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1 Introduction and main results
Consider the existence of weak solutions for the following elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = au + bv + Fv(x, u, v) in �,

–�v = bu + av + Fu(x, u, v) in �,

u = v =  on ∂�,

()

where � ⊂ RN (N ≥ ) is a bounded, connected open domain and a, b are real numbers.
The nonlinearity F ∈ C(�̄ × R, R) has continuous derivatives Fs(x, s, t), Ft(x, s, t) with re-
spect to s and t for any x ∈ � and satisfies the following superquadratic condition:

F(x, s, t)
|s| + |t| → +∞ as |s| + |t| → ∞ uniformly in x ∈ �. ()

Denote by H
(�) the usual Hilbert space with the inner product and the norm

〈u, v〉 =
∫

�

∇u∇v dx, ‖u‖ =
(∫

�

|∇u| dx
)/

for any u, v ∈ H
(�). By the Sobolev embedding theorem, the embedding H

(�) ↪→ Lp(�)
is continuous for any  ≤ p ≤ ∗, and there exists a positive constant C = C(p, N ,�) such
that

‖u‖p ≤ C‖u‖ for all u ∈ H
(�), ()
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where ∗ := N
N– is the Sobolev critical exponent and ‖ · ‖p denotes the norm of Lp(�).

Moreover, the embedding H
(�) ↪→ Lp(�) is compact for any  ≤ p < ∗. Let H = H

(�)×
H

(�) be a Hilbert space with the norm

∥
∥(u, v)

∥
∥ =

(‖u‖ + ‖v‖)/ for any (u, v) ∈ H .

The spectrum of –� in H
(�) is at most a countable set, which we denote by

 < λ < λ < λ < · · · < λk < · · · ,

where each λk is an isolated eigenvalue of finite multiplicity of mk , with ϕk (k = , , . . .)
the corresponding eigenfunctions, which will be taken orthogonal and normalized with
‖ϕk‖ = . It is well known that λ is simple and isolated and ϕ may be taken positive on �.

Define B : H × H → R as follows:

B
(
(u, v), (φ,ψ)

)
=

∫

�

∇u∇ψ dx +
∫

�

∇v∇φ dx

– a
∫

�

(uψ + vφ) dx – b
∫

�

(uφ + vψ) dx.

As in [], we define an orthogonal basis for H which diagonalizes B. It follows from []
that there exist two sequences of eigenvalues for the following eigenvalue problem:

B
(
(u, v), (φ,ψ)

)
= μ

〈
(u, v), (φ,ψ)

〉
, ∀(φ,ψ) ∈ H ,

that is,

μi =
λi – (a + b)

λi
and μ–i =

(a – b) – λi

λi
, i = , , . . . ,

with the corresponding normalized eigenfunctions

ψ±i =
(ϕi,±ϕi)√


, i = , , . . . .

Moreover, {μ±i} and {ψ±i} have the following simple properties:
() limi→+∞ μ±i = ±;
() If a + b > , μi = λi–(a+b)

λi
converges to  from left, but if a + b < , μi = λi–(a+b)

λi
converges to  from right;

() If a – b > , μ–i = (a–b)–λi
λi

converges to – from right, but if a – b < , μ–i = (a–b)–λi
λi

converges to – from left.
() Let u := (u, v) =

∑
i∈Z\{} ciψi ∈ H , then

‖u‖ =
∑

i∈Z\{}
c

i , B(u, u) =
∑

i∈Z\{}
μic

i , ‖u‖ =
∑

i∈Z\{}
λ–

|i| c
i .

Multiplicity of nontrivial solutions for elliptic equations or elliptic systems near reso-
nance was considered by many authors (see [–] and the references therein). For the
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following two point boundary value problem

–u′′ – λu = f (x, u) + h(x), u() = u(π ) = ,

if f is bounded and satisfies a sign condition, Mawhin and Schmitt [] obtained the ex-
istence of at least three nontrivial solutions under the condition that the parameter λ is
sufficiently close to λ from left by using Ekeland’s variational principle and the mountain
pass theorem, where λ is the first eigenvalue of the corresponding linear problem. For the
semilinear elliptic equation

⎧
⎨

⎩

–�u = λu + f (x, u) + h(x) in �,

u =  on ∂�,
()

if f is sublinear at infinity and the parameter λ approaches λ from the left, Ma et al. []
proved the existence of at least three nontrivial solutions. Similar results were obtained
for the quasilinear problem in [] and [], for the (p, q) elliptic systems in [].

