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1 Introduction
In this paper, we study the second order Josephson-type differential systems

⎧
⎨

⎩

ü(t) + Au(t) – ∇F(t, u(t)) = h(t), a.e. t ∈ [, T],

u() – u(T) = u̇() – u̇(T) = ,
(.)

where A is an (N × N)-symmetric matrix, h(t) ∈ L([, T];RN ), T > , ∇F(t, x) denotes its
gradient with respect to the second variable, that is,

∇F(t, x) = ∇xF(t, x) = (∂F/∂x, . . . , ∂F/∂xN ), x(t) =
(
x(t), . . . , xN (t)

)
,

and F : [, T] ×R
N →R satisfies the following assumptions:

(H) F(t, x) is measurable in t for each x ∈ R
N and continuously differentiable in x for a.e.

t ∈ [, T], and there exist a ∈ C(R+,R+), b ∈ L([, T];R+) such that

∣
∣F(t, x)

∣
∣ ≤ a

(|x|)b(t),
∣
∣∇F(t, x)

∣
∣ ≤ a

(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [, T].

(H) dim N(A) = m ≥  and matrix A has no eigenvalue of the form kυ (k ∈N/{}), where
υ = π/T .

(H) There exist linearly independent vectors ej ∈R
N ( ≤ j ≤ m) such that

N(A) = span{e, e, . . . , em}
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and
∫ T



(
h(t), ej

)
dt = .

This problem (.) occurs in various branches of mathematical physics, for example,
when A = ND and –∇F(t, u(t)) = f (u(t)) = (a sin u, . . . , aN sin uN ), problem (.) reduces
to the nonlinear systems of the form

⎧
⎨

⎩

ü(t) + NDu(t) + f (u(t)) = h(t), a.e. t ∈ [, T],

u() – u(T) = u̇() – u̇(T) = ,
(.)

where D is an (N ×N)-symmetric matrix. This type of problem can be applied to describe
the motion of forced linearly coupled pendulums.

During the past two decades, the existence of periodic solutions for second order differ-
ential systems have been studied extensively, and many solvability conditions have been
obtained via variational methods and critical point theory. In this direction we mention
the papers [–], and we refer the reader to [–] for a broad introduction to varia-
tional methods and critical point theory. It might be also interesting to study the above
mentioned abstract equations with more general potentials, see the paper [].

In the classical monograph [], Mawhin and Willem proved that problem (.) has at
least one solution by using the saddle point theorem under the following bounded condi-
tion: there exists g ∈ L([, T];R+) such that

∣
∣F(t, x)

∣
∣ +

∣
∣∇F(t, x)

∣
∣ ≤ g(t) (.)

for all x ∈R
N and a.e. t ∈ [, T]. They obtained the following result.

Theorem A ([]) Suppose that F satisfies (H)-(H), (.) and

(H) there exists Tj >  such that

F(t, x + Tjej) = F(t, x),  ≤ j ≤ m,

for all x ∈R
N and a.e. t ∈ [, T]. Then Eq. (.) has at least one solution in H

T , where
the Sobolev space H

T is defined by

H
T =

{
u : [, T] →R

N | u is absolutely continuous,

u() = u(T) and u̇ ∈ L([, T];RN)}

and H
T is a Hilbert space with the norm

‖u‖ =
(∫ T



∣
∣u̇(t)

∣
∣ dt +

∫ T



∣
∣u(t)

∣
∣ dt

) 


, u ∈ H
T .

When the nonlinearity ∇F(t, x) is sublinear, that is, there exist f , g ∈ L([, T];R+) and
α ∈ [, ) such that

∣
∣∇F(t, x)

∣
∣ ≤ f (t)|x|α + g(t) (.)
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for all x ∈ R
N and a.e. t ∈ [, T], Tang [, ] researched the existence of periodic solutions

for system (.) in the case A ≡ .
Subsequently, Feng and Han [] generalized Theorem A to the sublinear case, and they

assume that the following assumptions hold:

(H) There exist Tj > ,  ≤ r ≤ m such that

F(t, x + Tjej) = F(t, x),  ≤ j ≤ r,

for all x ∈R
N and a.e. t ∈ [, T].

