + ‖e‖)

aπ – mT
≈ ., A = d + A ≈ .,

then we have

β
√

TA +
(
mA + m + ‖e‖ + γ

)
T ≈ . < .

Hence, the conditions of Theorem . are satisfied. Therefore, by Theorem ., we can see
that equation (.) has at least one positive π/-periodic solution. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have equally contributed to obtaining new results in this article and also read and approved the final
manuscript.



Li and Ge Boundary Value Problems  (2017) 2017:61 Page 11 of 11

Author details
1Department of Mathematics and Physics, Hohai University, Campus Changzhou, 213022, China. 2Department of
Mathematics, Beijing Institute of Technology, Beijing, 100081, China.

Acknowledgements
The authors are grateful for the referee’s helpful suggestions and comments. This work is supported by the Fundamental
Research Funds for the Central Universities (Grant No. 2016B07514, No. 2015B27914).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 December 2016 Accepted: 12 April 2017

References
1. Gaines, R, Mawhin, J: Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics,

vol. 568. Springer, Berlin (1977)
2. Bonheure, D, Habets, P, Obersnel, F, Omari, P: Classical and non-classical solutions of a prescribed curvature equation.

J. Differ. Equ. 243, 208-237 (2007)
3. Benevieria, P, Do Ó, J, Medeiros, E: Periodic solutions for nonlinear systems with mean curvature-like operators.

Nonlinear Anal. 65, 1462-1475 (2006)
4. Obersnel, F: Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence

of lower and upper solutions. Nonlinear Anal., Real World Appl. 13, 2830-2852 (2012)
5. Pan, H: One-dimensional prescribed mean curvature equation with exponential nonlinearity. Nonlinear Anal. 70,

999-1010 (2009)
6. Feng, M: Periodic solutions for prescribed mean curvature Liénard equation with a deviating argument. Nonlinear

Anal., Real World Appl. 13, 1216-1223 (2012)
7. Jin, Z: Existence of solutions of the prescribed mean-curvature equation on unbounded domains. Proc. R. Soc. Edinb.,

Sect. A, Math. 136, 157-179 (2006)
8. Lu, S, Lu, M: Periodic solutions for a prescribed mean curvature equation with multiple delays. J. Appl. Math. 2014,

Article ID 909252 (2014).
9. Albanese, G, Rigoli, M: Lichnerowicz-type equations on complete manifolds. Adv. Nonlinear Anal. 5(3), 223-250 (2016)
10. Bachar, I, Mâagli, H: Existence and global asymptotic behavior of positive solutions for combined second-order

differential equations on the half-line. Adv. Nonlinear Anal. 5(3), 205-222 (2016)
11. Kristály, A, Repovš, D: Quantitative Rellich inequalities on Finsler-Hadamard manifolds. Commun. Contemp. Math.

18(6), 1650020 (2016)
12. Molica Bisci, G, Radulescu, V, Servadei, R: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of

Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)
13. Li, J, Wang, Z: Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations.

Bound. Value Probl. 2012, 109 (2012)
14. Li, J, Luo, J, Cai, Y: Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument.

Adv. Differ. Equ. 2013, 88 (2013)
15. Lu, S, Kong, F: Periodic solutions for a kind of prescribed mean curvature Liénard equation with a singularity and a

deviating argument. Adv. Differ. Equ. 2015, 151 (2015)
16. Chen, W, Kong, F: Periodic solutions for prescribed mean curvature p-Laplacian equations with a singularity of

repulsive type and a time-varying delay. Adv. Differ. Equ. 2016, 178 (2016)
17. Manásevich, R, Mawhin, J: Periodic solutions for nonlinear systems with p-Laplacian-like operator. J. Differ. Equ. 145,

367-393 (1998)
18. Wang, Z: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal., Real

World Appl. 16, 227-234 (2014)


	New positive periodic solutions to singular Rayleigh prescribed mean curvature equations
	Abstract
	MSC
	Keywords

	Introduction
	Preliminary
	Main results
	Example
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Publisher's Note
	References