Many results were obtained for the case that the parameter λ approaches λk (k ≥ ) from
left (see [, –] and the references therein). de Paiva and Massa [] obtained the exis-
tence of two solutions for problem () under the condition that f is sublinear at infinity
by using saddle point theory. In [], Massa and Rossato obtained the existence of at least
two solutions for problem () by using of the saddle point theorem and Galerkin approx-
imation, where Fs(x, s, t) = Fs(x, s) and Ft(x, s, t) = Ft(x, t) are the sublinear nonlinearities.
In [], under a generalized Landesman-Lazer type condition, Ke and Tang obtained the
existence of at least two solutions for a class of asymptotically linear noncooperative ellip-
tic systems by using the saddle point theorem. On the other hand, if F(x, t) =

∫ t
 f (x, s) ds

satisfies the (AR) condition, Mugnai [] obtained three nontrivial solutions for problem
() by using the ∇-theorem due to Marino and Saccon in [], and a similar result was
obtained in [] under the following superquadratic condition:

F(x, t)
|t| → +∞ as |t| → ∞ uniformly in x ∈ �.

The ∇-theorem was widely applied to consider the multiplicity of nontrivial solutions for
several other equations (see [–]). In [], by using the notion of limit relative category,
Marino and Saccon developed a ‘limit’ version of the ∇-theorems and found multiple
solutions for some noncooperative elliptic systems where the nonlinearity satisfies the
global (AR) condition.

In this paper, influenced by [] and [], we consider the existence of multiple solutions
for problem () near resonance at the higher eigenvalue, where F(x, s, t) satisfies the su-
perquadratic condition (). Now we state some other conditions on F(x, s, t).

(F) There are c > ,  < r < (N + )/(N – ) such that

∣
∣Fs(x, s, t)

∣
∣ +

∣
∣Ft(x, s, t)

∣
∣ ≤ c

(
 + |s|r + |t|r), ∀(x, s, t) ∈ � × R;

(F) F(x, s, t) = o(|s| + |t|) as |s| + |t| →  uniformly in x ∈ �;
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(F) There exist N(r – )/ < β < ∗, c >  and L >  such that

Fs(x, s, t)s + Ft(x, s, t)t – F(x, s, t) > , ∀x ∈ �, (s, t) �= (, ), and

Fs(x, s, t)s + Ft(x, s, t)t – F(x, s, t) ≥ c
(|s|β + |t|β)

, ∀x ∈ �, |s| + |t| ≥ L;

(F) F(x, s, t) ≥ , ∀ (x, s, t) ∈ � × R.
The main results of the paper are the following theorems.

Theorem  Assume that () and (F), (F), (F), (F) hold. Let λk be an eigenvalue of –�

and λl be the first eigenvalue above a – b. ∀δ > , ∃ε > , if dist(a – b,σ (–�)) > δ and
a + b ∈ (λk – ε,λk), then problem () has at least three nontrivial solutions.

Theorem  Assume that () and (F), (F), (F), (F) hold. Let λk be an eigenvalue of –�

and λl be the first eigenvalue above a + b. ∀δ > , ∃ε > , if dist(a + b,σ (–�)) > δ and
a – b ∈ (λk ,λk + ε), then problem () has at least three nontrivial solutions.

2 Proofs of theorems
In this section, we first recall two compactness conditions, i.e., the (PS)∗c condition, which
was introduced by Li and Willem in [], and the (Ce)∗c condition, which was introduced
by Luan and Mao in [] where they extended the local linking theorem of []. The (Ce)∗c
condition is a version of the (PS)∗c condition and a generalization of the (Ce) condition of
[], and it can ensure a deformation lemma. And then, we recall the ∇–theorem due to
Marino and Saccon in [], where the (PS)∗c condition is replaced by the (Ce)∗c condition.

Let W be a real Banach space with W = W  ⊕ W . W i
 ⊂ W i

 ⊂ W i
 ⊂ · · · ⊂ W i and

⋃
n∈N W i

n is dense in W i, i = , . For every multi-index α = (α,α) ∈ N, Wα = W 
α ⊕W 

α ,
and it is well known that α ≤ β ⇐⇒ α ≤ β, α ≤ β. A sequence {αn} ∈ N is admissible
if for every α ∈ N, there is m ∈ N such that n ≥ m �⇒ αn ≥ α.