(H) lim‖x‖→∞
∫ T

 F(t,x) dt
‖x‖α = –∞, as x ∈ N(A) 
 span{e, e, . . . , er}.

Theorem B ([]) Suppose that F satisfies (H)-(H), (H)-(H) and (.). Then Eq. (.)
has at least r +  distinct solutions in H

T .

In [], the author obtained the following result.

Theorem C ([]) Suppose that F satisfies (H)-(H), (H), (.) and the following gener-
alized Ahmad-Lazer-Paul type coercive conditions:

(H) lim‖x‖→∞
∫ T

 F(t,x) dt
‖x‖α < –L, as x ∈ N(A) 
 span{e, e, . . . , er}, where L is a positive con-

stant. Then Eq. (.) has at least r +  distinct solutions in H
T .

In this paper, we use a more general control function instead of |x|α in (.). By using the
generalized saddle point theorem due to Liu [], we can prove the existence of multiple
periodic solutions for the second order Josephson-type differential systems for a new and
large range of the nonlinear term.

2 Preliminaries
In [], Mawhin and Willem established a variational structure which enables us to reduce
the existence of solutions for problem (.) to the existence of critical points of the fol-
lowing energy functional. Define the energy functional associated with problem (.) on
H

T

ϕ(u) =



∫ T



∣
∣u̇(t)

∣
∣ dt –




∫ T



(
Au(t), u(t)

)
dt +

∫ T


F
(
t, u(t)

)
dt

+
∫ T



(
h(t), u(t)

)
dt.

It follows from assumption (H) that the functional ϕ is continuously differentiable. More-
over, one has

〈
ϕ′(u), v

〉
=

∫ T



(
u̇(t), v̇(t)

)
dt –

∫ T



(
Au(t), v(t)

)
dt +

∫ T



(∇F
(
t, u(t)

)
, v(t)

)
dt

+
∫ T



(
h(t), v(t)

)
dt, ∀u, v ∈ H

T .

Then the solutions of problem (.) correspond to the critical points of ϕ (see []).
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Let

q(u) =
∫ T



[∣
∣u̇(t)

∣
∣ –

(
Au(t), u(t)

)]
dt.

Therefore, we can see that

q(u) = ‖u‖ –
∫ T



(
(A + I)u(t), u(t)

)
dt

=
〈
(I – K)u, u

〉
,

where I denotes the identity operator on H
T and K : H

T → H
T is the linear self-adjoint

operator defined, using Riesz representation theorem, by

∫ T



(
(A + I)u(t), v(t)

)
dt = (Ku, v), ∀u, v ∈ H

T .

It is easy to see that K is compact. By classical spectral theory, we can decompose H
T into

the orthogonal sum of invariant subspaces for I – K

H
T = H– ⊕ H ⊕ H+,

where H = Ker(I – K) = N(A) and dim H– < +∞, for some δ > , we have

q(u) ≤ –δ‖u‖, ∀u ∈ H–, (.)

q(u) ≥ δ‖u‖, ∀u ∈ H+. (.)

Lemma . ([]) There is a continuous embedding H
T ↪→ C([, T],RN ), and the embed-

ding is compact. Then there exists C >  such that

‖u‖∞ := max
≤t≤T

∣
∣u(t)

∣
∣ ≤ C‖u‖, ∀u ∈ H

T . (.)