Definition  (see []) The functional I ∈ C(W , R) satisfies the (Ce)∗c condition at the
level c ∈ R, if {αn} is admissible and {uαn} satisfies

uαn ∈ Wαn and Iαn (uαn ) → c,
(
 + ‖uαn‖

)
I ′
αn (uαn ) →  as n → ∞,

{uαn} has a subsequence which converges to a critical point of I , where Iαn = I|Wαn .
Let E be a real Hilbert space with E = E ⊕E ⊕E and dim E ≥ . Let {En} be a sequence

of finite dimension closed subspaces of E such that E ⊂ En, En ⊂ En+, and let
⋃

n∈N En be
dense in E. Let X be a closed subspace of E and PX denote the orthogonal projection onto
X, and for any u ∈ E, let [u] = {tu : t ∈ R}.

Definition  (see []) Let X be a closed subspace of E such that PXPEn = PEn PX for all n,
and let c be a real number. The functional I ∈ C(E, R) satisfies the condition ∇∗(X, c) with
respect to (En)n if there exists γ >  such that

lim inf
n→∞

{∥
∥PEn PX⊕[u] grad I(u)

∥
∥ : u ∈ En, dist(u, X) < γ ,

∣
∣I(u) – c

∣
∣ < γ

}
> .

The condition ∇∗(X, c) implies that there are no critical points u in X with I(u) = c, with
some uniformity. Moreover, the condition ∇∗(X, c) is equivalent to the following condi-
tions:
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(a) I|X has no critical point u in X with I(u) = c;
(b) If (hn) is a sequence in N such that hn → ∞, {un} is a sequence in E such that

un ∈ Ehn for all n, dist(un, X) → , I(un) → c and PEn PX⊕[un] grad I(un) →  as
n → ∞, then (un) has a convergent subsequence.

Theorem  (see []) Let E be a Hilbert space and Ei, i = , , , be three subspaces of E such
that E = E ⊕ E ⊕ E with  ≤ dim E < +∞, and I ∈ C,(E, R). Define

T =
{

u ∈ E ⊕ E : ‖PE u‖ ≤ R, R′ ≤ ‖PE u‖ ≤ R′′} and � = ∂E⊕E T ,

Sρ =
{

u ∈ E ⊕ E : ‖u‖ = ρ
}

and Bρ =
{

u ∈ E ⊕ E : ‖u‖ ≤ ρ
}

,

where R >  and  ≤ R′ < ρ < R′′. Especially, if R′ = , we have

� =
{

u ∈ E : ‖u‖ ≤ R
} ∪ {

u ∈ E ⊕ E : ‖PE u‖ ≤ R,‖PE u‖ = R′′}

∪ {
u ∈ E ⊕ E : ‖PE u‖ = R,‖PE u‖ ≤ R′′}.

Assume that

sup I(�) < inf I(Sρ) = α and β = sup I(T) < +∞.

If the condition ∇∗(E ⊕ E, c) and the (Ce)∗c condition hold at any c ∈ [α,β], then I has
at least two critical points in I–([α,β]).

Define the functional J : H → R as follows:

J(u, v) =
∫

�

∇u∇v dx – a
∫

�

uv dx –
b


∫

�

(
u + v)dx –

∫

�

F(x, u, v) dx

=



B
(
(u, v), (u, v)

)
–

∫

�

F(x, u, v) dx. ()

From the subcritical growth condition (F), it is easy to verify that J ∈ C(H , R) and

〈
J ′(u, v), (φ,ψ)

〉
=

∫

�

∇φ∇v dx – a
∫

�

φv dx – b
∫

�

uφ dx –
∫

�

Fu(x, u, v)φ dx

+
∫

�

∇u∇ψ dx – a
∫

�

uψ dx – b
∫

�

vψ dx –
∫

�

Fv(x, u, v)ψ dx

for all (φ,ψ) ∈ H . It is well known that finding weak solutions of problem () is equivalent
to finding critical points of the functional J in H . Since Theorem  is similar to Theo-
rem , we will be devoted to the proof of Theorem . Two solutions are obtained by The-
orem , and the existence of the third solution is proved by the classical linking theorem
(see [, ]) and Galerkin approximation. Let λl be the first eigenvalue above a – b such
that dist(a – b,σ (–�)) > δ for given δ >  and a + b ∈ (λk–,λk). From the definitions of μ±i,
we obtain that

μi < , i = , , . . . , k –  and μi > , i = k, k + , . . . ,
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and

μ–i > , i = , , . . . , l –  and μ–i < , i = l, l + , . . . .

Now, define

H– = span{ψi : μi < , i = ±,±, . . .}, H+ = span{ψi : μi > , i = ±,±, . . .},

then H = H– ⊕ H+. Especially, set

Y = span{ψi : μi = μk}, Y ⊥ = span{ψi : μi >  and μi �= μk},

so that dim Y < ∞ and H+ = Y ⊕ Y ⊥. Moreover, for any u = u– ⊕ u+ ∈ H– ⊕ H+,

B(u, u) = B
(
u–, u–)

+ B
(
u+, u+)

. ()

Lemma  (see []) Let a + b /∈ σ (–�) and λk be the first eigenvalue above a + b, of multi-
plicity mk , and λl be the first eigenvalue above a – b. If dist(a – b,σ (–�)) > δ > , then there
exists a constant K = K(a + b, δ) >  such that

B
(
(u, v), (u, v)

) ≤ –K
(‖u‖ + ‖v‖), ∀(u, v) ∈ H–,

B
(
(u, v), (u, v)

) ≥ K
(‖u‖ + ‖v‖), ∀(u, v) ∈ H+.

Lemma  Assume that (), (F) and (F) hold. For any real number c, the functional J
satisfies the (Ce)∗c condition.

Proof Let W  = H–, W  = H+, then H = H– ⊕ H+ = W  ⊕ W . Let {αn} be admissible and
{(uαn , vαn )} be a (Ce)∗c sequence, that is,

(uαn , vαn ) ∈ Hαn , Jαn (uαn , vαn ) → c,
(
 + ‖uαn‖ + ‖vαn‖

)
J ′
αn (uαn , vαn ) →  ()

as n → ∞.
We first proved that {(uαn , vαn )} is bounded in H . Arguing by contradiction, we suppose

that ‖(uαn , vαn )‖ = (‖uαn‖ + ‖vαn‖)/ → ∞ as n → ∞. Define

ũαn =
uαn

‖(uαn , vαn )‖ , ṽαn =
vαn

‖(uαn , vαn )‖ ,

then {(ũαn , ṽαn )} is bounded in H , i.e.,

‖ũαn‖ + ‖ṽαn‖ =  for all n.

From (F) and the continuity of F , there exists a constant M such that

Fs(x, s, t)s + Ft(x, s, t)t – F(x, s, t) ≥ c
(|s|β + |t|β)

– M ()
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for any (x, s, t) ∈ � × R. Hence, one gets

Jαn (uαn , vαn ) –
〈
J ′
αn (uαn , vαn ), (uαn , vαn )

〉

=
∫

�

(
Fs(x, uαn , vαn )uαn + Ft(x, uαn , vαn )vαn – F(x, uαn , vαn )

)
dx

≥ c

(∫

�

|uαn |β dx +
∫

�

|vαn |β dx
)

– M|�|,

where |�| denotes the Lebesgue measure of the set �. From () and the above inequality,
there is a positive constant c such that

‖uαn‖β

β + ‖vαn‖β

β ≤ c for any n. ()

Let (uαn , vαn ) = (u–
αn , v–

αn ) + (u+
αn , v+

αn ) ∈ Hαn = H–
αn ⊕ H+

αn and note that

N


(r – ) < β and
N


(r – ) <
N

N + 
r.

We first consider the case N
N+ r < β , by Hölder’s inequality, (F), () and (), we have

∣
∣
∣
∣

∫

�

Fs(x, uαn , vαn )u+
αn dx

∣
∣
∣
∣

≤ c

∫

�

(∣
∣u+

αn

∣
∣ + |uαn |r

∣
∣u+

αn

∣
∣ + |vαn |r

∣
∣u+

αn

∣
∣
)

dx

≤ c
∥
∥u+

αn

∥
∥

 + c

(∫

�

|uαn |r·
β
r dx

) r
β ·

(∫

�

∣
∣u+

αn

∣
∣

β
β–r dx

) β–r
β

+ c

(∫

�

|vαn |r·
β
r dx

) r
β ·

(∫

�

∣
∣u+

αn

∣
∣

β
β–r dx

) β–r
β

≤ c
∥
∥u+

αn

∥
∥.