Define

Y = span{e, e, . . . , er}, Y = N(A) 
 Y = span{er+, er+, . . . , em},

then

u(t) = u–(t) + u+(t) + Pu + Qu,

where u– ∈ H–, u+ ∈ H+, Pu ∈ Y and Qu =
∑r

j= cjej. Let

G =

{ r∑

i=

kiTiei

∣
∣
∣ ki ∈ Z,  ≤ i ≤ r

}

be a discrete subgroup of H
T , where Z is the set of all integers, and let π : H

T → H
T /G be

the canonical surjection. Let

H
T /G = X × V = (W ⊕ Z) × V ,
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where W = H+, Z = H– ⊕ Y, V = Y/G, then dim Z < +∞, dim V < +∞, and V is isomor-
phic to the torus Tr . The element in V can be represented as

Qû =
r∑

j=

ĉjej,

where ĉj = cj – kjTj,  ≤ ĉj < Tj. Let

û(t) = u–(t) + u+(t) + Pu + Qû.

By (H) and (H), we have

F
(
t, u(t)

)
= F

(

t, û(t) +
r∑

i=

kiTiei

)

= F
(
t, û(t)

)
,

∇F
(
t, u(t)

)
= ∇F

(

t, û(t) +
r∑

i=

kiTiei

)

= ∇F
(
t, û(t)

)
,

and

∫ T



(
h(t), u(t)

)
dt =

∫ T



(

h(t), û(t) +
r∑

i=

kiTiei

)

dt =
∫ T



(
h(t), û(t)

)
dt.

Thus, ϕ(u) = ϕ(û), ϕ′(u) = ϕ′(û). Define ψ : X × V �→ R: ψ(π (u)) = ϕ(u), then ψ is well
defined. Moreover, ψ is continuously differentiable and

ψ
(
π (u)

)
= ψ

(
π (û)

)
, ψ ′(π (u)

)
= ψ ′(π (û)

)
.

Definition . ([]) Suppose that ψ satisfies the (PS) condition, that is, every sequence
{xn} of X × V such that ψ{xn} is bounded and ψ ′{xn} →  as n → ∞ possesses a conver-
gent subsequence.

Lemma . (The generalized saddle point theorem []) Let X be a Banach space with a
decomposition X = Z + W , where Z and W are two subspaces of X with dim Z < +∞. Let
V be a finite-dimensional, compact C-manifold without boundary. Let ψ : X × V → R

be a C-function satisfying the (PS) condition. Suppose that there exist constants ρ >  and
γ < β such that

(a) inf
x∈W×V

ψ(x) ≥ β ,

(b) sup
x∈S×V

ψ(x) ≤ γ ,

where S = ∂D, D = {z ∈ Z | |z| ≤ ρ}. Then the functional ψ has at least cuplength(V ) + 
critical points.
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3 Main results
Here are our main results.

Theorem . Suppose that assumptions (H)-(H), (H) hold and there exist constants
Mi > , i = , , , and a nonnegative function ω ∈ C([,∞), [,∞)) with the properties:

(ω) ω(s) ≤ ω(t), ∀s ≤ t, s, t ∈ [,∞);
(ω) ω(s + t) ≤ M(ω(s) + ω(t)), ∀s, t ∈ [,∞);
(ω)  ≤ ω(s) ≤ Ms + M, ∀s, t ∈ [,∞);
(ω) ω(s) → +∞ as s → +∞.

Moreover, there exist constant a >  and f , g ∈ L([, T];R+) with

∫ T


f (t) dt <

δ

( + a)MMC


(.)

such that

∣
∣∇F(t, x)

∣
∣ ≤ f (t)ω

(|x|) + g(t) (.)

for all x ∈ R
N and a.e. t ∈ [, T], and

lim sup
|x|→∞

∫ T
 F(t, x) dt
ω(|x|) < –

(




a – 

+



)
M

M

∫ T


f (t) dt (.)

as x ∈ N(A) 
 span{e, e, . . . , er}. Then Eq. (.) has at least r +  distinct solutions in H
T .

Theorem . Suppose that assumptions (H)-(H), (H), (.), (.) hold and

lim inf|x|→∞

∫ T
 F(t, x) dt
ω(|x|) >

(




a – 

+



)
M

M

∫ T


f (t) dt

as x ∈ N(A) 
 span{e, e, . . . , er}. Then Eq. (.) has at least r +  distinct solutions in H
T .

By Theorems . and ., it is easy to obtain the following corollary.

Corollary . Suppose that assumptions (H)-(H), (H), (.), (.) hold and

lim|x|→∞

∫ T
 F(t, x) dt
ω(|x|) = +∞ (or –∞)

as x ∈ N(A) 
 span{e, e, . . . , er}. Then Eq. (.) has at least r +  distinct solutions in H
T .

Remark . (i) When A ≡ , assumptions (ω)-(ω) and condition (.) were introduced
in []. Comparing with the results in [], the periodicity and coercivity conditions in our
Theorem . are only in a part of variables of potentials, and we obtained multiplicity of
periodic solutions for problem (.).
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(ii) To show that our Theorem . is new, we give an example to illustrate our result. For
example, let  ≤ r ≤ m, x = (x, x, . . . , xN )T ∈R

N , and

F(t, x) =
(




T – t
)

ln

[

 +

(

r +  +
r∑

j=

sin xj +



N∑

j=r+

x
j

)]

+
(
T – t

)
ln

[

 +

(

r +  +
r∑

j=

sin xj +



N∑

j=r+

x
j

)]

,

let ω(|x|) = ln[ + (r +  + |x|)]. Then F satisfies all the conditions of Theorem ., but not
covered by the results of [–].

For example, let x = (x, x, . . . , xN )T ∈ R
N , ω(|x|) = |x| and

F(t, x) =
(




T – t
)(

r +  +
r∑

j=

sin xj +



N∑

j=r+

x
j

)

+
(
T – t

)
(

r +  +
r∑

j=

sin xj +



N∑

j=r+

x
j

) 


,

where  ≤ r ≤ m. Then F satisfies all the conditions of Theorem ., but not covered by
the results of [–].

For the sake of convenience, we denote by Ci (i = , , , . . . , ) various positive con-
stants.

Proof of Theorem . First, we prove that ψ satisfies the (PS) condition. Let π : W ,p(t)
T →

W ,p(t)
T /G be the canonical surjection. Define ψ : X × V �→ R by ψ(π (u)) = ϕ(u). Assume

that (π (un)) is a (PS) sequence for ψ , that is, ψ(π (un)) is bounded and ψ ′(π (un)) → .
Then ϕ(un) is bounded and ϕ′(un) → .

We can get from (ω), (ω), and (ω) that

ω
(∣
∣û(t)

∣
∣
)

= ω
(∣
∣u+(t) + u–(t) + Qû + Pu∣∣

)

≤ ω
(∣
∣u+∣

∣ +
∣
∣u–∣

∣ +
∣
∣Qû∣∣ +

∣
∣Pu∣∣

)

≤ M
[
ω

(∣
∣u+∣

∣ +
∣
∣u–∣

∣ +
∣
∣Qû∣∣

)
+ ω

(∣
∣Pu∣∣

)]

≤ M
[
M

(∣
∣u+∣

∣ +
∣
∣u–∣

∣ +
∣
∣Qû∣∣

)
+ M

]
+ Mω

(∣
∣Pu∣∣

)

≤ MM
(∥
∥u+∥

∥∞ +
∥
∥u–∥

∥∞
)

+ MM
∣
∣Qû∣∣ + MM

+ Mω
(∣
∣Pu∣∣

)
. (.)