Similarly, we obtain

∣
∣
∣
∣

∫

�

Ft(x, uαn , vαn )v+
αn dx

∣
∣
∣
∣ ≤ c

∥
∥v+

αn

∥
∥,

where c is a positive constant. Hence, it follows from the above two inequalities that

〈
J ′
αn (uαn , vαn ),

(
u+

αn , v+
αn

)〉

= B
(
(uαn , vαn ),

(
u+

αn , v+
αn

))
–

∫

�

(
Fs(x, uαn , vαn )u+

αn + Ft(x, uαn , vαn )v+
αn

)
dx

≥ K
(∥
∥u+

αn

∥
∥ +

∥
∥v+

αn

∥
∥) – c

(∥
∥u+

αn

∥
∥ +

∥
∥v+

αn

∥
∥
)
. ()

For the case N
 (r – ) < β < N

 (r – ), let

γ =
Nr – (N + )β
N – (N – )β

∈ (, ) and p =
β

r – γ
> .
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By Hölder’s inequality, (F), () and (), we have

∣
∣
∣
∣

∫

�

Fs(x, uαn , vαn )u+
αn dx

∣
∣
∣
∣

≤ c

∫

�

(∣
∣u+

αn

∣
∣ + |uαn |β/p|uαn |γ

∣
∣u+

αn

∣
∣ + |vαn |β/p|vαn |γ

∣
∣u+

αn

∣
∣
)

dx

≤ c
∥
∥u+

αn

∥
∥

 + c

(∫

�

|uαn |β dx
) 

p
·
(∫

�

|uαn |∗
dx

) γ

∗
·
(∫

�

∣
∣u+

αn

∣
∣∗

dx
) 

∗

+ c

(∫

�

|vαn |β dx
) 

p
·
(∫

�

|vαn |∗
dx

) γ

∗
·
(∫

�

∣
∣u+

αn

∣
∣∗

dx
) 

∗

≤ c
∥
∥u+

αn

∥
∥
(‖uαn‖γ + ‖vαn‖γ

)
.

Similarly, we obtain

∣
∣
∣
∣

∫

�

Ft(x, uαn , vαn )v+
αn dx

∣
∣
∣
∣ ≤ c

∥
∥v+

αn

∥
∥
(‖uαn‖γ + ‖vαn‖γ

)
,

where c is a positive constant. Therefore, from the above two inequalities, one has

〈
J ′
αn (uαn , vαn ),

(
u+

αn , v+
αn

)〉

= B
(
(uαn , vαn ),

(
u+

αn , v+
αn

))
–

∫

�

(
Fs(x, uαn , vαn )u+

αn + Ft(x, uαn , vαn )v+
αn

)
dx

≥ K
(∥
∥u+

αn

∥
∥ +

∥
∥v+

αn

∥
∥) – c

(∥
∥u+

αn

∥
∥ +

∥
∥v+

αn

∥
∥
)(‖uαn‖γ + ‖vαn‖γ

)
. ()

Dividing () (or ()) by ‖uαn‖ + ‖vαn‖, it follows from () that

∥
∥ũ+

αn

∥
∥ +

∥
∥ṽ+

αn

∥
∥ →  as n → ∞. ()

Similarly, we obtain

∥
∥ũ–

αn

∥
∥ +

∥
∥ṽ–

αn

∥
∥ →  as n → ∞. ()

From () and (), we have the following contradiction:

 = ‖ũαn‖ + ‖ṽαn‖ ≤ ∥
∥ũ–

αn

∥
∥ +

∥
∥ṽ–

αn

∥
∥ +

∥
∥ũ+

αn

∥
∥ +

∥
∥ṽ+

αn

∥
∥ → 

as n → ∞. Hence, {(uαn , vαn )} must be bounded.
It follows that there is a subsequence of {(uαn , vαn )}, still denoted by {(uαn , vαn )}, and

(u, v) ∈ H such that (uαn , vαn ) ⇀ (u, v) weakly in H , (uαn , vαn ) → (u, v) strongly in Lp(�) ×
Lp(�) for any  ≤ p < ∗, and (uαn (x), vαn (x)) → (u(x), v(x)) for a.e. x ∈ �. Therefore, from
(), we have

lim
n→∞

〈
J ′(uαn , vαn ), (vαn – v, uαn – u)

〉
= . ()
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Recalling the boundedness of {(uαn , vαn )}, Hölder’s inequality and (F), we obtain

∣
∣
∣
∣

∫

�

(
vαn (vαn – v) + uαn (uαn – u)

)
dx

∣
∣
∣
∣ ≤ ‖vαn‖‖vαn – v‖ + ‖uαn‖‖uαn – u‖

→  as n → ∞, ()
∣
∣
∣
∣

∫

�

(
uαn (vαn – v) + vαn (uαn – u)