By (.) and the boundedness of |Qû|, we have

∣
∣
∣
∣

∫ T



(∇F
(
t, û(t)

)
, u+(t)

)
dt

∣
∣
∣
∣

≤
∫ T


f (t)ω

(∣
∣û(t)

∣
∣
)∣
∣u+(t)

∣
∣dt +

∫ T


g(t)

∣
∣u+(t)

∣
∣dt
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≤ MM

∫ T


f (t) dt

(∥
∥u+∥

∥
∞ +

∥
∥u–∥

∥∞
∥
∥u+∥

∥∞
)

+ M

∫ T


f (t) dtω

(∣
∣Pu∣∣

)∥
∥u+∥

∥∞ + C
∥
∥u+∥

∥∞

≤ MMC


∫ T


f (t) dt

(∥
∥u+∥

∥ +
∥
∥u–∥

∥
∥
∥u+∥

∥
)

+ MC

∫ T


f (t) dtω

(∣
∣Pu∣∣

)∥
∥u+∥

∥ + C
∥
∥u+∥

∥

≤ MMC


∫ T


f (t) dt

(
∥
∥u+∥

∥ +
‖u–‖ + ‖u+‖



)

+ MC

∫ T


f (t) dt

ω(|Pu|)
MC

+ MC‖u+‖


+ C

∥
∥u+∥

∥

= MMC


∫ T


f (t) dt

(


∥
∥u+∥

∥ +


∥
∥u–∥

∥
)

+



M

M

∫ T


f (t) dtω(∣∣Pu∣∣

)
+ C

∥
∥u+∥

∥. (.)

From (H) and (.), we obtain that

∣
∣
∣
∣

∫ T



(
h(t), u+(t)

)
dt

∣
∣
∣
∣ ≤ ∥

∥u+∥
∥∞

∫ T



∣
∣h(t)

∣
∣dt

≤ C
∥
∥u+∥

∥
∫ T



∣
∣h(t)

∣
∣dt. (.)

It follows from (.), (.), and (.) that

∥
∥u+

n
∥
∥ ≥ 〈

ϕ′(un), u+
n
〉

=
〈
ϕ′(ûn), u+

n
〉

=
∫ T



∣
∣u̇+

n(t)
∣
∣ dt –

∫ T



(
Aun(t), u+

n(t)
)

dt

+
∫ T



(∇F
(
t, ûn(t)

)
, u+

n(t)
)

dt +
∫ T



(
h(t), u+

n(t)
)

dt

≥
(

δ – MMC


∫ T


f (t) dt

)
∥
∥u+

n
∥
∥

–



MMC


∫ T


f (t) dt

∥
∥u–

n
∥
∥

–



M

M

∫ T


f (t) dtω(∣∣Pu

n
∣
∣
)

+ C
∥
∥u+

n
∥
∥ (.)

for large n. So we have




MMC


∫ T


f (t) dt

(
∥
∥u–

n
∥
∥ +

ω(|Pu
n|)

M
 C



)

≥
(

δ – MMC


∫ T


f (t) dt

)
∥
∥u+

n
∥
∥ – C

∥
∥u+

n
∥
∥
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=
[

δ – ( + a)MMC


∫ T


f (t) dt

]
∥
∥u+

n
∥
∥

+ aMMC


∫ T


f (t) dt

∥
∥u+

n
∥
∥ – C

∥
∥u+

n
∥
∥

≥ aMMC


∫ T


f (t) dt

∥
∥u+

n
∥
∥ + C,

where C = mins∈[,+∞){[δ – ( + a)MMC

∫ T

 f (t) dt]s – Cs}.
From (.), one has that ( + a)MMC


∫ T

 f (t) dt < δ, then C < . Hence

∥
∥u+

n
∥
∥ ≤ 

a

(
∥
∥u–

n
∥
∥ +

ω(|Pu
n|)

M
 C



)

+ C.

In a similar way, we have

∥
∥u–

n
∥
∥ ≤ 

a

(
∥
∥u+

n
∥
∥ +

ω(|Pu
n|)

M
 C



)

+ C.

Combining the above two inequalities, one has that

∥
∥u+

n
∥
∥ ≤ 

a

(
∥
∥u–

n
∥
∥ +

ω(|Pu
n|)

M
 C



)

+ C

≤ 
a

∥
∥u+

n
∥
∥ +


a

(


a
+ 

)
ω(|Pu

n|)
M

 C


+
C

a
+ C.