)
dx

∣
∣
∣
∣ ≤ ‖uαn‖‖vαn – v‖ + ‖vαn‖‖uαn – u‖

→  as n → ∞, ()
∣
∣
∣
∣

∫

�

Fs(x, uαn , vαn )(vαn – v) dx
∣
∣
∣
∣ ≤ c

∫

�

(
 + |uαn |r + |vαn |r

)|vαn – v|dx

≤ c‖vαn – v‖ + c
(‖uαn‖r

β + ‖vαn‖r
β

)‖vαn – v‖ β
β–r

→  as n → ∞. ()

Similarly, we have

∣
∣
∣
∣

∫

�

Ft(x, uαn , vαn )(uαn – u) dx
∣
∣
∣
∣ →  as n → ∞. ()

From (), (), (), () and (), it follows that

lim
n→∞

∫

�

(∇uαn∇(uαn – u) + ∇vαn∇(vαn – v)
)

dx = . ()

Similarly, we obtain

lim
n→∞

∫

�

(∇u∇(uαn – u) + ∇v∇(vαn – v)
)

dx = . ()

From () and (), we get

lim
n→∞‖uαn – u‖ + ‖vαn – v‖ = ,

which implies that (uαn , vαn ) → (u, v) strongly in H . �

Let H–
n ⊂ H–, H+

n ⊂ Y ⊥ for any n, Hn = H–
n ⊕ Y ⊕ H+

n with dim Hn < ∞, Hn ⊂ Hn+,
⋃

n∈N Hn is dense in H . We will prove that the condition ∇∗(H– ⊕ Y ⊥, c) holds for any real
number c.

Lemma  Assume that (), (F) and (F) hold. For any real number c and any sequence
{(un, vn)} such that

(un, vn) ∈ Hn for any n, J(un, vn) → c,

PH–⊕Y⊥⊕[(un ,vn)]PHn J ′(un, vn) → 
()

as n → ∞, there is a subsequence of {(un, vn)} which converges to a point (u, v) such that
J(u, v) = c and PH–⊕Y⊥⊕[(u,v)]J ′(u, v) = .
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Proof We first claim that {(un, vn)} is bounded in H . Arguing by contradiction, we sup-
pose that ‖(un, vn)‖ → ∞ as n → ∞, define ũn = un \ ‖(un, vn)‖, ṽn = vn \ ‖(un, vn)‖, then
{(ũn, ṽn)} is bounded in H , that is,

‖ũn‖ + ‖ṽn‖ =  for all n.

Hence there is a subsequence of {(ũn, ṽn)}, still denoted by {(ũn, ṽn)}, and (ũ, ṽ) ∈ H
such that (ũn, ṽn) ⇀ (ũ, ṽ) weakly in H , (ũn, ṽn) → (ũ, ṽ) strongly in Lp(�) × Lp(�), and
(ũn(x), ṽn(x)) → (ũ(x), ṽ(x)) for a.e. x ∈ �. From (), we obtain

J(un, vn) –
〈
J ′(un, vn), (un, vn)

〉

=
∫

�

(
Fs(x, un, vn)un + Ft(x, un, vn)vn – F(x, un, vn)

)
dx

≥ c

(∫

�

|un|β dx +
∫

�

|vn|β dx
)

– M|�|.

Dividing the above expression by ‖(un, vn)‖β , it follows from () that
∫

�

(|ũn|β + |ṽn|β
)

dx →  as n → ∞,

which implies that (ũ, ṽ) = (, ), that is, (ũn, ṽn) ⇀ (, ) weakly in H . Similar to the proof
of Lemma , we can obtain that (ũn, ṽn) → (, ) strongly in H , which is a contradiction
to ‖ũn‖ + ‖ṽn‖ = . Hence {(un, vn)} is bounded. As was already noted in the proof of
Lemma , the same proof implies that (un, vn) converges in H . �

Lemma  If (F), (F) and (F) hold, then there is ε′ >  such that J has no critical point
(u, v) with  < |J(u, v)| < ε′.

Proof We first claim that (, ) is an isolated critical point for J . Actually, from (F) and
(F), for any ε > , there is M = M(ε) >  such that

F(x, s, t) ≤ ε


(
s + t) + M

(|s|r+ + |t|r+), ∀(x, s, t) ∈ � × R,

hence, we have
∣
∣
∣
∣

∫

�

F(x, u, v) dx
∣
∣
∣
∣ ≤ ε


(‖u‖

 + ‖v‖

)

+ M
(‖u‖r+

r+ + ‖v‖r+
r+

)
, ∀(u, v) ∈ H ,

which together with Lemma  and () implies that for any (u, v) ∈ H+,

J(u, v) =



B
(
(u, v), (u, v)

)
–

∫

�

F(x, u, v) dx

≥ K – Cε


(‖u‖ + ‖v‖) – Cr+M

(‖u‖r+ + ‖v‖r+), ()

and for any (u, v) ∈ H–,

J(u, v) =



B
(
(u, v), (u, v)

)
–

∫

�

F(x, u, v) dx

≤ –K + Cε


(‖u‖ + ‖v‖) + Cr+M

(‖u‖r+ + ‖v‖r+).
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Since r +  > , let ε < K
C , there exists a positive constant R such that

J(u, v) >  for any (u, v) ∈ H+ and  <
∥
∥(u, v)

∥
∥ ≤ R,

J(u, v) <  for any (u, v) ∈ H– and  <
∥
∥(u, v)

∥
∥ ≤ R,

which implies that (, ) is an isolated critical point for J .
Moreover, (, ) is the only critical point (u, v) of J with J(u, v) = . In fact, if (u, v) is such

a point

 =
〈
J ′(u, v), (u, v)

〉
= J(u, v) –

∫

�

(
Fs(x, u, v)u + Ft(x, u, v)v – F(x, u, v)

)
dx,

we obtain
∫

�

(
Fs(x, u, v)u + Ft(x, u, v)v – F(x, u, v)

)
dx = ,

from (F), it follows that (u, v) = (, ).
Now we will finish the argument by contradiction. If there is a sequence {(un, vn)} such

that J ′(un, vn) = , J(un, vn) �=  for any n and J(un, vn) →  as n → ∞. Similar to the proof
of Lemma , we have that (un, vn) converges to a critical point (u, v) with J(u, v) = , which
implies that (un, vn) → (, ) as n → ∞, but (, ) is an isolated critical point for J . Hence
we obtain a contradiction. �

Next, we will prove that the functional J satisfies the geometry of Theorem . We intro-
duce some notations for the later convenience. For R,ρ > , let

�R =
{

u ∈ H– : ‖u‖ ≤ R
} ∪ {

u ∈ H– ⊕ Y : ‖u‖ = R
}

,

TR =
{

u ∈ H– ⊕ Y : ‖u‖ ≤ R
}

and �R = ∂TR,

Sρ =
{

u ∈ H+ : ‖u‖ = ρ
}

, Bρ =
{

u ∈ H+ : ‖u‖ ≤ ρ
}

.

Lemma  Suppose that (), (F), (F), (F) and (F) are satisfied. For any a + b ∈ (λk–,λk),
there exist R > ρ >  such that

 = sup J(�R) < inf J(Sρ).

Proof From (), Lemma  and (F), for any (u, v) ∈ H–, we have

J(u, v) =



B
(
(u, v), (u, v)

)
–

∫

�

F(x, u, v) dx

≤ –
K


(‖u‖ + ‖v‖)

≤ . ()

In view of () and the continuity of F , for any c > , there is M >  such that

F(x, s, t) ≥ c


(
s + t) – M, ∀(x, s, t) ∈ � × R,
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which implies that

∫

�

F(x, u, v) dx ≥ c


(‖u‖

 + ‖v‖

)

– M|�|, ∀(u, v) ∈ H , ()

which together with () implies that for any (u, v) = (u–, v–)⊕ (u∼, v∼) ∈ H– ⊕Y and a+b ∈
(λk–,λk),

J(u, v) ≤ 


B
((

u–, v–)
,
(
u–, v–))

+



B
((

u∼, v∼)
,
(
u∼, v∼))

–
c


(‖u‖

 + ‖v‖

)

+ M|�|

≤ –
K


(∥
∥u–∥

∥ +
∥
∥v–∥

∥) +


μk

(∥
∥u∼∥

∥ +
∥
∥v∼∥

∥)

–
c


(∥
∥u–∥

∥
 +

∥
∥v–∥

∥


)
–

c

λk

(∥
∥u∼∥

∥ +
∥
∥v∼∥

∥) + M|�|

≤ –c
(∥
∥u–∥

∥ +
∥
∥v–∥

∥) +
λk – (a + b) – c

λk

(∥
∥u∼∥

∥ +
∥
∥v∼∥

∥) + M|�|.