Consequently,

∥
∥u+

n
∥
∥ ≤ 

a – 
ω(|Pu

n|)
M

 C


+ C. (.)

Using similar arguments, we can prove that

∥
∥u–

n
∥
∥ ≤ 

a – 
ω(|Pu

n|)
M

 C


+ C. (.)

By (.), (.), (.), (.), and (.), we have

∫ T



∣
∣u̇+

n(t)
∣
∣ dt –

∫ T



(
Aun(t), u+

n(t)
)

dt

≤ ∥
∥u+

n
∥
∥ –

∫ T



(∇F
(
t, ûn(t)

)
, u+

n(t)
)

dt

–
∫ T



(
h(t), u+

n(t)
)

dt

≤ MMC


∫ T


f (t) dt

(


∥
∥
∥
∥u+

n

∥
∥
∥
∥



+



∥
∥
∥
∥u–

n

∥
∥
∥
∥

)

+



M

M

∫ T


f (t) dtω(∣∣Pu∣∣

)
+ C

∥
∥u+

n
∥
∥
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≤
(





a – 

+



)
M

M

∫ T


f (t) dtω(∣∣Pu

n
∣
∣
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C. (.)

In a similar way, we can obtain
∫ T



∣
∣u̇–

n(t)
∣
∣ dt –

∫ T



(
Aun(t), u–

n(t)
)

dt

≤
(





a – 

+



)
M

M

∫ T


f (t) dtω(∣∣Pu

n
∣
∣
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C. (.)

By (.) and (ω), one has
∣
∣
∣
∣

∫ T


F
(
t, ûn(t)

)
dt –

∫ T


F
(
t, Pu

n
)

dt
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ T



∫ 



(∇F
(
t, Pu

n + s
(
Qû

n + u+
n + u–

n
))

, Qû
n + u+

n + u–
n
)

ds dt
∣
∣
∣
∣

≤
∫ T



∫ 


f (t)ω

(∣
∣Pu

n
∣
∣ +

∣
∣Qû

n
∣
∣ +

∣
∣u+

n
∣
∣ +

∣
∣u–

n
∣
∣
)(∣

∣Qû
n
∣
∣ +

∣
∣u+

n
∣
∣ +

∣
∣u–

n
∣
∣
)

ds dt

+
∫ T



∫ 


g(t)

(∣
∣Qû

n
∣
∣ +

∣
∣u+

n
∣
∣ +

∣
∣u–

n
∣
∣
)

ds dt.

From (.), (.), and the boundedness of |Qû|, we have
∣
∣
∣
∣

∫ T


F
(
t, ûn(t)

)
dt –

∫ T


F
(
t, Pu

n
)

dt
∣
∣
∣
∣

≤
∫ T


f (t) dtMM

(∣
∣Qû

n
∣
∣ +

∥
∥u+

n
∥
∥∞ +

∥
∥u–

n
∥
∥∞

)

+
∫ T


f (t) dtMM

(∣
∣Qû

n
∣
∣ +

∥
∥u+

n
∥
∥∞ +

∥
∥u–

n
∥
∥∞

)

+
∫ T


f (t) dtMω

(∣
∣Pu

n
∣
∣
)(∣

∣Qû
n
∣
∣ +

∥
∥u+

n
∥
∥∞ +

∥
∥u–

n
∥
∥∞

)

+
∫ T


g(t) dt

(∣
∣Qû

n
∣
∣ +

∥
∥u+

n
∥
∥∞ +

∥
∥u–

n
∥
∥∞

)

≤ MMC


∫ T


f (t) dt

(∥
∥u+

n
∥
∥ +

∥
∥u–

n
∥
∥
)

+ MC

∫ T


f (t) dtω

(∣
∣Pu

n
∣
∣
)(∥

∥u+
n
∥
∥ +

∥
∥u–

n
∥
∥
)

+ C
(∥
∥u+

n
∥
∥ +

∥
∥u–

n
∥
∥
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C.