Let c > λk – (a + b), the above expression implies that

J(u, v) → –∞ as
∥
∥(u, v)

∥
∥ → ∞. ()

From (), () and (), there are two constants R > ρ >  such that

sup J(�R) < inf J(Sρ). �

Lemma  If (F) holds, then for R >  in Lemma  and for any ε′′ > , there exists ε > 
such that for any a + b ∈ (λk – ε,λk), we have

sup J(TR) < ε′′.

Proof For any (u, v) = (u–, v–) ⊕ (u∼, v∼) ∈ H– ⊕ Y , in view of Lemma , (F) and the fact
that a + b < λk , we have

J(u, v) ≤ 


B
((

u–, v–)
,
(
u–, v–))

+



B
((

u∼, v∼)
,
(
u∼, v∼))

≤ –
K


(∥
∥u–∥

∥ +
∥
∥v–∥

∥) +
λk – (a + b)

λk

(∥
∥u∼∥

∥ +
∥
∥v∼∥

∥).

Let ε = λkε
′′/R, it is easy to see that the conclusion holds. �

Proof of Theorem  The argument is finished by two steps.
(a) There are two critical points (u, v) and (u, v) of the functional J , which satisfy

inf
(u,v)∈Sρ

J(u, v) ≤ J(ui, vi) ≤ sup
(u,v)∈TR

J(u, v) for i = , .

Let ε ∈ (, ε′), α = inf J(Sρ) and β = sup J(TR), where ε′ is defined in Lemma . It follows
from Lemmas  and  that J|H–⊕Y⊥ has no critical levels between α and β, hence the
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functional J satisfies the condition ∇∗(H– ⊕Y ⊥, c) for any c ∈ [α,β]. Lemma  shows that
the (Ce)∗c condition holds true for any c ∈ [α,β]. Hence two critical points are obtained
from Theorem .

(b) There is the third critical point, which is different from (u, v) and (u, v). Let
(ϕk ,ϕk) ∈ H+ be fixed, define

Sρ =
{

(u, v) ∈ H+ :
∥
∥(u, v)

∥
∥ = ρ

}
,

BR =
{

(u, v) + r(ϕk ,ϕk) : r ≥ , (u, v) ∈ H–,
∥
∥(u + rϕk , v + rϕk)

∥
∥ ≤ R

}
,

∂BR =
{

(u, v) + r(ϕk ,ϕk) : r ≥ , (u, v) ∈ H–,
∥
∥(u + rϕk , v + rϕk)

∥
∥ = R

}

∪ {
(u, v) : (u, v) ∈ H–,

∥
∥(u, v)

∥
∥ ≤ R

}
.

For any (u, v) = (u–, v–) + (rϕk , rϕk), r ≥ , from (), we get

J(u, v) ≤ 


B
((

u–, v–)
,
(
u–, v–))

+
r


B
(
(ϕk ,ϕk), (ϕk ,ϕk)

)

–
c


(‖u + rϕk‖

 + ‖v + rϕk‖

)

+ M|�|

≤ –
K


(∥
∥u–∥

∥ +
∥
∥v–∥

∥) + rμk‖ϕk‖

–
c


(∥
∥u–∥

∥
 +

∥
∥v–∥

∥


)
–

rc

λk
‖ϕk‖ + M|�|

≤ –c
(∥
∥u–∥

∥ +
∥
∥v–∥

∥) +
λkμk – c

λk
r‖ϕk‖ + M|�|. ()

Picking c > λkμk , it follows from (), () and r +  >  that there exists R > ρ >  such
that

sup J(∂BR ) < inf J(Sρ ).

Let {Hn} be a sequence of subspaces of H , which is defined as before, then (ϕk ,ϕk) ∈ Hn

for all n, we can prove that for any n,

sup J(∂BR ∩ Hn) < inf J(Sρ ∩ Hn).

Similar to the proof of Lemma , the functional J|Hn satisfies the (Ce)c condition for any
c ∈ R. Hence, by linking argument, there exists a critical point (un, vn) of J|Hn with

inf J(Sρ ∩ Hn) ≤ J(un, vn) ≤ sup J(BR ∩ Hn).

From Lemma , there is a subsequence of {(un, vn)}, also denoted by {(un, vn)}, and (u, v) ∈
H such that (un, vn) → (u, v) as n → ∞, which implies that (u, v) is a critical point for J
with

inf J(Sρ ) ≤ J(u, v) ≤ sup J(BR ). �
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