Hence, we have
∣
∣
∣
∣

∫ T


F
(
t, ûn(t)

)
dt –

∫ T


F
(
t, Pu

n
)

dt
∣
∣
∣
∣

≤ MMC


∫ T


f (t) dt

(∥
∥u+

n
∥
∥+

∥
∥u–

n
∥
∥)
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+ MC

∫ T


f (t) dt


MC

ω(|Pu
n|) + MC‖u+

n‖



+ MC

∫ T


f (t) dt


MC

ω(|Pu
n|) + MC‖u–

n‖



+ C
(∥
∥u+

n
∥
∥ +

∥
∥u–

n
∥
∥
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C

≤ 


MMC


∫ T


f (t) dt

(∥
∥u+

n
∥
∥ +

∥
∥u–

n
∥
∥)

+
M

M

∫ T


f (t) dtω(∣∣Pu

n
∣
∣
)

+ C
(∥
∥u+

n
∥
∥ +

∥
∥u–

n
∥
∥
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C. (.)

By (.), (.), and (.), we have

∣
∣
∣
∣

∫ T


F
(
t, ûn(t)

)
dt –

∫ T


F
(
t, Pu

n
)

dt
∣
∣
∣
∣

≤
(


a – 

+ 
)

M

M

∫ T


f (t) dtω(∣∣Pu

n
∣
∣
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C. (.)

From (H), (.), (.), and (.), one has

∣
∣
∣
∣

∫ T



(
h(t), ûn(t)

)
dt

∣
∣
∣
∣ ≤

∫ T



∣
∣h(t)

∣
∣dt

(∥
∥u+

n
∥
∥∞ +

∥
∥u–

n
∥
∥∞

)

≤ C

∫ T



∣
∣h(t)

∣
∣dt

(∥
∥u+

n
∥
∥ +

∥
∥u–

n
∥
∥
)

≤ Cω
(∣
∣Pu

n
∣
∣
)

+ C. (.)

It follows from (.), (.), (.), and (.) that

ϕ(un) = ϕ(ûn)

=



[∫ T



∣
∣u̇+

n(t)
∣
∣ dt –

∫ T



(
Aun(t), u+

n(t)
)

dt
]

+



[∫ T



∣
∣u̇–

n(t)
∣
∣ dt –

∫ T



(
Aun(t), u–

n(t)
)

dt
]

+
[∫ T


F
(
t, ûn(t)

)
dt –

∫ T


F
(
t, Pu

n
)

dt
]

+
∫ T


F
(
t, Pu

n
)

dt +
∫ T



(
h(t), ûn(t)

)
dt

≤
[(





a – 

+



)
M

M

∫ T


f (t) dt +

∫ T
 F(t, Pu

n) dt
ω(|Pu

n|)
]

ω(∣∣Pu
n
∣
∣
)

+ Cω
(∣
∣Pu

n
∣
∣
)

+ C,
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which implies |Pu
n| is bounded. Otherwise, we assume |Pu

n| → ∞ as n → ∞. From (ω),
we obtain that

ω
(∣
∣Pu

n
∣
∣
) → +∞ as n → ∞.

By (.), we conclude that

ϕ(un) → –∞ as n → ∞,

this contradicts the boundedness of {ϕ(un)}, so |Pu
n| is bounded. Combining (.) and

(.), we obtain that ‖u+
n‖ and ‖u–

n‖ are bounded. Furthermore, |Qû| is bounded, so {ûn}
is bounded in H

T . Arguing then as in Proposition . in [], {ûn} has a convergent subse-
quence. By π (ûn) = π (un), we conclude that ψ satisfies the (PS) condition.

Next, we only need to verify the linking conditions of the generalized saddle point the-
orem:

(a) For π (u) ∈ W × V , u(t) = u+(t) + Qu. By the proof of (.), we have

∣
∣
∣
∣

∫ T


F
(
t, u+(t) + Qu)dt –

∫ T


F(t, ) dt

∣
∣
∣
∣

≤ 


MMC


∫ T


f (t) dt

∥
∥u+∥

∥ + C
∥
∥u+∥

∥ + C.

Hence

ψ
(
π (u)

)
= ψ

(
π

(
u+ + Qu))

= ϕ
(
u+ + Qu)

=



∫ T



∣
∣u̇+(t)

∣
∣ dt +




∫ T



(
Au(t), u+(t)

)
dt

+
[∫ T


F
(
t, u+(t) + Qu)dt –

∫ T


F(t, ) dt

]

+
∫ T



(
h(t), u+(t) + Qu)dt +

∫ T


F(t, ) dt

≥
(

δ


–




MMC


∫ T


f (t) dt

)
∥
∥u+∥

∥ – C
∥
∥u+∥

∥ – C.

Note the boundedness of |Qu| and (.), we obtain that ψ(π (u)) → +∞ as ‖u‖ → –∞ for
all π (u) ∈ W × V , which implies that there exists β ∈R such that ψ(π (u)) ≥ β on W × V .

(b) In a way similar to the proof of (.), we have

∣
∣
∣
∣

∫ T


F
(
t, u– + Pu + Qu)dt –

∫ T


F
(
t, Pu)dt

∣
∣
∣
∣

≤ 


MMC


∫ T


f (t) dt

∥
∥u–∥

∥ +
M

M

∫ T


f (t) dtω(∣∣Pu∣∣

)

+ C
∥
∥u–∥

∥ + Cω
(∣
∣Pu∣∣

)
+ C.
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Consequently,

ψ
(
π (u)

)
= ψ

(
π

(
u– + Pu + Qu))

= ϕ
(
u– + Pu + Qu)

=



∫ T



∣
∣u̇–∣

∣ dt +



∫ T



(
Au, u–)

dt +
∫ T


F
(
t, Pu)dt

+
[∫ T


F
(
t, u– + Pu + Qu)dt –

∫ T


F
(
t, Pu)dt

]

+
∫ T



(
h(t), u– + Pu + Qu)dt

≤ 


[

–δ + MMC


∫ T


f (t) dt

]
∥
∥u–∥

∥ + C
∥
∥u–∥

∥

+
[

M

M

∫ T


f (t) dt +

∫ T
 F(t, Pu) dt
ω(|Pu|)

]

ω(∣∣Pu∣∣
)

+ Cω
(∣
∣Pu∣∣

)
+ C.

From a >  and (.), one has that –δ + MMC

∫ T

 f (t) dt < .
By (.), we deduce that

lim sup
|Pu|→∞

∫ T
 F(t, Pu) dt
ω(|Pu|) < –

M

M

∫ T


f (t) dt,

so we obtain that ψ(π (u)) → +∞ as ‖u‖ → –∞ for all π (u) ∈ Z × V , which implies that
there exists γ < β such that ψ(π (u)) ≤ γ on Z × V .

The functional ψ satisfies all the assumptions of Lemma ., so it has at least
cuplength(V )+ critical points, and since V is the torus Tr , then cuplength(V ) = r. Hence ϕ

has at least r +  critical points. Therefore, problem (.) has at least r +  distinct solutions
in H

T . The proof of Theorem . is completed. �

Proof of Theorem . The proof of Theorem . is similar to the proof of Theorem ., so
we omit the discussions here. �

Remark . Using the parallel arguments with little change as in the proofs of Theorems
. and ., the conclusions of Theorems . and . hold if we replace (ω) with

(ω)′  ≤ ω(s) ≤ Msα + M, ∀s, t ∈ [,∞), where  ≤ α < .
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